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Outline

@ Background and problem definition

@ Influence computation in the linear threshold model
@ Local directed acyclic graph (LDAG) heuristic

@ Experimental evaluations
@ Future directions
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Social Influence

e Social influence is when the actions or thoughts of

individual(s) are changed by other individual(s).
& babylon

e Social influence is everywhere

e How can we extract social influence pattern from rich
online social media?

e How can we utilize social influence in online social
media? --- focus of this paper
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A Hypothetical Example of Viral Marketing

Xbox Kinect is great
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The Problem of Influence Maximization

@ Given a social network

@ Given a dynamic influence cascade model

@ From an initial seed set, a stochastic process propagates
node activation (influence) to part of the network

@ independent cascade (IC) model
@ linear threshold (LT) model

@ Influence maximization:
@ finding a seed set with size at most k, )

@ such that the expected number of activated nodes
(called influence spread) is the largest
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Linear Threshold Model

@ Social influence graph
@ vertices are individuals
@ links are social relationships
@ link (u, v) has weight
w,v): Y,w(u,v) <1
@ Linear threshold model

@ each node v selects a
threshold A, € [0,1] uniformly
at random

@ initially some seed nodes are
activated

@ At each step, node v checks if
the weighted sum of its active
neighbors is greater than its
threshold A,,, if so v is
activated
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Research Background

@ [Influence maximization as a discrete optimization problem proposed
by Kempe, Kleinberg, and Tardos, in KDD’2003

@ Approximation algorithms

@ Greedy approximation algorithm in [KKT’03], 63% approximation of the optimal
solution

@ Several improvements on running time [Leskovec, et al. 2007, Chen et al. 2009]
® very slow, not scalable: > 3 hrs on a 30k node graph for
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50 seeds
@ Heuristic algorithms
@ SPIM [Kimura and Saito, 2006], SPIN [Narayanam and Narahari, 2008], not ®,
scalable L)
@ PMIA [Chen et al. 2010] scalable and good performance, /Q y
but only for IC model )
@ Lack of scalable solution for the LT model Q -
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Our Work

@ Influence spread computation in the LT model

@ Computing exact influence spread in a general graph given a seed
set is #P-hard (counting hardness)
@ Reduced from counting the number of simple paths in a graph
@ resolve an open problem in [KKT'03]
@ indicate the intrinsic difficulty of computing influence spread

@ Computing exact influence spread in a DAG (directed acyclic
graph) can be done in linear time

@ Influence maximization heuristic for the LT model

@ LDAG (local directed acyclic graph) heuristic
@ specifically designed for the LT model
® 103 speedup --- from hours to seconds (or days to minutes)
@ influence spread close to that of the greedy algorithm of [KKT'03]
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Computing Influence Spread in a DAG

@ Setup

DAGD = (V,E,w)

Seed set S

activation probability of node v: ap(v)
Influence spread = ).,y ap (V)

e © © ¢©

@ Computing activation probability in D:

w®) = ) apw)-ww)

uev\{v}

@ Follow the DAG partial order to compute all ap(v)’s
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Main Structure of the LDAG Heuristic

@ Compute local DAGs (LDAGSs) surrounding every node
® idea 1: restrict influence computation at local region

@ Compute incremental influence of every node based on LDAGs
@ idea 2: influence computation in DAGs is fast

@ Select k seeds one by one with largest incremental influence
@ select new seed s with the largest incremental influence
@ update incremental influence of all nodes u sharing LDAGs with s
@ idea 3: batch updates reducing running time from 0(|D|%) to O(D)
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Finding an LDAG Influencing Node v

¢ Want:

@ a DAG D surrounding v, with v as a sinkin D --- LDAG rooted at v
@ the LDAG is local

@ theinfluence of every node u in D to v is above some threshold 6
@ the LDAG covers a significant portion of influence

@ the sum of influence of all nodes u in D to v is as large as possible

@ Exact maximization problem is NP-hard

@ Greedy approach (similar to Dijkstra’s shortest-path algorithm)

@ select a node x with the largest influence to v
x = argmax , Inf (u,v)
@ after xis selected, update the influence of the in-neighbors u of x,

based on the linear relationship
Inf(u,v) +=w(u,x) - Inf(x,v)

@ Repeat above two steps until no node has influence greater than 6
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Efficient Batch Updates on Activation
Probabilities

@ For an LDAG D rooted at v, if a node u in D is selected as an
additional seed, the incremental influence of utovin D is

(1—apw)) - a,(w)
@ a,(u)'sforalluin D can be computed in linear time
@ time reduced from O(|D|?) to O(D)

@ After selecting seed s, update a,(w) for all w’s that are in
the same LDAGs as s
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Experimental Evaluation

@ Networks

@ Real-world datasets:
@ collaboration networks: arXiv (31K), DBLP (2M)
@ trust network: Epinions (509K)
@ product co-purchasing network: Amazon (1.2M)

@ Synthetic datasets: generated from power-law random graphs
@ Influence weights
@ uniform: for node v with degree d, every incoming edge has
weight 1/d,,
@ random

@ Algorithms tested: LDAG, Greedy, SPIN, PageRank,
DegreeDiscount
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Experiment Results on Influence Spread
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Running Time on Real-World Networks
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Scalability of LDAG on Synthetic Graphs
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Compare with Greedy with Different
Number of Simulated Cascade Runs
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reducing the number of simulations
@ ICDM'10, Dec. 15, 2010




4 N

Compare with Random LDAG Construction
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Future Directions

@ Theoretical problem: efficient approximation algorithms:
@ How to efficiently approximate influence spread given a seed set?

@ Practical problem:

@ Influence analysis from online social media: How to mine the
influence graph?

@ |Influence maximization in other settings
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