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Social influence (人际影响力)
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Social influence occurs when one's 
emotions, opinions, or behaviors are 
affected by others.
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[Christakis and Fowler, NEJM’07,08]
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Booming of online social networks 
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Hotmail: online viral marketing story

8

 Hotmail’s viral climb 
to the top spot 
(90s): 8 million users 
in 18 months! 

 Boosted brand 
awareness

 Far more effective 
than conventional 
advertising by rivals

 … and far cheaper, 
too!

Join the world's largest e-mail service 
with MSN Hotmail. http://www.hotmail.com

Simple message added to footer of 
every  email message sent out
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Voting mobilization: A Facebook study
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 Voting mobilization [Bond et al, Nature’2012]

 show a facebook msg. on voting day with faces of friends who voted

 generate 340K additional votes due to this message, among 60M 
people tested



Opportunities for computational social 
influence research

10

 massive data set, real time, dynamic, open

 help social scientists to understand social interactions, 
influence, and their diffusion in grand scale 

 help identifying influencers

 help health care, business, political, and economic 
decision making
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Three pillars of computational social 
influence
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Computational 

Social Influence

Influence 

modeling:
discrete / 

continuous

competitive / 

complementary

progressive / 

nonprogressive

Influence 

learning:
graph learning

inf. weight 

learning: pair-

wise, topic-wise

Influence 

opt.:
inf. max.

inf. monitoring

inf. control



Influence modeling
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 Discrete-time models:
 independent cascade (IC), linear threshold (LT), general 

cascade models [KKT‘03]
 topic-aware IC/LT models [BBM’12]

 Continuous-time models [GBS‘11]

 Competitive diffusion models
 competitive IC [BAA‘11], competitive LT [HSCJ‘12], etc.

 Competitive & complementary diffusion model 
[LCL‘15]

 Others, epidemic models (SIS/SIR/SIRS…), voter model 
variants



Influence optimization
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 Scalable inf. max.
 Greedy approximation [KKT’03, LKGFVG’07, CWY’09, 

BBCL’14, TXS’14, TSX’15]
 Fast heuristics [CWY’09, CWW’10, CYZ’10, GLL’11, JHC’12, 

CSHZC’13]

 Multi-item inf. max. [BAA’11, SCLWSZL’11, HSCJ’12, 
LBGL’13, LCL’15]

 Non-submodular inf. max. [GL’13, YHLC’13, ZCSWZ’14, 
CLLR’15]

 Topology change for inf. max. [TPTEFC’10,KDS’14]

 Inf. max with online learning [CWY’13, LMMCS’15]

 many others …



Influence learning
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 Based on user action / adoption traces

 Learning the diffusion graph [GLK’10]

 Learning (the graph and) the parameters 

 frequentist method [GBL’10]

 maximum likelihood [SNK’08]

 MLE via convex optimization [ML’10,GBS’11,NS’12]



Outline of this lecture
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 Introduction and motivation

 Stochastic diffusion models

 Influence maximization

 Scalable influence maximization

 Competitive influence dynamics and influence 
maximization tasks

 Influence model learning
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Reference Resources
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 Search “Wei Chen Microsoft”

• Monograph: “Information and 
Influence Propagation in Social 
Networks”, Morgan & Claypool, 
2013

• KDD’12 tutorial on influence 
spread in social networks

• 社交网络影响力传播研究，大
数据期刊，2015

• my papers and talk slides



Stochastic Diffusion Models
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Information/Influence Propagation

18

People are connected and perform actions

nice read indeed!

09:3009:00

comment, link, rate, like,
retweet, post a message, 
photo, or video, etc.

friends, fans,
followers, etc.

Guest Lecture, Peking U., Nov 18, 2015



Basic Data Model

19

Graph: users, links/ties
𝐺 = (𝑉, 𝐸)

Log: user, action, time 
𝐴 = { 𝑢1, 𝑎1, 𝑡1 , … }

John

Mary

Jen

Peter

User Action Time

John Rates with 5 stars
“The Artist”

June 3rd

Peter Watches
“The Artist”

June 5th

Jen … …
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Terminologies
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 Directed graph 𝐺 = (𝑉, 𝐸)

 Node 𝑣 ∈ 𝑉 represents an individual

 Arc (edge) 𝑢, 𝑣 ∈ 𝐸 represents a (directed) influence 
relationship

 Discrete time 𝑡: 0,1,2, …

 Each node 𝑣 has two states: inactive or active

 𝑆𝑡: set of active nodes at time 𝑡

 𝑆0: seed set, initially nodes selected to start the 
diffusion



Stochastic diffusion models
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 Progressive models: for all 𝑡 ≥ 1, 𝑆𝑡−1 ⊆ 𝑆𝑡
 Once activated, always activated, e.g. once bought the 

product, cannot undo it

 Influence spread 𝝈(𝑺): expected number of activated 
nodes when the diffusion process starting from the seed 
set 𝑆 ends



Independent cascade model 

22

• Each edge (𝑢, 𝑣) has a 
influence probability 
𝑝(𝑢, 𝑣)

• Initially seed nodes in 𝑆0
are activated

• At each step 𝑡, each  
node 𝑢 activated at step 
𝑡 − 1 activates its 
neighbor 𝑣
independently with 
probability 𝑝(𝑢, 𝑣)

0.3

0.1
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Linear threshold model

23

 Each edge (𝑢, 𝑣) has a 
influence weight 𝑤 𝑢, 𝑣 :
 when 𝑢, 𝑣 ∉ 𝐸,𝑤 𝑢, 𝑣 =
0

 σ𝑢𝑤 𝑢, 𝑣 ≤ 1

 Each node 𝑣 selects a 
threshold 𝜃𝑣 ∈ [0,1]
uniformly at random

• Initially seed nodes in 𝑆0 are 
activated

 At each step, node 𝑣 checks 
if the weighted sum of its 
active in-neighbors is greater 
than or equal to its 
threshold 𝜃𝑣, if so 𝑣 is 
activated
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Interpretation of IC and LT models
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 IC model reflects simple contagion, e.g. information, virus

 LT model reflects complex contagion, e.g. product adoption, 
innovations (activation needs social affirmation from multiple 
sources [Centola and Macy, AJS 2007])



Influence maximization

25

 Given a social network, a diffusion model with given 
parameters, and a number 𝑘, find a seed set 𝑆 of at 
most 𝑘 nodes such that the influence spread of 𝑆 is 
maximized. 

 To be considered shortly

 Based on submodular function maximization
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Submodular set functions

26

 Sumodularity of set functions 
𝑓: 2V → 𝑅
 for all 𝑆 ⊆ 𝑇 ⊆ 𝑉, all 𝑣 ∈ 𝑉 ∖ 𝑇, 

𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆
≥ 𝑓 𝑇 ∪ 𝑣 − 𝑓(𝑇)

 diminishing marginal return
 an equivalent form: for all 𝑆, 𝑇 ⊆
𝑉
𝑓 𝑆 ∪ 𝑇 + 𝑓 𝑆 ∩ 𝑇 ≤ 𝑓 𝑆 + 𝑓 𝑇

 Monotonicity of set functions 𝑓: 
for all 𝑆 ⊆ 𝑇 ⊆ 𝑉,

𝑓 𝑆 ≤ 𝑓(𝑇)

|𝑆|

𝑓(𝑆)
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Example of a submodular function and 
its maximization problem

27

 set coverage
 each entry 𝑢 is a subset of 

some base elements
 coverage 𝑓 𝑆 = 𝑢∈𝑆ڂ| 𝑢 |
 𝑓 𝑆 ∪ 𝑣 − 𝑓 𝑆 : additional 

coverage of 𝑣 on top of 𝑆

 𝑘-max cover problem
 find 𝑘 subsets that maximizes 

their total coverage
 NP-hard
 special case of IM problem in IC 

model

sets
elements

𝑆

𝑇

𝑣
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Submodularity of influence diffusion 
models

28

 Based on equivalent live-edge graphs

0.3

0.1

diffusion dynamic random live-edge graph: edges 
are randomly removed

Pr(set A is activated given seed 
set S)

Pr(set A is reachable from S in 
random live-ledge graph)Guest Lecture, Peking U., Nov 18, 2015



(Recall) active node set via IC diffusion 
process

29

• Pink node set is 
the active node 
set after the 
diffusion process 
in the 
independent 
cascade model

0.3

0.1
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Random live-edge graph for the IC model 
and its reachable node set

30

 Random live-edge 
graph in the IC model
 each edge is 

independently 
selected as live with 
its influence 
probability 

 Pink node set is the 
active node set 
reachable from the 
seed set in a random 
live-edge graph

 Equivalence is 
straightforward

0.3

0.1
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(Recall) active node set via LT diffusion 
process

31

 Pink node set is the 
active node set 
after the diffusion 
process in the 
linear threshold 
model
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0.3

0.1

Random live-edge graph for the LT 
model and its reachable node set

32

 Random live-edge 
graph in the LT model
 each node select at 

most one incoming 
edge, with 
probability 
proportional to its 
influence weight 

 Pink node set is the 
active node set 
reachable from the 
seed set in a random 
live-edge graph

 Equivalence is based 
on uniform threshold 
selection from [0,1], 
and linear weight 
addition
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Submodularity of influence diffusion 
models (cont’d)

33

• Influence spread of seed set 𝑆, 𝜎(𝑆):
𝜎 𝑆 = σ𝐺𝐿

Pr 𝐺𝐿 |𝑅 𝑆, 𝐺𝐿 |,

• 𝐺𝐿: a random live-edge graph 

• Pr 𝐺𝐿 : probability of 𝐺𝐿being generated

• 𝑅(𝑆, 𝐺𝐿): set of nodes reachable from 𝑆 in 𝐺𝐿

• To prove that 𝜎 𝑆 is submodular, only need to 
show that 𝑅 ⋅, 𝐺𝐿 is submodular for any 𝐺𝐿
• sumodularity is maintained through linear 

combinations with non-negative coefficients
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Submodularity of influence diffusion 
models (cont’d)

34

• Submodularity of 𝑅 ⋅, 𝐺𝐿
• for any 𝑆 ⊆ 𝑇 ⊆ 𝑉, 𝑣 ∈

𝑉 ∖ 𝑇, 

• if 𝑢 is reachable from 𝑣
but not from 𝑇, then

• 𝑢 is reachable from 𝑣 but 
not from 𝑆

• Hence, 𝑅 ⋅, 𝐺𝐿 is 
submodular

• Therefore, influence spread 
𝜎 𝑆 is submodular in both 
IC and LT models

𝑆 𝑇

𝑣

𝑢

marginal contribution of 
𝑣 w.r.t. 𝑇
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General threshold model
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• Each node 𝑣 has a threshold function
𝑓𝑣: 2

𝑉 → [0,1]

• Each node 𝑣 selects a threshold 𝜃𝑣 ∈ [0,1] uniformly 
at random

• If the set of active nodes at the end of step 𝑡 − 1 is 𝑆, 
and 𝑓𝑣 𝑆 ≥ 𝜃𝑣, 𝑣 is activated at step 𝑡

• reward function 𝑟(𝐴(𝑆)): if 𝐴(𝑆) is the final set of 
active nodes given seed set 𝑆, 𝑟(𝐴(𝑆)) is the reward 
from this set

• generalized influence spread:

𝜎 𝑆 = 𝐸[𝑟 𝐴 𝑆 ]



IC and LT as special cases of 
general threshold model

36

• LT model

• 𝑓𝑣 𝑆 = σ𝑢∈𝑆𝑤(𝑢, 𝑣)

• 𝑟(𝑆) = |𝑆|

• IC model

• 𝑓𝑣 𝑆 = 1 −ς𝑢∈𝑆(1 − 𝑝 𝑢, 𝑣 )

• 𝑟(𝑆) = |𝑆|
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Submodularity in the general threshold 
model

37

 Theorem [Mossel & Roch STOC 2007]: 

 In the general threshold model, 

 if  for every 𝑣 ∈ 𝑉, 𝑓𝑣(⋅) is monotone and submodular
with 𝑓𝑣 ∅ = 0, 

 and the reward function 𝑟(⋅) is monotone and 
submodular, 

 then the general influence spread function 𝜎 ⋅ is 
monotone and submodular.

 Local submodularity implies global submodularity
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Summary of diffusion models
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 Main progressive models

 IC and LT models

 Main properties: submodularity and monotonicity

 Other diffusion models:

 Epidemic models: SI, SIR, SIS, SIRS, etc.

 Voter model

 Markov random field model

 Percolation theory



Influence Maximization
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Viral marketing in social networks

 Viral effect (word-of-mouth effect) is believed to be a 
promising advertising strategy. 

 Increasing popularity of online social networks may enable 
large scale viral marketing

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good

xphone is good
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Influence maximization

41

 Given a social network, a diffusion model with given 
parameters, and a number 𝑘, find a seed set 𝑆 of at 
most 𝑘 nodes such that the influence spread of 𝑆 is 
maximized. 

 May be further generalized:

 Instead of 𝑘, given a budget constraint and each node 
has a cost of being selected as a seed

 Instead of maximizing influence spread, maximizing a 
(submodular) function of the set of activated nodes
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Hardness of influence maximization

42

 Influence maximization under both IC and LT models 
are NP hard

 IC model: reduced from k-max cover problem

 LT model: reduced from vertex cover problem

 Need approximation algorithms
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Greedy algorithm for submodular
function maximization

43

1: initialize 𝑆 = ∅ ;

2: for 𝑖 = 1 to 𝑘 do

3: select 𝑢 = argmax𝑤∈𝑉∖𝑆[𝑓 𝑆 ∪ 𝑤 −

𝑓(𝑆))]

4: 𝑆 = 𝑆 ∪ {𝑢}

5: end for

6: output 𝑆
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Property of the greedy algorithm

44

 Theorem: If the set function 𝑓 is monotone and 
submodular with 𝑓 ∅ = 0, then the greedy algorithm 
achieves (1 − 1/𝑒) approximation ratio, that is, the 
solution 𝑆 found by the greedy algorithm satisfies: 

 𝑓 𝑆 ≥ 1 −
1

𝑒
max𝑆′⊆𝑉, 𝑆′ =𝑘𝑓(𝑆

′)
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Proof of the theorem
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𝑆0
∗ = 𝑆0

𝑔
= ∅ 𝑠𝑖: 𝑖-th entry found by algo; 𝑆𝑖

𝑔
= 𝑆𝑖−1

𝑔
∪ 𝑠𝑖

𝑆∗: optimal set; 𝑆∗ = 𝑠1
∗, … , 𝑠𝑘

∗ ; 𝑆𝑗
∗ = 𝑠1

∗, … , 𝑠𝑗
∗ , for 1 ≤ 𝑗 ≤ 𝑘

𝑓 𝑆∗ ≤ 𝑓(𝑆𝑖
𝑔
∪ 𝑆∗) /* by monotonicity */

≤ 𝑓 𝑆𝑖
𝑔
∪ 𝑠𝑘

∗ − 𝑓(𝑆𝑖
𝑔
) + 𝑓(𝑆𝑖

𝑔
∪ 𝑆𝑘−1

∗ ) /* by submodularity */

≤ 𝑓(𝑆𝑖+1
𝑔

) − 𝑓(𝑆𝑖
𝑔
) + 𝑓(𝑆𝑖

𝑔
∪ 𝑆𝑘−1

∗ ) /* by greedy algorithm*/

≤ 𝑘(𝑓 𝑆𝑖+1
𝑔

− 𝑓(𝑆𝑖
𝑔
)) + 𝑓(𝑆𝑖

𝑔
) /* by repeating the above k times */

Rearranging the inequality: 𝑓 𝑆𝑖+1
𝑔

≥ 1 −
1

𝑘
𝑓 𝑆𝑖

𝑔
+

𝑓 𝑆∗

𝑘
.

Multiplying by 1 −
1

𝑘

𝑘−𝑖−1
on both sides, and adding up all inequalities:

𝑓 𝑆𝑘
𝑔

≥ σ𝑖=0
𝑘−1 1 −

1

𝑘

𝑘−𝑖−1
⋅
𝑓 𝑆∗

𝑘
= 1 − 1 −

1

𝑘

𝑘
𝑓 𝑆∗ ≥ 1 −

1

𝑒
𝑓(𝑆∗).



Influence computation is hard

Guest Lecture, Peking U., Nov 18, 201546

 In IC and LT models, computing influence spread 𝜎(𝑆)
for any given 𝑆 is #P-hard. 

 IC model: reduction from the s-t connectedness 
counting problem.

 LT model: reduction from simple path counting problem.



MC-Greedy: Estimating influence spread 
via Monte Carlo simulations 
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 For any given S

 Simulate the diffusion process from 𝑆 for 𝑅 times (R 
should be large)

 Use the average of the number of active nodes in 𝑅
simulations as the estimate of 𝜎(𝑆)

 Can estimate 𝜎(𝑆) to arbitrary accuracy, but require 
large R

 Theoretical bound can be obtained using Chernoff
bound.



Theorems on MC-Greedy algorithm
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 Polynomial, but could be very slow



Empirical evaluation of MC-Greedy
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 Use a network NetHEPT
 Collaboration network in arXiv, High Energy Physics-Theory 

section, 1991-2003
 Edge: two authors have a co-authored paper
 Allow duplicated edges



Algorithms to compare
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 MC-Greedy[R]: Monte Carlo greedy algorithm with R 
simulations

 Degree: high-degree heuristic

 Random: random selection



Parameter setting
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 Edge weights

 IC-UP[0.01]: IC model, each edge has probability 0.01. 

 IC-WC: IC model with weighted cascade probabilities
 each in-coming edge has probability 1/𝑑(𝑣), where 𝑑(𝑣) is the 

in-degree of 𝑣.

 LT-UW: LT model with uniform weights
 Each in-coming edge of 𝑣 has weight 1/𝑑(𝑣)

 All parameters above are before removing duplicates

 Number of MC simulations R = 200, 2000, 20000

 Influence spread computed with 20000 simulations



IC-UP[0.01] Influence spread result
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 MC-Greedy[20000] is the best

 MC-Greedy[200] is worse than Degree

 Random is the worst



IC-WC result
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 MC-Greedy[20000] is the best

 MC-Greedy[200] is worse than Degree

 Random is the worst



LT-UW result
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 MC-Greedy[20000] is the best

 MC-Greedy[200] is worse than Degree

 Random is the worst



Scalable Influence Maximization
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Drawback of MC-Greedy
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 Very slow: on NetHEPT with ICUP[0.01], finding 50 
seeds

 MC-Greedy[2000] takes 73.6 hours

 MC-Greedy[200] takes 6.6 hours

 Two sources of inefficiency:

 Too many influence spread (𝜎(𝑆)) evaluations

 Monte Carlo simulation for each 𝜎(𝑆) is slow



Ways to improve scalability
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 Reduce the number of influence spread evaluations

 Lazy evaluation

 Avoid Monte Carlo simulations

 MIA heuristic for IC model



Lazy evaluation
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 Exploit submodularity of influence spread function

 For any submodular set function 𝑓, 𝑓 𝑢 𝑆 =
𝑓 𝑆 ∪ 𝑢 − 𝑓(𝑆), 𝑢’s marginal contribution under 𝑆

 In greedy algorithm, the 𝑖-th iteration found seed set 

𝑆𝑖
𝑔

 Then: 𝑓 𝑢 𝑆𝑖
𝑔

≤ 𝑓(𝑢|𝑆𝑗
𝑔
) for all 𝑖 > 𝑗

 Lazy evaluation: at 𝑖-th iteration, 𝑖 > 𝑗, for two nodes 

𝑢 and 𝑣, if 𝑓 𝑢 𝑆𝑗
𝑔

≤ 𝑓(𝑣|𝑆𝑖
𝑔
), then 𝑓 𝑢 𝑆𝑖

𝑔
does 

not need to be evaluated at the 𝑖-th iteration
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Running time of Lazy-Greedy
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Fast heuristics

Guest Lecture, Peking U., Nov 18, 201561

 The running time of Lazy-Greedy is still slow, and not 
scalable to large graphs (millions of nodes and edges)

 Need faster heuristic to avoid Monte Carlo simulations



Our work

62

 Exact influence computation is #P hard, for both IC and LT models ---
computation bottleneck [KDD’10, ICDM’10]

 Design new heuristics

 MIA for general IC model [KDD’10]
 103 speedup --- from hours to seconds

 influence spread close to that of the greedy algorithm of [KKT’03]

 Degree discount heuristic for uniform IC model [KDD’09]
 106 speedup --- from hours to milliseconds

 LDAG for LT model [ICDM’10]
 103 speedup --- from hours to seconds

 IRIE for IC model [ICDM’12]
 further improvement with time and space savings

 Extend to time-critical influence maximization [AAAI’12]
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For any pair of nodes u and 
v, find the maximum 
influence path (MIP) from u 
to v

ignore MIPs with too small 
probabilities ( < parameter )

Maximum Influence Arborescence (MIA) 
Heuristic
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Local influence regions

for every node v, all MIPs 
to v form its maximum
influence in-arborescence 
(MIIA )

MIA Heuristic (cont’d)
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Local influence regions

for every node v, all MIPs 
to v form its maximum
influence in-arborescence 
(MIIA )

for every node u, all MIPs  
from u form its maximum
influence out-
arborescence (MIOA )

computing MIAs and the 
influence through MIAs is 
fast

MIA Heuristic (cont’d)
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Recursive computation of activation probability ap(u) of a 
node u in its in-arborescence, given a seed set S

Can be used in the greedy algorithm for selecting k seeds,
but not efficient enough

MIA Heuristic III: Computing Influence 
through the MIA structure
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MIA Heuristic IV: Efficient updates on 
incremental activation probabilities

67 Guest Lecture, Peking U., Nov 18, 2015

𝑣

𝑢

𝑤

𝑢 is the new seed in 𝑀𝐼𝐼𝐴(𝑣)

Naive update: for each candidate 𝑤, 
redo the computation in the previous 
page to compute 𝑤’s incremental 
influence to 𝑣

𝑂(|𝑀𝐼𝐼𝐴(𝑣)|2)

Fast update: based on linear relationship 
of activation probabilities between any 
node 𝑤 and root 𝑣, update incremental 
influence of all 𝑤’s to 𝑣 in two passes

𝑂(|𝑀𝐼𝐼𝐴(𝑣)|)

𝑀𝐼𝐼𝐴(𝑣)



Summary: features of Maximum 
Influence Arborescence (MIA) heuristic

68

 Based on greedy 
approach

 Localize computation

 Use local tree 
structure

 easy to compute

 linear batch update 
on marginal 
influence spread

0.3

0.1

𝑢

𝑣
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An example of MIA run

Guest Lecture, Peking U., Nov 18, 201569



Influence spread in IC-UP[0.01] model
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Influence spread in IC-WC model
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Running time comparison
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Experimental result summary
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 MIA heuristic achieves almost the same influence 
spread as the greedy algorithm

 MIA heuristic is 3 orders of magnitude faster than the 
greedy algorithm

 MIA can scale to large graphs with millions of nodes 
and edges



Summary
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 Scalable influence maximization algorithms
 MixedGreedy and DegreeDiscount [KDD’09]
 PMIA for the IC model [KDD’10]
 LDAG for the LT model [ICDM’10]
 IRIE for the IC model [ICDM’12]: further savings on time 

and space
 MIA-M for IC-M model [AAAI’12]: include time delay 

and maximization within a short deadline

 PMIA/LDAG have become state-of-the-art benchmark 
algorithms for influence maximization

 Many followup work further improves the 
performance



Multi-item / Competitive Influence 
diffusion
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Motivations
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 Multiple items (ideas, information, opinions, product 
adoptions) are being propagated in the social network

 Items often have competing nature

 One user adopted iPhone will not likely to adopt 
another Android phone

 How to model multi-item diffusion?

 What are the optimization problems in multi-item 
diffusion? And how to do them?



Terminologies
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 Consider two item diffusion: positive opinion and 
negative opinion

 Each node 𝑣 has three states: inactive, positive, and 
negative (positive and negative are both active)

 Progressive model: once active, do not change state

 𝑆𝑡
+(𝑆𝑡

−): set of positive (negative) nodes at time 𝑡

 𝑆0
+(𝑆0

−): positive (negative) seed set, 𝑆0
+ ∩ 𝑆0

− = ∅ (can 
be relaxed)



Competitive independent cascade (CIC) 
model
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 Positive/negative influence probabilities 𝑝+(𝑢, 𝑣)/
𝑝−(𝑢, 𝑣)

 At every step 𝑡, a newly activated 𝑢 makes an attempt 
to active each of its inactive out-neighbor 𝑣
 𝐴𝑡

+(𝑣)/𝐴𝑡
−(𝑣): positive/negative successful attempt set

 𝑢 ∈ 𝐴𝑡
+(𝑣) if 𝑢 is positive and 𝑢’s attempt of activating 𝑣 at time 𝑡

(with independent probability 𝑝+(𝑢, 𝑣)) is successful
 𝑢 ∈ 𝐴𝑡

−(𝑣) if 𝑢 is negative and 𝑢’s attempt of activating 𝑣 at time 
𝑡 (with independent probability 𝑝−(𝑢, 𝑣)) is successful

 If 𝐴𝑡
+ 𝑣 ≠ ∅ ∧ 𝐴𝑡

− 𝑣 = ∅: 𝑣 ∈ 𝑆𝑡
+

 If 𝐴𝑡
− 𝑣 ≠ ∅ ∧ 𝐴𝑡

+ 𝑣 = ∅: 𝑣 ∈ 𝑆𝑡
−

 If 𝐴𝑡
+ 𝑣 ≠ ∅ ∧ 𝐴𝑡

− 𝑣 ≠ ∅: tie-breaking rule



Tie-breaking rule
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 Applied when both positive and negative in-neighbors 
of 𝑣 have successful activation attempts at the same 
step

 Fixed-probability tie-breaking rule TB-FP(𝜙): 𝑣 is 
positive with probability 𝜙, and negative with 
probability 1 − 𝜙.
 TB-FP(1)/ TB-FP(0): positive/negative dominance

 Proportional probability tie-breaking rule TB-PP: 𝑣 is 

positive with probability 
|𝐴𝑡

+ 𝑣 |

𝐴𝑡
+ 𝑣 +|𝐴𝑡

− 𝑣 |
, negative with 

probability 
|𝐴𝑡

− 𝑣 |

𝐴𝑡
+ 𝑣 +|𝐴𝑡

− 𝑣 |
.



Equivalent tie-breaking rule to TB-PP
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 Randomly permute all of v’s in-neighbors (an priority 
ordering)

 When need a tie-breaking, check the priority order, 
the node 𝑢 ∈ 𝐴𝑡

+ 𝑣 ∪ 𝐴𝑡
− 𝑣 that is order first wins, 

and 𝑣 takes the state of 𝑢.



Competitive linear threshold (CLT) model
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 Positive/negative influence weights 𝑤+(𝑢, 𝑣)/
𝑤−(𝑢, 𝑣)

 Initially, each node v selects a positive threshold 𝜃𝑣
+

and a negative threshold 𝜃𝑣
− independently from 0,1

 At each step, first propagate positive influence and 
negative influence separately, using respective weights 
and threshold

 If both successful, use fixed probability tie-breaking rule



Summary of competitive diffusion 
models
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 Extensions of single-item diffusion models

 Each item diffusion follows single-item diffusion rules

 Each node only adopts one state

 First adoption wins

 Tie-breaking rule is used for simultaneous activation

 Other variants are possible



Influence maximization for a competitive 
diffusion model
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 When 𝑆0
− = ∅, reduced to the original problem

 Thus, still NP hard for CIC and CLT models

 𝜎+(⋅, 𝑆0
−) is monotone for CIC and CLT



Submodularity of 𝜎+(⋅, 𝑆0
−)
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 𝜎+(⋅, 𝑆0
−) is not 

submodular for general CIC 
and CLT models

 𝑠− is the negative seed

 ∅, 𝑠+ , 𝑢 , {𝑠+, 𝑢} are 
positive seed sets

 Key: the blocking effect of 
𝑢



Homogeneous CIC model
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 𝑝+ 𝑢, 𝑣 = 𝑝−(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝐸

 In homogeneous CIC model with positive dominance 
or negative dominance or proportional probability tie-
breaking rule, 𝜎+(⋅, 𝑆0

−) is submodular.

 Use live-arc graph model

 Each edge is sampled once, since only one item 
propagates through each edge

 For positive/negative dominance rule, use distance 
argument

 For TB-PP, pre-determine the priority order
 Proof more complicated



Homogeneous CIC with 
TB-FP(𝜙), 0 < 𝜙 < 1
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 Not submodular

 Gray nodes are negative 
seeds

 𝑤 , 𝑤, 𝑥 , 𝑤, 𝑢 ,
𝑤, 𝑥, 𝑢 are positive seed 

sets

 Same example shows that if 
nodes have difference 
dominance rules, then not 
submodular



Homogeneous CLT model

Guest Lecture, Peking U., Nov 18, 201587

 Not submodular



Influence blocking maximization
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 New objective function --- negative influence 
reduction: 

 𝜌− 𝑆0
+, 𝑆0

− = 𝜎− ∅, 𝑆0
− − 𝜎− (𝑆0

+, 𝑆0
−)



Motivation of influence blocking 
maximization

Guest Lecture, Peking U., Nov 18, 201589

 Stop rumor spreading

 Immunization

 Special case: positive seeds (nodes getting vaccination) 
do not spread positive influence



Solving IBM problem
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 IBM is NP-hard in both CIC and CLT 
models

 Negative influence reduction 
𝜌− ⋅, 𝑆0

− is monotone 
submodular in CLT models, and 
homogeneous CIC models with 
TB-FP(0), TB-FP(1), or TB-PP rules.

 Non-homogeneous CIC is not 
submodular (right example)
 Key blocking effect

 Homogeneous CIC with TB-FP(𝜙), 
0 < 𝜙 < 1, is not submodular



IBM in CLT model [He, Song, C., Jiang 
2012]
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 Negative influence reduction is submodular

 Allows greedy approximation algorithm

 Fast heuristic CLDAG: 
 reduce influence computation on local DAGs

 use dynamic programming for LDAG computations



Performance of the CLDAG

92

• with Greedy algorithm
• 1000 node sampled from a mobile 

network dataset
• 50 negative seeds with max degrees

• without Greedy algorithm
• 15K node NetHEPT, collaboration 

network in arxiv
• 50 negative seeds with max degrees
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Scalability—Real dataset

93

Scalability Result for subgraph with greedy algorithm
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Other studies on multi-item diffusion
 Endogenous competition: bad opinions about a product 

due to product defect competes with positive opinions [C., 
et al., 2011]

 Influence diffusion in networks with positive and negative 
relationships [Li, C., Wang, Zhang, 2013]

 Participation maximization: seed allocation of multiple 
diffusions maximizing total influence [Sun, et al., 2012]

 Fair seed allocation: seed allocation to guarantee fairness 
in influence [Lu, Bonchi, Goyal, Lakshmanan, 2012]

 From competition to complementarity [Lu, C., 
Lakshmanan, 2016]

 Etc.
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Summary on multi-item diffusion
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 Multi-item diffusion models often need to 
accommodate competitions

 Submodularity may no longer hold 

 Model dependent

 Whether collective behavior is greater than the sum of 
its parts

 More models need to be considered

 Need data validation



Influence Model Learning
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Where do the numbers come from? 
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Learning influence models

98

 Where do influence probabilities come from?

 Real world social networks don’t have probabilities!

 Can we learn the probabilities from action logs?

 Sometimes we don’t even know the social network

 Can we learn the social network, too?
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Where do the weights come from? 

99

 Influence Maximization – Gen 0: academic 
collaboration networks (real) with weights assigned 
arbitrarily using some models: 

 Trivalency: weights chosen uniformly at random from 
{0.1, 0.01, 0.001}. 

0.1 0.001

0.01

0.001

0.01 0.01
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Where do the weights come from? 

100

 Influence Maximization – Gen 0: academic 
collaboration networks (real) with weights assigned 
arbitrarily using some models: 

 Weighted Cascade: 𝑤𝑢𝑣 =
1

𝑑𝑣
𝑖𝑛 .

1/3 1/3

1/3
1/3

1/3 1/3

Other variants: uniform 
(constant),
WC with parallel  edges. 

Weight assignment not 
backed by real data. 
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Inference problems

101

 Given a log 𝐴 = { 𝑢1, 𝑎1, 𝑡1 , … }

 P1. Social network not given

 Infer network and edge weights

 P2. Social network given

 Infer edge weights

 P3. Social network and attribution given

 Explicit “trackbacks” to parent user
𝐴 = 𝑢1, 𝑎1, 𝑡1, 𝑝1 , …

 Simple counting
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P1. Social network not given
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 Observe activation times, assume probability of a 
successful activation decays (e.g., exponentially) with 
time

Actual network Learned network

𝑢1, 𝑎1, 𝑡1 ,
𝑢2, 𝑎2, 𝑡2 ,
𝑢3, 𝑎3, 𝑡3 ,
𝑢4, 𝑎4, 𝑡4 ,

…



P2. Social network given

103

Input data: (1) social graph and (2) action log of past 
propagations

u12

u45

u45 follows u12

I liked this 
movie

I read this 
book

great 
movie 09:30

09:00

Action Node Time

a u12 1

a u45 2

a u32 3

a u76 8

b u32 1

b u45 3

b u98 7

08:00
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P2. Social network given
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 D(0), D(1), … D(t) nodes that acted at time t. 

 𝐶 𝑡 = 𝜏≤𝑡𝐷ڂ 𝜏 . → cumulative. 

 𝑃𝑤 𝑡 + 1 = 1 − Π𝑣∈𝑁𝑖𝑛 𝑤 ∩𝐷 𝑡 1 − 𝜅𝑣𝑤 .

 Find 𝜃 = 𝜅𝑣𝑤 that maximizes likelihood

𝐿 𝜃; 𝐷 = (𝛱𝑡=0
𝑇−1𝛱𝑤∈𝐷 𝑡+1 𝑃𝑤(𝑡 + 1)) −

(Π𝑡=0
𝑇−1Π𝑣∈𝐷 𝑡 Π𝑤∈𝑁𝑜𝑢𝑡 𝑣 \C 𝑡+1 1 − 𝜅𝑣𝑤 )

success

failure

Very expensive (not scalable)

Assumes influence weights remain constant over time



Summary on model learning
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 Other more efficient learning methods available

 Data sparsity is a big problem

 By clustering?

 Influence propagation is topic-aware

 How to validate data analysis with real-world 
influence?



Conclusion
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Ongoing and future research directions

107

 Model validation and influence analysis from real data

 Online and adaptive algorithms

 Game theoretic settings for competitive diffusion

 Incentives for information / influence diffusions

 Influence maximization with non-submodular
objective functions
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Grand challenge

108

 Understand from data the true peer influence and viral diffusion scenarios, online and 
offline

 Apply social influence research to explain, predict, and control influence and viral 
phenomena 

 Network and diffusion dynamics would be focus of network science in the next decade
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Thanks and Questions?
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