Scalable Influence Maximization in Social Networks under the Linear Threshold Model

Wei Chen Microsoft Research Asia

In collaboration withYifei YuanUniversity of PennsylvaniaLi ZhangMicrosoft Research Silicon Valley

1

Outline

- Background and problem definition
- Influence computation in the linear threshold model
- Local directed acyclic graph (LDAG) heuristic
- Experimental evaluations
- Future directions

Explosion of Online Social Media

Social Influence

• **Social influence** is when the actions or thoughts of individual(s) are changed by other individual(s).

babylon[®]

- Social influence is everywhere
- How can we extract social influence pattern from rich online social media?
- How can we utilize social influence in online social media? --- focus of this paper

A Hypothetical Example of Viral Marketing Kinect is great Xbox Kinect is great Xbox Kinect is great Kinect is great Kinect is great Xbox Kinect is great Kinect is great

The Problem of Influence Maximization

- Given a social network
- Given a dynamic influence cascade model
 - From an initial seed set, a stochastic process propagates node activation (influence) to part of the network
 - independent cascade (IC) model
 - Inear threshold (LT) model
- Influence maximization:
 - finding a seed set with size at most k,
 - such that the expected number of activated nodes (called influence spread) is the largest

Linear Threshold Model

- Social influence graph
 - vertices are individuals
 - links are social relationships
 - Iink (u, v) has weight $w(u, v): \sum_{u} w(u, v) \le 1$
- Linear threshold model
 - each node v selects a threshold $\lambda_v \in [0,1]$ uniformly at random
 - initially some seed nodes are activated
 - At each step, node v checks if the weighted sum of its active neighbors is greater than its threshold λ_v, if so v is activated

Research Background

- Influence maximization as a discrete optimization problem proposed by Kempe, Kleinberg, and Tardos, in KDD'2003
- Approximation algorithms
 - Greedy approximation algorithm in [KKT'03], 63% approximation of the optimal solution
 - Several improvements on running time [Leskovec, et al. 2007, Chen et al. 2009]
 - very slow, not scalable: > 3 hrs on a 30k node graph for
 50 seeds
- Heuristic algorithms
 - SPIM [Kimura and Saito, 2006], SPIN [Narayanam and Narahari, 2008], not scalable
 - PMIA [Chen et al. 2010] scalable and good performance, but only for IC model
- Lack of scalable solution for the LT model

Our Work

- Influence spread computation in the LT model
 - Computing exact influence spread in a general graph given a seed set is #P-hard (counting hardness)
 - Reduced from counting the number of simple paths in a graph
 - resolve an open problem in [KKT'03]
 - indicate the intrinsic difficulty of computing influence spread
 - Computing exact influence spread in a DAG (directed acyclic graph) can be done in linear time
- Influence maximization heuristic for the LT model
 - LDAG (local directed acyclic graph) heuristic
 - specifically designed for the LT model
 - 10³ speedup --- from hours to seconds (or days to minutes)
 - influence spread close to that of the greedy algorithm of [KKT'03]

Computing Influence Spread in a DAG

- 🗕 Setup
 - DAG D = (V, E, w)
 - Seed set S
 - activation probability of node v: ap(v)
 - Influence spread = $\sum_{v \in V} ap(v)$
- Computing activation probability in D:

$$ap(v) = \sum_{u \in V \setminus \{v\}} ap(u) \cdot w(u, v)$$

• Follow the DAG partial order to compute all ap(v)'s

Main Structure of the LDAG Heuristic

- Compute local DAGs (LDAGs) surrounding every node
 - idea 1: restrict influence computation at local region
- Compute incremental influence of every node based on LDAGs
 - idea 2: influence computation in DAGs is fast
- Select k seeds one by one with largest incremental influence
 - select new seed s with the largest incremental influence
 - update incremental influence of all nodes u sharing LDAGs with s
 - idea 3: batch updates reducing running time from $O(|D|^2)$ to O(D)

Finding an LDAG Influencing Node v

- Want:
 - a DAG D surrounding v, with v as a sink in D --- LDAG rooted at v
 - the LDAG is local
 - the influence of every node u in D to v is above some threshold θ
 - the LDAG covers a significant portion of influence
 - the sum of influence of all nodes u in D to v is as large as possible
- Exact maximization problem is NP-hard
- Greedy approach (similar to Dijkstra's shortest-path algorithm)
 - select a node x with the largest influence to v

 $x = \operatorname{argmax}_{u} Inf(u, v)$

 after x is selected, update the influence of the in-neighbors u of x, based on the linear relationship

 $Inf(u, v) += w(u, x) \cdot Inf(x, v)$

Repeat above two steps until no node has influence greater than θ

Efficient Batch Updates on Activation Probabilities

- For an LDAG *D* rooted at *v*, if a node *u* in *D* is selected as an additional seed, the incremental influence of *u* to *v* in *D* is $(1 ap(u)) \cdot \alpha_v(u)$
 - $\alpha_v(u)$'s for all u in D can be computed in linear time
 - time reduced from $O(|D|^2)$ to O(D)
- After selecting seed s, update α_v(w) for all w's that are in the same LDAGs as s

Experimental Evaluation

- Networks
 - Real-world datasets:
 - collaboration networks: arXiv (31K), DBLP (2M)
 - trust network: Epinions (509K)
 - product co-purchasing network: Amazon (1.2M)
 - Synthetic datasets: generated from power-law random graphs
- Influence weights
 - uniform: for node v with degree d_v , every incoming edge has weight $1/d_v$
 - random
- Algorithms tested: LDAG, Greedy, SPIN, PageRank, DegreeDiscount

Experiment Results on Influence Spread Epinions arXiv 1600 18000 LDAG always -Greedy 16000 1400 -LDAG(1/320) among the best 14000 1200 DegreeDiscountIC influence spread 008 009 12000 shread 10000 matches with ---- PageRank influence 8000 Greedy Greedy 6000 ----PageRank 400 4000 PageRank / -LDAG(1/320) 200 2000 DegreeDiscountIC DegreeDiscount 0 10 20 30 seed set size 30 et size 40 50 DegreeDiscount not stable 1400 -Greedy is not stable 1200 -LDAG(1/320) агекапк PageRank is not 1000 DegreeDiscountIC ----PageRank spread 800 influence spread 6000 4000 DegreeDiscountIC -LDAG(1/320) stable influence 600 400 DegreeDiscount 2000 200 is not stable 0 0 10 40 50 10 40 50 20 30 0 20 30 seed set size seed set size Amazon DBLP random weights ICDM'10, Dec. 15, 2010 15

Running Time on Real-World Networks

Running time is for selecting 50 seeds

Scalability of LDAG on Synthetic Graphs

Compare with Greedy with Different Number of Simulated Cascade Runs

Greedy cannot maintain high influence spread when reducing the number of simulations

ICDM'10, Dec. 15, 2010

Compare with Random LDAG Construction

Future Directions

- Theoretical problem: efficient approximation algorithms:
 - How to efficiently approximate influence spread given a seed set?
- Practical problem:
 - Influence analysis from online social media: How to mine the influence graph?
 - Influence maximization in other settings

Thanks! and questions?