Influence Diffusion Modeling and Optimizations in Social Networks

Wei Chen 陈卫 Microsoft Research Asia

Social influence (人际影响力)

Social influence occurs when one's emotions, opinions, or behaviors are affected by others.

[Christakis and Fowler, NEJM'07,08]

Booming of online social networks

Opportunities on online social influence research and applications

- massive data set, real time, dynamic, open
- help social scientists to understand social interactions, influence, and their diffusion in grand scale
- help providing new social network services (e.g. identifying influencers)
- help health care, business, political, and economic decision making

Computational Social Influence Research

- How does information/influence propagate in social networks?
 - Influence diffusion modeling
- How to learn the strength of influence relationship?
 - Model learning from real data
- How to benefit from information/influence diffusion?
 - Viral marketing: maximize influence of a new technology
 - Effective competition: minimize the influence of the competitor or negative influence
 - Crowd sourcing: mobilize crowds (perhaps with incentives)
 - Targeted influence: increase the influence to a target individual or a group of individuals

Influence Maximization

[KDD'09, KDD'10, ICDM'10, ICDM'12, AAAI'12, etc.]

12

- Viral (word-of-mouth) marketing is believed to be a promising advertising strategy.
- Increasing popularity of online social networks may enable large scale viral marketing

Influence diffusion model

- Directed graph G = (V, E)
 - *V*: set of nodes, representing users
 - E: set of directed edges, representing influence relationships
- Influence probabilities on edges
 - p(u, v): the probability that u activates v
- Independent cascade model
 - Initially nodes in a seed set S are activated
 - At step t, each node u activated at step t - 1 has one chance to activate each of its out-going neighbor v, with success probability p(u, v)

Influence maximization

- Given a social network, a diffusion model with given parameters, and a number k, find a seed set S of at most k nodes such that the influence spread of S is maximized.
- May be further generalized:
 - Instead of k, given a budget constraint and each node has a cost of being selected as a seed
 - Instead of maximizing influence spread, maximizing a (submodular) function of the set of activated nodes

Prior work

- Influence maximization as a discrete optimization problem proposed by Kempe, Kleinberg, and Tardos, 2003
 - Introduce Independent Cascade (IC) and Linear Threshold (LT) models
 - Finding optimal solution is provably hard (NP-hard)
 - Greedy approximation algorithm, 63% approximation of the optimal solution (based on submodularity)
- Several subsequent studies improved the running time
- Serious drawback:
 - very slow, not scalable: > 3 hrs on a 30k node graph for 50 seeds

Optimizing submodular functions

f(S)

S

• **Sumodularity** of set functions $f: 2^V \rightarrow R$

- for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$, $f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$
- diminishing marginal return
- Monotonicity of set functions f: for all $S \subseteq T \subseteq V$, $f(S) \leq f(T)$

Submodular function maximization

- Greedy algorithm
- 1 1/e approximiation

Our work

- Exact influence computation is #P hard, for both IC and LT models --- computation bottleneck [KDD'10, ICDM'10]
- Design new heuristics
 - MIA for general IC model [KDD'10]
 - 10³ speedup --- from hours to seconds
 - influence spread close to that of the greedy algorithm of [KKT'03]
 - Degree discount heuristic for uniform IC model [KDD'09]
 - 10⁶ speedup --- from hours to milliseconds
 - LDAG for LT model [ICDM'10]
 - 10³ speedup --- from hours to seconds
 - IRIE for IC model [ICDM'12]
 - further improvement with time and space savings
- Extend to time-critical influence maximization [AAAI'12]

Features of Maximum Influence Arborescence (MIA) heuristic

- Based on greedy approach
- Use local tree structure
 - Dijkstra shortest path alg. for tree creation
 - Recursive computation for influence computation on trees
- linear batch update on marginal influence spread

Experiment results on MIA heuristic

Influence spread vs. seed set size

running time

Experiment setup:

- 35k nodes from coauthorship graph in physics archive
- influence probability to a node v = 1 / (# of neighbors of v)
- running time is for selecting 50 seeds

Influence Blocking Maximization in Competitive Diffusion Models

[SDM'12]

Motivation

- Multiple source of influence are propagating in networks
 - Often competitive
- Question:
 - How to maximize my own influence in face of competition?
 - How to minimize the competitor's influence?
 - E.g. stop rumor diffusion

Influence Blocking Maximization

- Competitive linear threshold model
 - positive and negative influence each follows LT model
 - when competing on a node at the same step, negative influence wins with a fixed probability
- Influence blocking maximization
 - Given the negative activation status
 - find k positive seeds
 - minimize the further negative influence, or maximize the expected number of "saved" or "blocked" nodes from negative influence --negative influence reduction

Influence blocking maximization under CLT

- Negative influence reduction is submodular
- Allows greedy approximation algorithm
- Fast heuristic CLDAG:
 - reduce influence computation on local DAGs
 - use dynamic programming for LDAG computations

Performance of the CLDAG

- with Greedy algorithm
- 1000 node sampled from a mobile network dataset
- 50 negative seeds with max degrees

- without Greedy algorithm
- 15K node NetHEPT, collaboration network in arxiv
- 50 negative seeds with max degrees

Scalability—Real dataset

Scalability Result for subgraph with greedy algorithm

Active Friending

[KDD'13]

Passive friending

- A user is given a list of friend recommendations --- "people you may know"
- Select people from the list to send friending request
- Many online social networking sites provide this service

Active friending

- A user wants to friend with a particular person
- How to increase the chance of the target person accepting the friending request?

• No service exists today

Acceptance Probability Maximization (APM) for active friending

- Given
 - Graph G = (V, E) with influence probabilities
 - Initiator *s*, target *t*
 - Budget r_R
- Select r_R non-friend nodes R (including t) s.t.
 - The out-neighbors of *s* is the seed set
 - Influence diffusion only passes through nodes in R
 - Need to maximize the probability of t being activated

Illustration

- Selected nodes in *R* as recommendation candidates
 - Recommended iteratively
- A friend *u* triggers candidate *v* means
 v accepts request from *s* due to *u*

Hardness result

- Given *R*, calculating acceptance probability is #P-hard
- APM in general graph is NP-hard

 Acceptance probability of t as a set function of R is not submodular (not having diminishing marginal return property)

Our approach

- Following MIA approach [C, Wang & Wang, 2010]
- Approximate influence diffusion on a MIA tree rooted at target t
- Algorithm SITINA: Apply dynamic programming to solve APM problem on the tree

Example of MIA tree

Incorporating homophily effect

- Node v accepting request from s may not be due to common friend influence
- Homophily: may be v and s are similar
- Add direct link from *s* to node *v* for homophily

User study

- App on Facebook
 - 169 people participated
- Learn influence probabilities by acceptance behavior
- Results
 - Acceptance probability estimated by MIA model is accurate
 - SITINA recommendation works better than users' own selection

Simulation study

- Datasets
 - Facebook (60K users, 1.5M links)
 - Flickr (1.8M users, 22.6M links)
- Influence probabilities use distribution from the user study
- Results
 - SITINA leads to higher acceptance probability

(sec.)	SITINA	SITA	RG
UserStudyData	0.0002	0.4472	2E-05
FacebookData	0.0592	> 7 days	0.0002
FlickrData	1.8315		0.0026

Running time $(r_R = 20)$

Summary and Future Directions

- Stochastic modeling of influence/information diffusion
- Many optimization tasks on diffusion
- New directions to explore
 - Non-submodular optimization tasks
 - Dynamic graphs + influence diffusion
 - Online learning + influence maximization
 - Topic-aware influence maximization

Further resources

Search "Wei Chen Microsoft"

- Monograph: "Information and Influence Propagation in Social Networks", Morgan & Claypool, 2013
- KDD'12 tutorial on influence spread in social networks
- my papers

