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Social influence (A frs20@ 7))

e Social influence occurs when one's
emotions, opinions, or behaviors are
affected by others. -

WIKIPEDIA
The Free Encyclopedia
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1.2 million

| visitors / hour

Joseph's Keynote
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Booming of online social networks
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Hotmail: online viral marketing story

® Hotmail’s Viral Cllmb Join the world's largest e-mail service

with MSN Hotmail. http://www.hotmail.com
to the top spot

. - Simple message added to footer of
(90s): 8 million users every email message sent out
in 18 months!

Copy

e Boosted brand
awareness

e Far more effective
than conventional
advertising by rivals

e ... and far cheaper,
too!

Viral Ad and Send
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Voting mobilization: A Facebook study

e Voting mobilization [Bond et al, Nature’2012]
e show a facebook msg. on voting day with faces of friends who voted
e generate 340K additional votes due to this message, among 60M

people tested
Today is Election Day What's this? e close
Find your polling place on the U.S. EEE
m Politics Page and click the "I Voted" People on Facebook Voted
button to tell your friends you voted.

Jaime Settle, Jason Jones, and 18 other
friends have voted.
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Opportunities for computational social
influence research

* massive data set, real time, dynamic, open

e he
inf

* he
e he

p social scientists to understand social interactions,
uence, and their diffusion in grand scale

p identifying influencers
p health care, business, political, and economic

decision making

Guest Lecture, Peking U., Nov 18, 2015

™




/

influence

Influence
modeling:

discrete /
continuous

competitive /
complementary

progressive /
nonprogressive

Computational
Social Influence

Influence
learning:
graph learning

inf. weight
learning: pair-
wise, topic-wise
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Three pillars of computational social

Influence
opt.:
inf. max.

inf. monitoring
inf. control
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Influence modeling

e Discrete-time models:

e independent cascade (IC), linear threshold (LT), general
cascade models [KKT‘03]

e topic-aware IC/LT models [BBM’12]
e Continuous-time models [GBS‘11]

e Competitive diffusion models
e competitive IC [BAA11], competitive LT [HSCJ‘12], etc.

e Competitive & complementary diffusion model
[LCL'15]

e Others, epidemic models (SIS/SIR/SIRS...), voter model
variants
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Influence optimization

e Scalable inf. max.

e Greedy approximation [KKT'03, LKGFVG’'07, CWY’09,
BBCL' 14, TXS 14, TSX'15]

e Fast heuristics [CWY'09, CWW’10, CYZ'10, GLL'11, JHC’12,
CSHZC’13]

e Multi-item inf. max. [BAA’11, SCLWSZL'11, HSCJ’ 12,
LBGL'13, LCL'15]

e Non-submodular inf. max. [GL'13, YHLC’13, ZCSWZ’14,
CLLR’15]

e Topology change for inf. max. [TPTEFC’10,KDS’14]
e Inf. max with online learning [CWY’13, LMMCS’15]
* many others ...
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Influence learning

» Based on user action / adoption traces
e Learning the diffusion graph [GLK’10]

e Learning (the graph and) the parameters
e frequentist method [GBL'10]

e maximum likelihood [SNK’08]
e MLE via convex optimization [ML'10,GBS’11,NS’12]
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Outline of this lecture

e |Introduction and motivation

e Stochastic diffusion models

e |Influence maximization

e Scalable influence maximization

e Competitive influence dynamics and influence
maximization tasks

* Influence model learning
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Reference Resources

e Search “Wei Chen Microsoft”
k\ NG

. -
»  Monograph: “Information and Information and
Influence Propagation in Social Influence Propagation
” in Social Networks
Networks”, Morgan & Claypool,
2013 Wei Chen

Laks V.S, Lakshmaman
Carlos Castille

- KDD’12 tutorial on influence
spread in social networks

. FEAZ M S AR FEIT AT, K
HAEIAT, 2015

- my papers and talk slides
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Stochastic Diffusion Models
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Information/Influence Propagation

O 2

09:00 09:30

People are connected and perform actions

l comment, link, rate, like,

retweet, post a message,
photo, or video, etc.

friends, fans,
followers, etc.
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Basic Data Model

Graph: users, links/ties Log: user, action, time

CEUE A= uay,t), )
— ul, al, 1/ »o
John User Action Time
Rates with 5 stars June 31
“The Artist”
Mary Peter
Watches June 5th
“The Artist”
Jen
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Terminologies

e Directed graph ¢ = (V,E)
e Node v € V represents an individual

e Arc (edge) (u,v) € E represents a (directed) influence
relationship

e Discretetime t: 0,1,2, ...
e Each node v has two states: inactive or active

e S;: set of active nodes at time ¢t

e Sy: seed set, initially nodes selected to start the
diffusion
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Stochastic diffusion models

Definition 2.1 Stochastic diftusion model. A stochastic diffusion model (with discrete time steps)
for a social graph G = (V. E) specifies the randomized process of generating active sets S; for all
t > 1 given the initial seed set Sp.

* Progressive models: forallt = 1,5;_1 € §;

e Once activated, always activated, e.g. once bought the
product, cannot undo it

e Influence spread a(5): expected number of activated
nodes when the diffusion process starting from the seed
set S ends
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Independent cascade model

- Each edge (u,v) has a
influence probability
p(u,v)

- Initially seed nodes in S 3&&
are activated

- At each step t, each .
node u activated at step t’}
t — 1 activates its ~ [T~
neighbor v
independently with Q
probability p(u, v) >
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Linear threshold model

e Each edge (u,v) has a
influence weight w(u, v):
e when (u,v) € E,w(u,v) =
0
e Y w(u,v) <1

e Each node v selects a
threshold 6,, € [0,1]
uniformly at random

« Initially seed nodes in Sy are 0.4
activated

e At each step, node v checks ~
if the weighted sum of its X
active in-neighbors is greater
than or equal to its Q,5
&)os3

threshold 6, if so v is
activated
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Interpretation of IC and LT models

e |C model reflects simple contagion, e.g. information, virus

e LT model reflects complex contagion, e.g. product adoption,
innovations (activation needs social affirmation from multiple
sources [Centola and Macy, AJS 2007])
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Influence maximization

e Given a social network, a diffusion model with given
parameters, and a number k, find a seed set S of at
most k nodes such that the influence spread of S is
maximized.

e To be considered shortly
e Based on submodular function maximization
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Submodular set functions

e Sumodularity of set functions
f: 2V S R
eforallSCTCV,allveV\T,

fSUw)) —£(ES)
> f(T vy - f(T)

e diminishing marginal return

e an equivalent form: forall S, T S
V

fEUT)+f(SNT) < f(S)+ f(T)
* Monotonicity of set functions f:
forall SES€TCV,

f($) = f(T)
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Example of a submodular function and
its maximization problem

* set coverage
e each entry u is a subset of

some base elements elements

* coverage f(S) = | Uyesu|
e f(SU{v}) — f(S): additional
coverage of v on top of S
e k-max cover problem

e find k subsets that maximizes
their total coverage

e NP-hard

e special case of IM problem in IC
model
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Submodularity of influence diffusion

models

e Based on equivalent live-edge graphs

3 ’&
Za \ R
j% ’
) &/ Q
b \L:)
diffusion dynamic random live-edge graph: edges
are randomly removed
Pr(set A is activated given seed mmm Pr(set A is reachable from S in

I .
e SEtsﬁe)st Lecture, Peking U., Nov 18, 2015 random I|ve-Iedge graph)




/

* Pink node set is

(Recall) active node set via IC diffusion
process

the active node
set after the
diffusion process
in the
independent
cascade model
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Random live-edge graph for the IC model
and its reachable node set

e Random live-edge
graph in the IC model
e each edge is
independently
selected as live with
its influence
probability

e Pink node set is the
active node set
reachable from the
seed set in a random
live-edge graph

e Equivalenceis
straightforward
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(Recall) active node set via LT diffusion
process

e Pink node set is the
active node set
after the diffusion
process in the
linear threshold
model
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Random live-edge graph for the LT
model and its reachable node set

e Random live-edge

graph in the LT model

e each node select at
most one incoming
edge, with
probability
proportional to its
influence weight

e Pink node set is the
active node set
reachable from the
seed set in a random
live-edge graph

e Equivalence is based
on uniform threshold
selection from [0,1],
and linear weight
addition
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e
Submodularity of influence diffusion

models (cont’d)

 Influence spread of seed set S, (S):
a(S) = ZGL Pr(G.) |R(S, GL)I,
(;: a random live-edge graph
Pr(G,) : probability of G, being generated
R(S, G;): set of nodes reachable from S in G,

- To prove that (S) is submodular, only need to

show that |R(:, G;)| is submodular for any G;

sumodularity is maintained through linear
combinations with non-negative coefficients
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Submodularity of influence diffusion
models (cont’d)

- Submodularity of |R(:, G;)|
foranySCTCV, ve
V\T,
if u is reachable from v
but not from T, then

u is reachable from v but C Ry
not from S 7

Hence, |R(:, G;)| is

submodular
- Therefore, influence Spread marginal contribution of
o(S) is submodular in both vw.rt. T

IC and LT models
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General threshold model

Each node v has a threshold function

fo:2V > [0,1]
Each node v selects a threshold 6, € [0,1] uniformly
at random

If the set of active nodes attheend of stept — 1 is S,
and f,,(§) = 6, vis activated at step t

reward function 7(A(S)): if A(S) is the final set of
active nodes given seed set S, r(A(S)) is the reward
from this set

generalized influence spread:

a(S) = E[r(A(S))]
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IC and LT as special cases of
general threshold model

LT model
f(S) = Luesw(u, v)
r(S) = ||
IC model
fr(8) =1 —Ilues(1 — p(u, v))
r(S) = ||
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Submodularity in the general threshold
model

e Theorem [Mossel & Roch STOC 2007]:

e In the general threshold model,

o if foreveryv €V, f,(-) is monotone and submodular
with f,,(@) = 0,

e and the reward function r(+) is monotone and
submodular,

e then the general influence spread function o(-) is
monotone and submodular.

e Local submodularity implies global submodularity

Guest Lecture, Peking U., Nov 18, 2015
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Summary of diffusion models

e Main progressive models
e |C and LT models

* Main properties: submodularity and monotonicity

e Other diffusion models:
e Epidemic models: SI, SIR, SIS, SIRS, etc.
e \Voter model
e Markov random field model
e Percolation theory
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Influence Maximization
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Viral marketing in social networks

@e is good]
we IS good
: \ @e is good
xphonelsgood

Xphone is good ! / : \ we IS good
xphone iS good :

e Viral effect (word-of-mouth effect) is believed to be a
promising advertising strategy.

* Increasing popularity of online social networks may enable
large scale viral marketing

Guest Lecture, Peking U., Nov 18, 2015




Influence maximization

e Given a social network, a diffusion model with given
parameters, and a number k, find a seed set S of at
most k nodes such that the influence spread of S is
maximized.

* May be further generalized:

* Instead of k, given a budget constraint and each node
nas a cost of being selected as a seed

* Instead of maximizing influence spread, maximizing a
(submodular) function of the set of activated nodes
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Hardness of influence maximization

* Influence maximization under both IC and LT models
are NP hard
e |C model: reduced from k-max cover problem
e LT model: reduced from vertex cover problem

* Need approximation algorithms
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Greedy algorithm for submodular
function maximization

1: initialize S =@ ;
2:fori = 1tokdo
3: selectu = argmax,epns[f(SU{w}) —

4: S
5: enc

f($))]
= SU{u}
for

6: out

out S
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Property of the greedy algorithm

e Theorem: If the set function f is monotone and

SuU
dC
SO

omodular with f(@) = 0, then the greedy algorithm
nieves (1 — 1/e) approximation ratio, that is, the

ution S found by the greedy algorithm satisfies:

¢ £(8) 2 (1-3) maxgcy i f (")
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Proof of the theorem

So = S(‘)g =0 s;: i-th entry found by algo; Slfg = Sﬂl U {s;}
S*:optimal set; S* = {s{,...,S;}; SJT" = {s{, ...,S}"}, forl1<j<k
fS*) < f(S7us /* by monotonicity */
< f(Sg U {si}) — FSH+F(S7 uSi_y) /* by submodularity */
<fSL)—FSH+ S uSi_y) /* by greedy algorithm*/
< k(f(SHl) f(Sg)) + f(Sg) /* by repeating the above k times */

Rearranging the inequality: f(Sl+1 (1 — —) f(sg) ERPASA, f(S )

Multiplying by (1 — l)k g 1on both sides, and adding up all inequalities:
k—i—1 * k
fsD22 (1-3) HP=(1-(1-3)) 0 = (1= 56,
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Influence computation is hard

* In IC and LT models, computing influence spread o (S5)
for any given S is #P-hard.

e |C model: reduction from the s-t connectedness
counting problem.

e LT model: reduction from simple path counting problem.
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MC-Greedy: Estimating influence spread
via Monte Carlo simulations

e Forany given S

e Simulate the diffusion process from S for R times (R
should be large)

e Use the average of the number of active nodes in R
simulations as the estimate of o (S)

e Can estimate g(S) to arbitrary accuracy, but require
large R

e Theoretical bound can be obtained using Chernoff
bound.

Guest Lecture, Peking U., Nov 18, 2015
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Theorems on MC-Greedy algorithm

Theorem 3.6 Lez S* = argmax g ;. [(S) be the set maximizing [(S) among all sets with size at
most k, where f is monotone and submodular, and f (@) = 0. Foranye > 0, forany y with0 <y <
elk

s1e o Jor any set function estimate | that is a multiplicative y-error estimate of set function f, the
output S¢ of Greedy(k. ') guarantees

1
F(8%) = (1 - 8) f(57).

With probability 1 — 1/ n, algorithm MC-Greedy(G, k) achieves (1 — 1/e — &) ap-
proximation ratio in time O(e=2k>n?>mlogn), for both IC and LT models.

Theorem 3.7

e Polynomial, but could be very slow
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Empirical evaluation of MC-Greedy

e Use a network NetHEPT

e Collaboration network in arXiv, High Energy Physics-Theory
section, 1991-2003

e Edge: two authors have a co-authored paper
e Allow duplicated edges

Number of nodes 15233
Number of edges with duplicated edges | 58891
Number of edges 31398
Average degree 4.12
Maximal degree 64
number of connected components 1781
Largest component size 6794
Average component size 8.55
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Algorithms to compare

e MC-Greedy|[R]: Monte Carlo greedy algorithm with R
simulations

e Degree: high-degree heuristic
e Random: random selection
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Parameter setting

e EC

ge weights
C-UP[0.01]: IC model, each edge has probability 0.01.

C-WC: IC model with weighted cascade probabilities

each in-coming edge has probability 1/d(v), where d(v) is the
in-degree of v.

e L T-UW: LT model with uniform weights

Each in-coming edge of v has weight 1/d(v)

e All parameters above are before removing duplicates
e Number of MC simulations R = 200, 2000, 20000
* Influence spread computed with 20000 simulations
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|IC-UP[0.01] Influence spread result

160 -

140 -

120 -
T 100 -
o
§ ~o~MC-Greedy[20000]
g —+—MC-Greedy[2000]
5 ——Degree
= ——MC-Greedy[200]

——Random

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Seed set size

e MC-Greedy[20000] is the best
e MC-Greedy[200] is worse than Degree

e Random is the worst
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|C-WC result

1000 -

Influence spread
g

300 -

200 -

100 -

b

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

e MC-Greedy[20000] is the best

Seed set size

e MC-Greedy[200] is worse than Degree

e Random is the worst
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LT-UW result

1600 -
1400 |

1200

Influence spread
g &

;

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Seed set size

MC-Greedy[20000] is the best
MC-Greedy[200] is worse than Degree

Random is the worst
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Scalable Influence Maximization
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Drawback of MC-Greedy

e Very slow: on NetHEPT with ICUP[0.01], finding 50
seeds
e MC-Greedy[2000] takes 73.6 hours
e MC-Greedy[200] takes 6.6 hours

e Two sources of inefficiency:
e Too many influence spread (o(S5)) evaluations
e Monte Carlo simulation for each a(S) is slow
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Ways to improve scalability

e Reduce the number of influence spread evaluations
e Lazy evaluation

e Avoid Monte Carlo simulations
e MIA heuristic for IC model
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Lazy evaluation

e Exploit submodularity of influence spread function

e For any submodular set function f, f(u|S) =
f(Su{u}) —f(S), u’s marginal contribution under S

* In greedy algorithm, the i-th iteration found seed set
S;

o Then:f(u‘Slfg) < f(u|S]:g) foralli > j

e Lazy evaluation: at i-th iteration, i > j, for two nodes
u and v, iff(u‘S]fg) < f(v|Slfg), then f(u‘Sltg) does

not need to be evaluated at the i-th iteration
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Algorithm 3 LazyGreedy(k, f): general greedy algorithm with lazy evaluations.

Input: k: size of returned set; f: monotone and submodular set function
Output: selected subset
. initialize § < @; priority queue Q < @; iteration <« 1
: for i = 1 ton do
umg < flu|W);ui 1
insert element u into O with u.mg as the key

1

2

3

4

5: end for
6: while iteration < k do

7 extract top (max) element u of Q
8 it u.i = iteration then

9

8§ < § U ju}; iteration < iteration + 1;

10 else

11: u.mg <— f(u|8); u.i < iteration
12 re-insert u into {J

13 end if

14: end while
15: return §
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Running time of Lazy-Greedy

10000

67.1m
43.4m (23384}

24.0m
(15666)

15.5m
- 12.3m (30715)

Running time (second)
g

10

IC-UP[0.01] IC-WC LT-UW

Models
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Fast heuristics

e The running time of Lazy-Greedy is still slow, and not
scalable to large graphs (millions of nodes and edges)

e Need faster heuristic to avoid Monte Carlo simulations

Guest Lecture, Peking U., Nov 18, 2015




Our work

e Exact influence computation is #P hard, for both IC and LT models ---
computation bottleneck [KDD’10, ICDM’10]

e Design new heuristics
e MIA for general IC model [KDD’10]

103 speedup --- from hours to seconds
influence spread close to that of the greedy algorithm of [KKT’03]

e Degree discount heuristic for uniform IC model [KDD’09]
108 speedup --- from hours to milliseconds

e LDAG for LT model [ICDM’10]

103 speedup --- from hours to seconds

e |RIE for IC model [ICDM’12]

further improvement with time and space savings

e Extend to time-critical influence maximization [AAAI'12]

@ Guest Lecture, Peking U., Nov 18, 2015




4 N
Maximum Influence Arborescence (MIA)

Heuristic

@ For any pair of nodes u and
v, find the maximum
influence path (MIP) from u
tov

@ ignore MIPs with too small
probabilities ( < parameter 0)
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MIA Heuristic (cont’d)

@ Local influence regions

@ for every node v, all MIPs
to v form its maximum
influence in-arborescence
(MIIA)
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MIA Heuristic (cont’d)

@ Local influence regions

@ for every node v, all MIPs
to v form its maximum

influence in-arborescence
(MIIA)

@ for every node u, all MIPs
from u form its maximum
influence out-
arborescence (MIOA )

@ computing MIAs and the
influence through MIAs is
fast
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MIA Heuristic Ill: Computing Influence

through the MIA structure

@ Recursive computation of activation probability ap(u) of a
node u in its in-arborescence, given a seed set S

Algorithm 2 ap(u, S, MITA(v,8))
: ifu € S then

i
N

2 ap(u) =1
3 else if Ch(u) = 0 then Q
4 ap(u) =0 L)
5. else
6 GP(U«J =1- H*-'_LIE C-‘hl;u}(]- o ﬂp(“") - Pp (ILU!H'”
7. end if )
W
. . . . k) I/(J\
@ Can be used in the greedy algorithm for selecting k seeds, ()
but not efficient enough Q / \
/L,J) ‘ \
/\\1
o | )
/(.37 Q
"
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MIA Heuristic IV: Efficient updates on
incremental activation probabilities

@ uisthe new seed in MITA(v)

@ Naive update: for each candidate w,
redo the computation in the previous
page to compute w’s incremental
influence to v

® O(IMIIA(v)|?)

@ Fast update: based on linear relationship
of activation probabilities between any
node w and root v, update incremental
influence of all w’s to v in two passes

° O(|IMIIA(v)])

MIIA(v)
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Summary: features of Maximum
Influence Arborescence (MIA) heuristic

e Based on greedy
approach

e Localize computation

e Use local tree
structure

e easy to compute

* linear batch update
on marginal
influence spread
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An example of MIA run

(a) MIIA(v6,0.05), and (b) The set of gray nodes is (c) Updated IncInf(w, ve) for
Incinf (w, ve) for all InfSet(vs) \ {vs}. all w € MIIA(vg, 0.05), after
w € MIIA(vg, 0.05). vs is selected as a seed.

Figure 3.6: An example of computation of MIA algorithm. The blue number under a node w is
Incinf(w, ve).
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Influence spread in IC-UP[0.01] model

160 -
140 -
120 - o o
,gi;’;’ ’
9 100 1 ’;;;;’7 e —e—LazyGreedy[20000]
1} A P
£ 27 a2l —+=PMIA[1/320]
0 -~
§ —+—| azyGreedy[2000]
E ——MIA[1/320]
T_': —Degree
—+—| azyGreedy[200]
——Random
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Influence spread in IC-WC model
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Running time comparison
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Experimental result summary

e MIA heuristic achieves almost the same influence
spread as the greedy algorithm

* MIA heuristic is 3 orders of magnitude faster than the
greedy algorithm

* MIA can scale to large graphs with millions of nodes
and edges
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Summary

e Scalable influence maximization algorithms
e MixedGreedy and DegreeDiscount [KDD’09]

e PMIA for the IC mode
e LDAG for the LT mode

e |IRIE for the IC model |
and space

[KDD’10]
[ICDM’10]
CDM’12]: further savings on time

e MIA-M for IC-M model [AAAI'12]: include time delay
and maximization within a short deadline

e PMIA/LDAG have become state-of-the-art benchmark
algorithms for influence maximization

* Many followup work further improves the

performance
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Multi-item / Competitive Influence
diffusion
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Motivations

* Multiple items (ideas, information, opinions, product
adoptions) are being propagated in the social network

* |tems often have competing nature

e One user adopted iPhone will not likely to adopt
another Android phone

e How to model multi-item diffusion?

e What are the optimization problems in multi-item
diffusion? And how to do them?
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Terminologies

e Consider two item diffusion: positive opinion and
negative opinion

e Each node v has three states: inactive, positive, and
negative (positive and negative are both active)
e Progressive model: once active, do not change state
» S;(S;): set of positive (negative) nodes at time t

e S5 (Sg): positive (negative) seed set, S NSy = @ (can
be relaxed)
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Competitive independent cascade (CIC)
model

e Positive/negative influence probabilities p™ (u, v)/
p~(u,v)

o At every step t, a newly activated u makes an attempt
to active each of its inactive out-neighbor v

o AT (v)/A7 (v): positive/negative successful attempt set

u € Af (v) if u is positive and u’s attempt of activating v at time t
(with independent probability p* (u, v)) is successful

u € A; (v) if u is negative and u’s attempt of activating v at time
t (with independent probability p~ (u, v)) is successful

e IfA7 (V) #FONA;(v) =Q:v ESS
e IfA; (V) #FONA7(v) =Q:v E S,
o If A7 (v) #+ @ A A7 (v) # @: tie-breaking rule
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Tie-breaking rule

e Applied when both positive and negative in-neighbors
of v have successful activation attempts at the same
step

* Fixed-probability tie-breaking rule TB-FP(¢): v is

nositive with probability ¢, and negative with

orobability 1 — ¢.

e TB-FP(1)/ TB-FP(0): positive/negative dominance

e Proportional probability tie-breaking rule TB-PP: v is

[Af )]

W)|+AF @)V

positive with probability ar negative with
RO

£ W] +AF )|

probability "

Guest Lecture, Peking U., Nov 18, 2015




Equivalent tie-breaking rule to TB-PP

e Randomly permute all of v’s in-neighbors (an priority
ordering)

* When need a tie-breaking, check the priority order,
the node u € A7 (v) U A7 (v) that is order first wins,
and v takes the state of wu.
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Competitive linear threshold (CLT) model

* Positive/negative influence weights w* (u, v)/
w™(u,v)

e |nitially, each node v selects a positive threshold 0
and a negative threshold 8, independently from [0,1]

* At each step, first propagate positive influence and
negative influence separately, using respective weights
and threshold

e If both successful, use fixed probability tie-breaking rule
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Summary of competitive diffusion
models

e Extensions of single-item diffusion models
e Each item diffusion follows single-item diffusion rules

e Each node only adopts one state
e First adoption wins
» Tie-breaking rule is used for simultaneous activation

e Other variants are possible
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Influence maximization for a competitive
diffusion model

Problem 4.6 Influence maximization under a competitive diffusion model Given a social
graph G, a competitive diffusion model on G for positive and negative opinions, a negative seed
set S;, and an integer k, the influence maximization problem under this competitive diftusion
model is to find a positive seed set S;” € V' \ S, with at most k seeds, such that the positive
influence spread of S given negative seeds Sy, o7 (S;", Sy ), is maximized. That is, compute set
So " € V\ Sy such that

Sg" = argmax o (S;, Sg).

+ — ot
So SVASy LISy [=k

e When S, = 0@, reduced to the original problem

e Thus, still NP hard for CIC and CLT models
e 07 (-,S5) is monotone for CIC and CLT
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Submodularity of ¥ (:, Sg)

e 07(-,Sy) is not
submodular for general CIC S

s
and CLT models ?
e s~ is the negative seed 1,0 0,1
e 0,{s™},{u},{s™,u}are Y. Y y
positive seed sets 1}% ,
. zliey. the blocking effect of 1'%\“0 V 0,1

@ Guest Lecture, Peking U., Nov 18, 2015




Homogeneous CIC model

e pt(u,v) =p (u,v) forall (u,v) €EE

* In homogeneous CIC model with positive dominance
or negative dominance or proportional probability tie-
breaking rule, (-, Sy ) is submodular.
e Use live-arc graph model

e Each edge is sampled once, since only one item
propagates through each edge

 For positive/negative dominance rule, use distance
argument

e For TB-PP, pre-determine the priority order
Proof more complicated
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e

Homogeneous CIC with
TB-FP(¢), 0 < ¢ <1

e Not submodular

e Gray nodes are negative
seeds

? w
o (w}, {w, 2, (w, ), T 177"
{w, x,u} are positive seed o— —O) —@
sets Vi Z Y3
e Same example shows that if

nodes have difference

dominance rules, then not
submodular
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Homogeneous CLT model

e Not submodular

S ® S
1,1 1,1
Y
Koo
1,1 2

1-x1-

XS\ Xy 2oX

O v
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Influence blocking maximization

* New objective function --- negative influence
reduction:

e p=(S§,50) =07 (®,55) — o™ (53,55)

Problem 4.12 Influence-blocking maximization under a competitive diffusion model Given
a social graph G, a competitive diffusion model on G for positive and negative opinions, a negative
seed set S, and an integer k, the influence-blocking maximization problem under this competitive
diffusion model is to find a positive seed set S;” € V' \ S5 with at most k seeds, such that the
negative influence reduction of S;r given negative seeds S, ,(:r_(SJr . Sg ), is maximized. That is,

compute set S;* € V' \ Sy such that

Sy = argmax p(Syh.Sy).
So" SV\Sy IS¢ 1=k
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Motivation of influence blocking
maximization

e Stop rumor spreading

e Immunization

e Special case: positive seeds (nodes getting vaccination)
do not spread positive influence
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Solving IBM problem

e IBM is NP-hard in both CIC and CLT
models

e Negative influence reduction
p~ (-, S5 ) is monotone
submodular in CLT models, and
homogeneous CIC models with
TB-FP(0), TB-FP(1), or TB-PP rules.

* Non-homogeneous CIC is not
submodular (right example)
e Key blocking effect

e Homogeneous CIC with TB-FP(¢),
0 < ¢ < 1,isnotsubmodular
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IBM in CLT model [He, Song, C., Jiang
2012}

e Negative influence reduction is submodular
e Allows greedy approximation algorithm

e Fast heuristic CLDAG:
e reduce influence computation on local DAGs
e use dynamic programming for LDAG computations
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Performance of the CLDAG
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Scalability—Real dataset
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Scalability Result for subgraph with greedy algorithm
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Other studies on multi-item diffusion

Endogenous competition: bad opinions about a product
due to product defect competes with positive opinions [C.,
et al., 2011]

Influence diffusion in networks with positive and negative
relationships [Li, C., Wang, Zhang, 2013]

Participation maximization: seed allocation of multiple
diffusions maximizing total influence [Sun, et al., 2012]

Fair seed allocation: seed allocation to guarantee fairness
in influence [Lu, Bonchi, Goyal, Lakshmanan, 2012]

From competition to complementarity [Lu, C,,
Lakshmanan, 2016]

Etc.
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Summary on multi-item diffusion

* Multi-item diffusion models often need to
accommodate competitions

e Submodularity may no longer hold
e Model dependent

e Whether collective behavior is greater than the sum of
Its parts

e More models need to be considered
e Need data validation
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Influence Model Learning
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Where do the numbers come from?
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Learning influence models

e Where do influence probabilities come from?
e Real world social networks don’t have probabilities!
e Can we learn the probabilities from action logs?
e Sometimes we don’t even know the social network
e Can we learn the social network, too?

Guest Lecture, Peking U., Nov 18, 2015




Where do the weights come from?

* Influence Maximization — Gen 0: academic
collaboration networks (real) with weights assigned
arbitrarily using some models:

e Trivalency: weights chosen uniformly at random from
{0.1, 0.01, 0.001}.
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Where do the weights come from?

e Influence Maximization — Gen 0: academic

collaboration networks (real) with weights assigned

arbitrarily using some models:

* Weighted Cascade: wy,;, = -

Other variants: uniform
(constant),
WC with parallel edges.

Weight assighment not
backed by real data. ®
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Inference problems

e Givenalog A = {{uq,a4,t1), ... }
e P1. Social network not given
e Infer network and edge weights

e P2.Socia
e Infer ed

e P3. Socia
e Explicit

network given
ge weights
network and attribution given

“trackbacks” to parent user
A= {<u1) a, ty, p1>1 }

e Simple counting
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P1. Social network not given

e Observe activation times, assume probability of a
successful activation decays (e.g., exponentially) with
time

o .\| (U1; aq, tq ), o. ¢ o

— (us, as, t3),

H“k | I // | o e / s -
J //..,:" \ | . e <u2 ) az ) tZ )’ i‘> ¢ V4 S\.l.’.;

Actual network Learned network
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P2. Social network given

Input data: (1) social graph and (2) action log of past
propagations

08:00 | read this Action Node | Time
d Ug 1
o 3 U 2
rm O- - Us, 3
| liked this 0900 a Usg 8
movie : b U, 1
""' @ b U45 3
U, b Ugg 7
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P2. Social network given

e D(0), D(1), ... 2D(t) nodes that acted at time t.
e C(t) = U;< D(1). = cumulative.

e P (t+1)=1— [, enincwynp(6) (1 —Kyy).

e Find 8 = {k,,, } that maximizes likelihood

L(8;D) = (IT;=5 yepe+nyPu(t + 1)) — success
(Hr,tolnvep(t)Hwezvout(v)\c(tﬂ)(1 — Kyw)) < failure

2 Very expensive (not scalable)

\:;) Assumes influence weights remain constant over time
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Summary on model learning

e Other more efficient learning methods available
e Data sparsity is a big problem

e By clustering?
* Influence propagation is topic-aware

e How to validate data analysis with real-world
influence?
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Conclusion
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Ongoing and future research directions

* Model validation and influence analysis from real data
* Online and adaptive algorithms

e Game theoretic settings for competitive diffusion

e |ncentives for information / influence diffusions

e |Influence maximization with non-submodular
objective functions
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Grand challenge

e Understand from data the true peer influence and viral diffusion scenarios, online and
offline

e Apply social influence research to explain, predict, and control influence and viral
phenomena

e Network and diffusion dynamics would be focus of network science in the next decade
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Thanks and Questions?
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