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Abstract. In Kleinberg’s small-world network model, strong ties are
modeled as deterministic edges in the underlying base grid and weak ties
are modeled as random edges connecting remote nodes. The probability
of connecting a node u with node v through a weak tie is proportional to
1/|uv|α, where |uv| is the grid distance between u and v and α ≥ 0 is the
parameter of the model. Complex contagion refers to the propagation
mechanism in a network where each node is activated only after k ≥ 2
neighbors of the node are activated.
In this paper, we propose the concept of routing of complex contagion
(or complex routing), where at each time step we can select one eligible
node (nodes already having two active neighbors) to activate, with the
goal of activating the pre-selected target node in the end. We consider
decentralized routing scheme where only the links connected to already
activated nodes are known to the selection strategy. We study the routing
time of complex contagion and compare the result with simple routing
and complex diffusion (the diffusion of complex contagion, where all eli-
gible nodes are activated immediately in the same step with the goal of
activating all nodes in the end).
We show that for decentralized complex routing, the routing time is lower
bounded by a polynomial in n (the number of nodes in the network)
for all range of α both in expectation and with high probability (in

particular, Ω(n
1

α+2 ) for α ≤ 2 and Ω(n
α

2(α+2) ) for α > 2 in expectation).
Our results indicate that complex routing is exponentially harder than
both simple routing and complex diffusion at the sweetspot of α = 2.

Keywords: Computational social science, complex contagion, diffusion, decen-
tralized routing, small-world networks, social networks

1 Introduction

Social networks are known to be the medium for spreading disease, informa-
tion, ideas, innovations, and other types of behaviors. Social scientists have been
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studying social networks and diffusions in the networks for decades, and many
of the research results are inspirational to researches in the intersection of social
science, economics, and computation on modeling social networks and diffusions
in them.

In the seminal work [17, 15], Granovetter classified relationships in a social
network as strong ties and weak ties. Strong ties represent close relationships,
such as family members and close friends, while weak ties represent acquaintance
relationship that people casually maintain. The surprising result in this study
is that people often obtain important job referrals leading to their current jobs
through weak ties instead of strong ties, which leads to the popular term the
strength of weak ties. His research demonstrated the importance of weak ties in
information diffusion in social networks. Another famous experiment related to
information diffusion is Milgram’s small-world experiment [22], in which Milgram
asked subjects to forward a letter to their friends in order for the letter to reach
a person not known to the initiator of the letter. The result showed that on
average it takes only six hops to connect two people in U.S. unknown to each
other, hence the famous term of six-degree of separation.

The above studies motivated the modeling of small-world networks [26, 20].
Watts and Strogatz modeled the small-world network as a ring where nodes close
to one another in ring distance are connected representing strong ties, and some
strong ties are rewired to connect to other random nodes on the ring, which
represent weak ties [26]. They also proposed short diameter (the distance be-
tween any pair of nodes is small) and high clustering coefficient (the probability
that two friends of a node are also friends of each other) as two characteristics
of small-world networks. Kleinberg [20] improved the model of Watts and Stro-
gatz by building a small-world network on top of a base grid, where grid edges
representing strong ties, and each node u initiating a weak tie connecting to
another node v with probability proportional to 1/|uv|α, where |uv| is the grid
distance between u and v and α is the small-world parameter. Kleinberg showed
that when α equals the dimension of the grid, the decentralized greedy routing,
where in each routing step the current node routes the message to its neighbor
with grid distance closest to the target node, achieves efficient routing perfor-
mance [20]. This efficient decentralized routing behavior qualitatively matches
the result of Milgram’s small-world experiment. Kleinberg further showed that
when α is not equal to the grid dimension, no decentralized routing scheme could
be efficient, and in particular, the small-world model of Newman and Watts [24]
corresponds to the one-dimensional Kleinberg’s model with α = 0. Kleinberg’s
small-world network model is the one we use in this paper.

In another work [16], Granovetter proposed the threshold model to character-
ize diffusions of rumors, innovations, or riot behaviors. An individual in a social
network is activated by a certain behavior only when the number of her neigh-
bors already adopting the behavior exceeds a threshold. This threshold model
motivated the linear threshold, fixed threshold, and general threshold models
proposed by Kempe et al. [18], and is directly related to the model of complex
contagion we use in this paper.
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More recently, Centola and Macy [5] classified the threshold model into sim-
ple contagion and complex contagion. Simple contagion refers to diffusion models
with threshold being one on every node, which means that a node can be acti-
vated as long as there is one active neighbor. Simple contagion corresponds to
diffusions of virus or simple information, where one can get activated by sim-
ply receiving the virus and information. Complex contagion, on the other hand,
refers to diffusion models with threshold at least two, meaning that a node can
be activated only after multiple of its neighbors are activated. Complex conta-
gion corresponds to diffusions requiring complex decision process by individuals,
such as adopting a costly new product, adopting a disruptive innovation, etc,
where people usually need multiple independent sources of confirmation about
the utility of the new product or new innovation before taking the action. The
important point Centola and Macy argued is that, while weak ties are effective in
transmitting information quickly across a long range in a network, they may not
be as effective in complex contagion. This is because for complex contagions to
spread quickly in a network, it requires weak ties forming not only long bridges
connecting different regions of the network but also wide bridges in the sense
that many weak ties can work together to bring the contagion from one region
of the network to another region of the network.

Motivated by the above work, Ghasemiesfeh et al. provided the first an-
alytical study of complex contagion in small-world networks [14]. They stud-
ied the diffusion of k-complex contagion (or k-complex diffusion), where all
nodes have threshold k and all nodes with at least k active neighbors are acti-
vated right away. They showed that the diffusion time, which is the time for
the diffusion to activate all nodes in a network starting from k initial seed
nodes connected with strong ties, is polylogarithmic to the size of the network
when α = 2. Ebrahimi [11] further generalized the results and proved that the
diffusion time for k-complex diffusion has polylogarithmic upper bound when

α ∈ (2, 2(k2+k+1)
k+1 ) in Kleinberg’s grid model. They also show that in Klein-

berg’s model with α outside this range, the diffusion time is lower bounded by
a polynomial in n.

In this paper, we go beyond the diffusion of complex contagion (or complex
diffusion), to study a new propagation phenomenon closer to decentralized rout-
ing in [20], which we call the routing of complex contagion (or complex routing).
In complex routing, we model weak ties as directed edges as in [20], and study
the time for two seed nodes connected by a strong tie to activate a target node
t farthest on the grid (we call it the routing time). At each step only one new
node can be activated, and the decision of which node to activate is decentralized
which means it is only based on the current activated nodes and their outgo-
ing weak tie neighbors as well as the underlying grid, same as decentralized
routing in [20]. Such decentralized routing behavior corresponds to real-world
phenomenon where a group of people want to influence a target person by in-
fluencing intermediaries between the source group and the target person, and
influencing these intermediaries requires effort and thus has to be carried out one
at a time. Active friending [27] is an application similar to the above scenario
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recently proposed in the context of online social networks such as Facebook for
increasing the chance of a target user accepting the friending request from the
source.

1.1 Our results

In this paper, we show that, unlike simple routing or complex diffusion, in com-
plex routing problem for any k ≥ 2, for the entire range of α, the routing time
is polynomial in n both in expectation and with high probability for any decen-
tralized routing algorithm. Compared with simple routing or complex diffusion,
the results at the sweetspot of α = 2 are the most interesting: simple routing has
routing time O(log2 n) in expectation [20] and complex diffusion has an upper
bound of O(logk+1.5 n) in expected diffusion time [14], while complex routing

has a lower bound of Ω(n
1
4 ) in expected routing time, for any k ≥ 2. This ex-

ponentially wide gap indicates intrinsic difference between complex routing and
simple routing or complex diffusion. We further show that if we allow activating
m nodes in one step, the routing time is lower bounded by Ω(n

1
4 /m), which

means that to get a polylogarithmic upper bound on the routing time m has to
be Ω(n

1
4 / logc n) for some constant c.

Our main contribution is that we propose the study of complex routing, and
prove that the routing time has polynomial lower bound in the entire range
of α for complex routing. Our results indicate that complex routing is much
harder than complex diffusion and the routing time of complex contagion differs
exponentially compared to simple contagion at sweetspot.

1.2 Additional Related Work

Social and information networks and network diffusions have been extensively
studied, and a comprehensive coverage has been provided by recent textbooks
such as [10, 25]. In this section, we provide most related work in addition to the
ones already discussed in the introduction.

Since the proposal of the small-world network models by [26, 20], many ex-
tensions and variants have been studied. For example, Kleinberg proposed a
small-world model based on tree structure [21], Fraigniaud and Giakkoupis ex-
tended the model to allow power-law degree distribution [12] or arbitrary base
graph structure [13].

In terms of network diffusion, a line of research initiated in [18, 19] stud-
ied the maximization problem of finding a set of small seeds to maximize the
influence spread, usually under a stochastic diffusion model. For Chen et al.
[8] provided efficient influence maximization algorithms for large-scale networks,
while Chen [7] proved that minimizing the size of the seed set for a given cover-
age in the fixed threshold model is hard to approximate to any polylogarithmic
factor.

Threshold behavior is also studied in bootstrap percolation [1], where all
nodes have the same threshold and initial seeds are randomly selected. Bootstrap
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percolation focuses on the study of the critical fraction f of the seed nodes
selected so that the entire network is infected in the end. The network structures
investigated for bootstrap percolation include grid [6], trees [3], random regular
graphs [2], complex networks [4] etc.

The rest of the paper is organized as follows. Section 2 provides the technical
model and problem definitions. Sections 3 presents the results and analyses on
complex routing. We conclude the paper in Section 4.

2 Model and Problem Definitions

We now provide the precise definitions of the network model, the propagation
model, and the problems we are studying in this paper.

2.1 Kleinberg’s Small-World Networks

The Kleinberg’s small-world network model defines a random graph based on a
set V of n nodes organized in a

√
n×

√
n two-dimensional grid [20]. For conve-

nience, we connect the top boundary nodes of the grid with the corresponding
bottom boundary nodes, and connect the left boundary nodes with the corre-
sponding right boundary nodes, creating a two-dimensional torus, in which the
positions of all nodes are symmetric. For nodes u and v on the torus, the Man-
hattan distance |uv| between them is the shortest distance from u to v (or v to
u) using grid edges.

There are two types of edges in this random graph: strong ties and weak ties.
Strong ties refer to the undirected edges between any pair of nodes with Man-
hattan distance no more than p, where p ≥ 1 is a universal constant. Weak ties
refer to random edges connecting any node u with other possibly remote nodes v
in the grid. Each node u has q weak tie connections created independently from
one another, and the i-th weak tie initiated by u has endpoint v with probability
proportional to 1/|uv|α, where α ≥ 0 is a parameter of the model. In order to get
the probability distribution of weak ties, we multiply 1/|uv|α by the normalizing
factor Z = 1/

∑
v∈V |uv|−α (on a torus, this value is the same for any u ∈ V ).

For a node u in the network, u’s grid-neighbors are nodes linked with u through
strong ties while weak-neighbors are nodes linked with u through weak ties.

The original network model by Kleinberg [20] considers the weak tie from u
to v as a directed edge, and we call it the directed Kleinberg’s small-world net-
work model, while some work including [14] considers the weak ties as undirected
edges. Define random graph G(n, k, α) as directed Kleinberg’s small-world net-
work with n nodes and parameter α and p = q = k. We only consider directed
network models in this paper.

2.2 Routing of Complex Contagion

We model the propagation of information, disease, or innovations in a network
as a contagion. Each node in a network has three possible states — inactive,
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exposed, infected (or activated), and a node can transformed from the inactive
state to the exposed state and then to the infected state, but not in the reverse
direction.

A contagion proceeds in discrete time steps 0, 1, 2, . . .. At time t ≥ 1, a node
becomes exposed if at time t−1 at least k of its neighbors (or in-neighbors in the
case of directed networks) are infected. An exposed node may become infected
immediately or at a later step, which will be specified later. A simple contagion
refers to the contagion with k = 1, that is, one infected neighbor is enough to
expose (and potentially infect) the node, while a complex contagion refers to the
case of k ≥ 2, that is, at least two infected neighbors are needed to infect a new
node. We refer the complex contagion with k ≥ 2 as k-complex contagion.

We study a different propagation phenomenon closer to the decentralized
routing behavior studied in [20] originally for the small-world network model,
which we call routing of complex contagion, or simply complex routing.

To study k-complex routing, at time 0, we set k consecutive nodes on the
grid in one dimension as infected initially, which we refer as seed nodes. For
convenience, we also set p = k. When p = k, the k-complex routing is guaranteed
to infect all nodes eventually through strong ties only. In complex routing, we
have a target node t besides the set of k initial seed nodes.

The task is to infect or activate node t as fast as possible. We can only select
one exposed node to activate at each time step. Moreover, when selecting the
node to activate at time i, one only knows the out-neighbors of already activated
nodes since decentralized routing is applied. This corresponds to the situation
where a group of people try to influence a target by gradually growing their
allies in the social network towards the target, and they only know the friends
of their allies and try to recruit one of them into the allies at the next time step.
Note that when k = 1, k-complex routing is essentially the decentralized simple
routing studied in [20].

To study how fast the routing could be successful, we define the routing time
as the number of time steps needed to activate the farthest target node t from
the seed node in terms of the Manhattan distance.

3 Results on Complex Routing

When studying complex routing, we use the directed Kleinberg’s small-world
network model, same as the model originally proposed by Kleinberg in [20] for
decentralized routing. As described in the model, we consider decentralized rout-
ing in which a node can only send activation to its out-neighbors. Hence only
when a node is pointed to by edges from k different activated nodes it becomes
exposed. For the strong tie, we still treat them as undirected or bi-directional.
In each time step, we only have the knowledge of the current activated nodes
and the out-neighbors of the current activated nodes. This allows us to apply
the Principle of Deferred Decisions [23] in the same way as applied in [20], which
means that the weak ties of a node u are defined and known only when u is acti-
vated. Initial seeds set is a set of k consecutive nodes, so the k-complex routing
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will eventually activate target t when we set p = k in Kleinberg’s small-world
network model.

We consider a 2-complex routing task from a pair of grid neighbor nodes
S0 = {s10, s20} to a destination t where s10, s

2
0 have Manhattan distance of 1

on the grid. In this paper, we discuss the routing with initial grid distance
of |s10t| = Θ(

√
n). The strategy of activating nodes from exposed nodes set is

not restricted. A special scheme is choosing the node with smallest Manhattan
distance to t in each time step, which is the greedy algorithm. But our result
holds for any decentralized node selection schemes, even randomized ones. The
following theorem provides the lower bound result on the routing time.

Theorem 1. For any decentralized routing schemes (even randomized ones), the
routing time of 2-complex routing in G(n, 2, α) has the following lower bounds
based on the parameter α, for any small ε > 0:

1. For α ∈ [0, 2), the routing time is Ω(n
1−ε
α+2 ) with probability at least 1−O(n−ε)

and the expected routing time is Ω(n
1

α+2 ).

2. For α = 2, the routing time is Ω(n
1
4 ) with probability at least 1 − O( 1

logn )

and the expected routing time is Ω(n
1
4 ).

3. For α ∈ (2,+∞), the routing time is Ω(n
α−2ε

2(α+2) ) with probability at least

1−O(n−ε) and the expected routing time is Ω(n
α

2(α+2) ).

First we give some necessary definitions. For a set of nodes S, define E(S)
to be the set of exposed nodes for the current activated set S, namely E(S) =
{x /∈ S | x has at least two in-neighbors in set S}. In a routing protocol, let Si

be the set of the current activated nodes in time i. In time step i, we can choose
at most one node u ∈ E(Si−1), and activate u (which means we add u to Si−1

in time i and obtain Si). From the definition of E(S) we know that complex
routing proceeds following the direction of edges in directed Kleinberg’s small-
world model.

3.1 Proof of Deterministic Scheme

We consider deterministic decentralized routing schemes first. Due to the page
limit, the proofs of lower bounds for randomized schemes are omitted, and they
are included in our full version [9]. First we discuss routing time for α = 2.

Suppose S0, S1, · · · , Sℓ is the sequence of activated sets of nodes in routing
where Si is the set of current activated nodes in time step i. The initial seeds
are {s10, s20} so S0 = {s10, s20}, Si = {s10, s20, s1, · · · , si} and in time i ≥ 1 we add a
new node si selected from E(Si−1), particularly sl = t. Let di = d(Si ∪ E(Si), t),
where d(S, u) is the minimum Manhattan distance between node v ∈ S and u.
It is easy to observe that di is a non-increasing sequence and dℓ−1 = dℓ = 0.
For convenience, we write s10 as S−1 and define that d−1 = |s10t| =

√
n. We then

prove that when the parameter α = 2, Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 ) is

high enough, where c < 1 is a positive constant we will set later. Define event
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χ = {∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 }. Event χ means from time step 0 to

cn1/4 − 1, the Manhattan distance between the current activated set and target
t decrease at most n

1
4 in each time step.

Lemma 1. For decentralized 2-complex routing in directed Kleinberg’s small-
world network G(n, 2, α) with α = 2, given the initial seeds {s10, s20} and farthest
target t with |s10t| = Θ(

√
n), then for some suitable constant c ∈ (0, 1),

Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 ) ≥ 1−O(

1

log n
).

Proof. Let ui = argminx{d(x, t)|x ∈ Si∪E(Si)}, so ui is the node that is closest
to node t and can be activated by set Si or belong to Si. Since ui−1 is the
node that with the shortest Manhattan distance to t among E(Si−1) ∪ Si−1

and si ∈ E(Si−1), |sit| ≥ |ui−1t| = di−1. Thus if di−1 − di > 0, we know that
si is not the node closest to t among Si ∪ E(Si) since |sit| ≥ di−1. Besides,
we can also get that ui ∈ E(Si) \ E(Si−1) and si activate ui together with
another node in Si−1. Combining with the definition that |uit| = di, we know
|siui| ≥ |sit| − |uit| = di−1 − di. Hence we have the following conclusions:

If di−1 − di > n1/4 for i ≥ 1, then we can conclude (1) |siui| > n
1
4 ; (2) ui is

one of the out-neighbors of si, more specifically, si initiates a weak tie to ui; (3)
ui is exposed exactly in time step i, so there is exactly one weak tie from some
node in Si−1 to ui. For i = 0, because d(S0, t) = d−1, so the gap between d−1

and d0 is caused by u0 ∈ E(S0). The conclusions still hold.
We define the set of nodes that are the endpoints of the weak ties initiated

by Si−1 as Xi. Xi is indeed the set of weak-neighbors in directed Kleinberg’s
small-world network. Apparently ui ∈ Xi according to assertion (3) above. If

di−1 − di > n
1
4 happens, ui can be reached by si with a weak tie of distance at

least n
1
4 . Define u → v as node u initiates a weak tie with endpoint v. By union

bound, we have:

1− Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 )

= Pr(∃ 0 ≤ i < cn
1
4 , di−1 − di > n

1
4 )

≤
∑cn

1
4 −1

i=0 Pr(di−1 − di > n
1
4 )

≤
∑cn

1
4 −1

i=0 Pr(si → ui, |siui| > n
1
4 , ui ∈ Xi)

≤
∑cn

1
4 −1

i=0 Pr(∃ x ∈ Xi, si → x, |six| > n
1
4 ).

(1)

Since there is i + 1 nodes in the set Si−1, Si−1 initiate q(i + 1) weak ties,
which means that |Xi| ≤ q(i + 1). Denote Hi ⊆ 2V to be the set of all sets of
nodes with size no more than q(i+1). Then we fix the randomness of Xi and si:

Pr(∃ x ∈ Xi, si → x, |six| > n
1
4 )

≤
∑

C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v) ∧ (∃ x ∈ C, v → x, |vx| > n

1
4 )
)

=
∑

C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

)
Pr(∃ x ∈ C, v → x, |vx| > n

1
4 )

≤
∑

C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

)∑
x∈C Pr(v → x, |vx| > n

1
4 )

≤
∑

C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

)
· |C| · 2Z 1

n2·1/4

≤ q(i+ 1) · 2 Z
n1/2

∑
C∈Hi

∑
v∈V Pr

(
(Xi = C) ∧ (si = v)

)
= 2q(i+ 1) · Z

n1/2 .
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By the property of decentralized routing, event {(Xi = C) ∧ (si = v)} only
depends on the random set Si−1 and the outgoing weak ties from Si−1, and v
is not in Si−1, while event {∃x ∈ C, v → x, |vx| > n

1
4 } only depends on the

outgoing weak ties of the fixed node v. Thus event {(Xi = C) ∧ (si = v)} is

independent of event {∃x ∈ C, v → x, |vx| > n
1
4 }. This gives us the first “=”

in the equation. For a node x, if |vx| ≤ n
1
4 , then Pr(v → x, |vx| > n

1
4 ) = 0;

otherwise, Pr(v → x, |vx| > n
1
4 ) ≤ 2p(v, x) ≤ 2Z 1

n2·1/4 . Hence we have the third
“≤”. Substitute it into Inequality (1):

1− Pr(∀ 0 ≤ i < cn
1
4 , di−1 − di ≤ n

1
4 )

≤
∑cn

1
4 −1

i=0 Pr(∃ x ∈ Xi, si → x, |six| > n
1
4 )

≤
∑cn

1
4 −1

i=0 q(i+ 1) · 2 Z
n1/2 ≤ cn

1
4 · qcn 1

4 ·Θ( 1
logn )

2
n1/2 = O( 1

logn ).

Due to the above lemma, it is easy to see that the routing time is at least
cn

1
4 with high probability for α = 2.

Proof (of Theorem 1 (deterministic routing scheme)). Lemma 1 says, for α = 2,

in the first cn
1
4 steps, the grid distance between the current activated set and

target t decreases at most n
1
4 in each step. Thus, for the first cn

1
4 steps, target

t does not belong to the activated set and the routing procedure will continue.
Hence with probability of 1 − O( 1

logn ), to activate the target t in G(n, 2, α)

with α = 2, decentralized 2-complex routing needs at least cn
1
4 time steps. The

expected routing time is cn
1
4 · (1−O( 1

logn )) = Ω(n
1
4 ).

When α ∈ [0, 2), like the proof in Lemma 1, we can prove for small ε > 0,

1− Pr(∀ 0 ≤ i < cn
1−ε
α+2 , di−1 − di ≤ 2n

α+2ε
2(α+2) )

≤
∑cn

1−ε
α+2 −1

i=0 Pr(∃ x ∈ Xi, si → x, |six| > 2n
α+2ε

2(α+2) )

≤
∑cn

1−ε
α+2 −1

i=0 2(i+ 1) · Z · 2(2n
α+2ε

2(α+2) )−α

≤ cn
1−ε
α+2 · 2cn

1−ε
α+2 ·Θ( 1

n1−α/2 ) ·O(n−α(α+2ε)
2(α+2) ) = O(n−ε).

So the routing time is Ω(n
1−ε
α+2 ) with probability at least 1 − O(n−ε). By

setting ε = 0 and adjusting the parameter c, the expected routing time can be
obtained.

When α > 2, we can prove that for small ε > 0,

Pr(∀ 0 ≤ i < cn
α−2ε

2(α+2) , di−1 − di ≤ n
1+ε
α+2 ) ≥ 1−O(n−ε)

like the proof above. Hence with probability at least 1−O(n−ε), we need cn
α−2ε

2(α+2)

time steps to find the target. Similarly we can get the bound for the expectation.

3.2 Discussion and Extension

We describe complex routing as the task of activating a node as fast as possible.
Here we consider the task of activating a target node t that is nγ grid distance
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away from the seeds. Similar hardness results can be inferred if we determine the
step size and step number of routing cautiously. Here we just sate the theorem
and do not provide the redundant proof.

Theorem 2. For any decentralized routing schemes (even randomized ones), the
routing time for 2-complex routing to activate a node with Manhattan distance
nγ(0 < γ ≤ 1

2 ) away in G(n, 2, α) has the following lower bounds based on the
parameter α, for any small ε > 0:

1. For α ∈ [0, 2), the routing time is Ω(n
2γ(1−ε)

α+2 ) with probability at least 1 −
O(n−ε′) where ε′ = max {2γε, (1− 2γ)(1− α/2)} and the expected routing

time is Ω(n
2γ

α+2 ).
2. For α = 2, the routing time is Ω(n

γ
2 ) with probability at least 1 − O( 1

logn )

and the expected routing time is Ω(n
γ
2 ).

3. For α ∈ (2,+∞), the routing time is Ω(n
γ(α−2ε)

α+2 ) with probability at least

1−O(n−ε) and the expected routing time is Ω(n
γα
α+2 ).

We can obtain the same lower bound of routing time for k-complex routing.
To ensure the success of complex routing, let p = q = k for the Kleinberg’s
small-world network model and the size of seed nodes is k. The result is the
same with 2-complex routing so we omit it.

Next, we extend our results to complex routing where at most m nodes can
be activated in each time step. When m = 1, the result is what we covered in
Theorem 1 for complex routing. When we do not restrict m, complex routing be-
comes complex diffusion. Thus a general m allows us to connect complex routing
with diffusion, and see how largem is needed to bring down the polynomial lower
bound in complex routing. From the theorem we know that we would not get
polylogarithmic routing time for complex routing in G(n, 2, 2) where m nodes

can be activated in each step, unless m = n
1
4 / logO(1) n.

Theorem 3. In decentralized routing, for k-complex routing in G(n, 2, α), if at
most m nodes can be activated in each time step, routing time has the following
lower bounds based on the parameter α, for any small ε > 0:

1. For α ∈ [0, 2), the routing time is Ω(n
1−ε
α+2 /m) with probability at least 1 −

O(n−ε) and the expected routing time is Ω(n
1

α+2 /m).

2. For α = 2, the routing time is Ω(n
1
4 /m) with probability at least 1−O( 1

logn )

and the expected routing time is Ω(n
1
4 /m).

3. For α ∈ (2,+∞), the routing time is Ω(n
α−2ε

2(α+2) /m) with probability at least

1−O(n−ε) and the expected routing time is Ω(n
α

2(α+2) /m).

Proof. Assuming that S is the set of current activated nodes. In next time step,
we can activate m nodes with the knowledge of the out-neighbors of S. But
consider the original complex routing, we just activate one node in each step
and we have m time steps to activate nodes. After each small step, we have the
knowledge of the newly added node. Hence the method of activating m nodes
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with m time steps is more effective than infecting m nodes in just one time
step. Therefore if we need T time steps to find the target with original complex-
routing, the routing time with activating m nodes in each time step is at least
T
m . The expected routing time is T

m · (1−O( 1
logn )). Then the theorem follows.

4 Conclusion

In this paper, we study the routing of complex contagion in Kleinberg’s small-
world networks. We show that for complex routing the routing time is lower
bounded by a polynomial in the number of nodes in the network for the entire
range of α, which is qualitatively different from the polylogarithmic upper bound
in both complex diffusion and simple routing for α = 2. Our results indicate that
complex routing is much harder than both complex diffusion and simple routing
at the sweetspot.

There are a number of future directions of this work. One may look into
complex routing for undirected small-world networks or other variants of the
small-world models. The qualitative difference between complex diffusion and
complex routing for the case of α = 2 may worth further investigation. For
example, one may study if there is similar difference for a larger class of graphs,
and under what network condition complex routing permits polylogarithmic
solutions.
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