Sharing Buffer Pool Memory in Multi-Tenant Relational
Database-as-a-Service

Vivek Narasayya Ishai Menache Mohit Singh Feng Li Manoj Syamala Surajit Chaudhuri

Microsoft Research, Redmond, WA
{viveknar, ishai, mohits, fenl, manojsy, surajitc}@microsoft.com

ABSTRACT

Relational database-as-a-service (DaaS) providers need to rely on
multi-tenancy and resource sharing among tenants, since statically
reserving resources for a tenant is not cost effective. A major con-
sequence of resource sharing is that the performance of one ten-
ant can be adversely affected by resource demands of other co-
located tenants. One such resource that is essential for good per-
formance of a tenant’s workload is buffer pool memory. In this
paper, we study the problem of how to effectively share buffer pool
memory in multi-tenant relational DaaS. We first develop an SLA
framework that defines and enforces accountability of the service
provider to the tenant even when buffer pool memory is not stat-
ically reserved on behalf of the tenant. Next, we present a novel
bufter pool page replacement algorithm (MT-LRU) that builds upon
theoretical concepts from weighted online caching, and is designed
for multi-tenant scenarios involving SLAs and overbooking. MT-
LRU generalizes the LRU-K algorithm which is commonly used in
relational database systems. We have prototyped our techniques in-
side a commercial DaaS engine and extensive experiments demon-
strate the effectiveness of our solution.

1. INTRODUCTION

Enterprises today rely on relational database systems for effi-
ciently storing, indexing and querying data required by their appli-
cations. More recently, several commercial cloud relational database
services such as Database.Com [8]], Google Cloud SQL [[11]], Mi-
crosoft Azure SQL Database [16] (formerly known as Microsoft
SQL Azure), and Oracle Cloud Database [21]] have emerged. These
relational database-as-a-service (DaaS) offerings are data platforms
where the service provider assumes responsibility for provisioning
machines, patching, ensuring high availability, geo-replication etc.
The attraction of DaasS is the familiar relational database paradigm
combined with promise of reduced total cost of ownership.

These cloud database services are by necessity multi-tenant. Multi-

tenancy is crucial for the service provider to increase consolidation
and reduce cost, since statically reserving resources up-front for
each tenant can be too expensive. One architecture for such cloud
database services (e.g., used in Microsoft Azure SQL Database)

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 7

Copyright 2015 VLDB Endowment 2150-8097/15/03.

726

consists of multiple tenant databases hosted inside a single database
server. In such a multi-tenant database system, the resources of the
database server must be shared by the SQL workloads of all ac-
tive tenants assigned to that server. Therefore, when one tenant’s
workload executes, it can affect the performance of other tenants’
queries on the same server adversely.

There is a fundamental tension between the need for the service
provider to reduce cost by increasing multi-tenancy, and the de-
sire of tenants for assured resources for their workload. A DaaS
provider would like to overbook resources, i.e., promise more re-
sources to tenants in aggregate than is physically available on the
machine, yet without affecting tenant performance. This is based
on the observation that at any point in time some tenants on the ma-
chine are likely to use much fewer resources than they are promised.
The intuition here is conceptually similar to airlines that overbook
seats on a flight.

In the SQLVM project [19]] we have developed resource gover-
nance techniques that enable the service provider to offer the assur-
ance of reserved resources to a tenant, thereby isolating one ten-
ant’s performance from resource demands of another tenant with-
out requiring static allocation of resources. We presented our ap-
proaches for addressing this challenge for CPU and I/O resources in
[[7] and [[19] respectively. Recently, Microsoft Azure SQL Database
has released offerings of Service Tiers and Performance Levels,
which incorporate performance isolation for different resource di-
mensions [23]]. These offerings use the techniques developed in [7]]
and [19] as the underlying control mechanisms for performance
isolation.

In this paper, we study the problem of how to effectively share
buffer pool memory in a multi-tenant setting. The buffer pool serves
as a cache of database pages and is crucial for good performance
of the tenant’s workload. The first challenge is to define account-
ability of the service provider when buffer pool memory is shared
among multiple tenants. We observe that the impact of a cache on
performance of a tenant’s workload depends not only on the size of
the cache but also on the access pattern of the workload. Consider
the case where a tenant is promised 1G B of buffer pool memory by
the service provider. If the service provider statically reserves 1GB
of buffer pool memory for the tenant, then the tenant’s workload
would achieve a certain hit ratio, i.e., a certain fraction of the pages
accessed by the tenant’s workload would be found in the buffer
pool. Now suppose instead that the service provider does not stati-
cally reserve 1G B of buffer pool memory but allows memory to be
dynamically shared among all tenants. Then the same workload of
the tenant would potentially achieve a different hit ratio, depending
on the memory demands of other tenants. If the tenant’s hit ratio
reduces due to multi-tenancy, we use this degradation in hit ratio
of the tenant’s workload compared to a “baseline” where memory

is statically reserved, as a quantitative measure of the impact of
multi-tenancy on performance. Formally, we define the Hit Ra-
tio Degradation (HRD) as the difference in total hits, between the
baseline and any scheme that assigns memory dynamically, nor-
malized by the total memory accesses. This metric captures the
reduced number of page hits that the tenant incurs due to the fact
that it is deprived of memory that it was promised.

Given the HRD definition, the next challenge is to efficiently
measure HRD via metering. In particular, we need to compute the
HRD for a tenant due to the effects of multi-tenancy. While mea-
suring the hit ratio of the tenant’s workload in the actual system
is straightforward, computing the hit ratio for the baseline case re-
quires what-if analysis. We show how to perform this computation
with low memory and CPU overheads. Depending on the HRD
value, the service provider may incur a certain penalty (specified
via a penalty function) for not being able to deliver on its promise.
We note that different SLAs could be defined between the tenant
and service provider that determine the exact nature of this penalty
(see Section[2).

The final and most crucial challenge pertains to the page replace-
ment algorithm in a multi-tenant DaaS. The family of LRU-K [20]
algorithms have been shown to be effective in managing buffer pool
memory in relational database servers, e.g., the Microsoft Azure
SQL Database service also uses a variant of LRU-K. The basic idea
of LRU-K is to keep track of the timestamps of last K references
to a page and use this information to estimate the probability of
reference of the page. The page that is evicted is the one with
the smallest estimated probability of reference. In a multi-tenant
setting however, the page replacement algorithm must incorporate
two additional requirements. First it needs to handle the asymmetry
of tenants, who might differ on amount of promised memory and
penalty functions used. Second, the page replacement algorithm
must be flexible to optimize for different service provider objec-
tives. For instance, if the penalty leads to money being refunded
to tenants as compensation, the service provider may want to mini-
mize the sum of total money refunded with a constraint on fairness
across tenants. Alternatively, the service provide may wish to opti-
mize a different aggregate measure, e.g., maximize the number of
tenants whose HRD is below a certain threshold (say 10%). Due to
these additional requirements, the penalty associated with evicting
a page of one tenant may be much higher than evicting a page from
another tenant, even though the two pages appear indistinguishable
via LRU-K alone. As we show in this paper, using a standard page
replacement policy globally across all tenants can lead to unnec-
essarily high penalties for the service provider. Furthermore, any
solution must also take into consideration practical issues such as
eviction of pages in batches and bookkeeping overheads. Thus,
there is a need to rethink global page replacement in a multi-tenant
setting while preserving the goodness of LRU-K for any individual
tenant.

Leveraging ideas from prior work on weighted online caching
[31]], we first develop an “SLA-aware” page replacement algorithm
for a simplified, non-batch version of the problem and provide worst-
case guarantees on penalties incurred by the service provider. In-
tuitively, the algorithm logically associates with pages of each ten-
ant, a weight equal to the marginal increase in penalty currently
incurred by the service provider for that tenant. Pages with higher
weight age more slowly in the buffer pool and hence are less likely
to be evicted. Based on this intuition, we design MT-LRU, a multi-
tenant page replacement algorithm that handles the practical con-
siderations of a relational database engine. Besides leading to lower
penalties for the service provider, MT-LRU has other desirable prop-
erties. First, it generalizes LRU-K to the case of multiple tenant

727

with SLAs, i.e. (a) for any individual tenant the order of its pages
evicted is the same as in LRU-K, and (b) if all tenants have iden-
tical SLAs, then the algorithm reduces to running LRU-K on the
entire buffer pool. Second, MT-LRU can seamlessly incorporate
non-linear penalty functions, as well as additional service provider
constraints such as fairness across tenants. Third, it can be imple-
mented with minimal overhead compared to LRU-K.

We have implemented a prototype of the above techniques: me-

tering and the MT-LRU page replacement algorithm inside the database

engine of Microsoft Azure SQL Database taking into account the
above mentioned practical considerations. We have conducted an
extensive set of experiments to measure accuracy and overheads of
metering, and the effectiveness of the MT-LRU page replacement
policy. The results of these experiments demonstrate the effective-
ness of our techniques, and show that the new page replacement al-
gorithm significantly reduces service provider penalties compared
to using the standard LRU-K policy when the system is overbooked.
In particular, in a range of experiments that span settings where a
page replacement mechanism could affect total penalties, MT-LRU
reduces penalties by 30 to 50 percentage points compared to LRU-
K (cf. Section [5). We note that the techniques developed in this
paper could in principle be applied to other large-scale cloud ser-
vices where multiple tenants share a global cache (e.g., Amazon
ElastiCache or Microsoft Azure Caching).

2. SLA FOR BUFFER POOL MEMORY

In this section, we describe the model for SLAs for buffer pool
memory. An SLA between the provider and the tenant is defined
by the following three components: (a) the amount of buffer pool
memory. (b) the SLA metric - hit ratio degradation (HRD). (c)
The penalty function that describes how the service provider is held
accountable for any value of HRD. Issues pertaining to how the
SLA is metered are discussed in Section 3l

2.1 SLA Metric

The buffer pool in a DBMS is a cache of database pages and
plays an important role in enabling good workload performance.
When a query accesses a page, if it is found in the buffer pool, we
refer to that access as a hit; otherwise it is a miss and the page must
be fetched from disk. Thus, for a buffer pool of a given size and
for a given workload (i.e., sequence of page accesses) the hit ratio
is defined as:

h

N ey

where NV is the total number page accesses and A is the number of
page accesses found in the buffer pool. Note that0 < HR < 1. We
observe that the hit ratio in the above equation HR has two implicit
parameters: (1) The buffer pool size — the amount of memory in the
buffer pool. (2) The workload — the sequence of pages accessed.

As described earlier, our model of SLA is relative to the “base-
line”, i.e., the buffer pool memory promised to the tenant. Say the
tenant has been promised M GB of buffer pool memory. In effect,
the service provider is promising the tenant that the actual hit ratio
of the tenant’s workload will be no worse than the hit ratio if M
GB of buffer pool memory had been statically reserved for the ten-
ant. We will refer to this as the baseline. If the service provider is
unable to meet this promise, a penalty function (described in Sec-
tion is invoked depending on the degree to which the actual
and baseline hit ratios differ:

Hit Ratio Degradation(H RD) = max{0, HRg — HRa} (2)

Hit Ratio(H R)

where H Rp is the hit ratio in the baseline case, and H R 4 is the
hit ratio in the actual (i.e. multi-tenant) case. Observe that the

Cache replacement policy: LRU
Pageld access sequence: <101, 105, 123, 105, 140, 101, 105>

| 101 I 105 I 123 I 140 I | 140 I 105 I 101 I
M=4 M=3
HRg=3/7 HRy=2/7

Figure 1: Example of hit ratio degradation.

Max operation is necessary since in general it is possible that H R 4
is higher than H Rp. This might occur if the tenant is allocated
more than M GB of buffer pool memory in the actual case - in
such cases, we deem the hit ratio degradation to be 0. From the
above definitions of HR and HRD, it follows that 0 < HRD < 1.
Combining Equations (I)) and (2)), we get:

Lh"‘} (3)

h
HRD = max {0, N

Example 1. Consider a workload (sequence of pages accessed)
shown in Figure [I] For the purposes of this example, suppose
the page replacement policy used is LRU. Now, say the tenant is
promised a buffer pool with M=4 pages in the SLA; but receives
only M=3 pages in the multi-tenant system due to demands of other
tenants. For the sequence of pages accessed by the tenant’s work-
load, HRg = 3/7 and HR 4 = 2/7. The final contents of the buffer
pool after all pages have been accessed (in each case) is shown in
the figure. Thus HRD = 3/7 —2/7 =1/7.

2.2 Penalty Function

The penalty function defines how the service provider will be
held accountable for any value of HRD that occurs in the actual
case. The penalty function is an integral part of the SLA and is
important from both the tenant and service provider’s perspectives.
For the tenant, a penalty function quantifies a potential compensa-
tion as a function of the performance degradation. For the service
provider it provides the basis upon which to prioritize resource al-
location across different tenants.

Note that the above notion of penalty can support a variety of
scenarios ranging from internal memory provisioning within an en-
terprise to external DaaS offering. For example, a service provider
may aim to maximize the number of tenants whose HRD is below
a certain threshold. Alternatively, the service provider may want
to minimize the monetary penalty which could be associated with
the SLAs. For concreteness, we henceforth focus on a particular
penalty model, which covers the above scenarios. In particular, we
assume throughout that the penalty function consists of two ele-
ments: (i) an SLA “price” d; (ii) a normalized penalty function
g : [0,1] — [0,1]. The penalty for a given HRD is obtained by
multiplying the two elements, namely d - g(HRD). Such cost
structure has a simple interpretation in the sense that g(-) is the
percentage price refunded to the tenant from the SLA price. In the
rest of the paper, we often refer to g for simplicity as the penalty
function, keeping in mind that its value ought to be multiplied by
the SLA price d. We emphasize that the SLA prices are exogenous
in our model, namely, how the provider does/should set prices is
outside the scope of this work.

We perform our evaluation on (normalized) penalty functions
whose functional form is either step-based or piecewise linear. See
Figure [2] for examples of these two types of normalized penalty
functions. Step-based functions are quite powerful, and can cap-
ture real world requirements, which are often non-linear. For ex-
ample, availability SLAs in some cloud service providers today

728

Penalty (%) Penalty (%)

100 PF1 100 PF2
8 80
60 60
40 40

20

- ! 1 1 1 -
>

[[[
1 1 1 Ll

0.1 0.2 03 HRD o1 0.2 03 HRD
Figure 2: Examples of two penalty functions. PF1 is a step-based
function, namely consists of multiple steps. PF2 is a piecewise-
linear function.

takes the form of a step function such as: no penalty if availabil-
ity 99.9% or higher, 10% penalty if availability between 99% and
99.9%, 50% penalty if availability between 90% and 99% etc. In
our context, PF1 in Fig. 2] refunds at least half of the SLA cost if
the HRD goes above 10%, and up to 80% refund for HRD greater
than 15%. Piecewise linear penalties, also have a plausible inter-
pretation: Each linear section corresponds to a fixed per-unit-HRD
penalty. For example, under PF2 in Fig. 2] the provider will pay
back 1.5% per one percent of HRD until reaching an HRD of 10%.
From that point onwards, the per-unit refund increases to 3.5%, re-
flecting increased tenant dissatisfaction. While our experiments use
the above two types of penalty functions, we note that the algorithm
we develop in Section 4 does not make any assumptions about the
particular form of the underlying penalty function; all it requires is
a penalty function whose derivative is well defined or at least can
be approximated.

2.3 Discussion

Today’s DaaS offerings do not expose SLA metrics which are di-
rectly related to buffer pool memory performance. Instead, providers
expose a fixed set of performance tiers, each associated with some
level of “throughput units” (e.g., DTUs — Database Throughput
Units — by Microsoft Azure SQL Database [23]]). These units are
based on a blended measure of CPU, memory and other resources.
While buffer pool memory SLAs, such as described above, may
be exposed to more performance-sensitive customers in the future,
even under existing offerings, providers could still use our HRD-
based SLAs internally (without exposing them to customers). For
example, Premium, Standard and Basic contracts can be internally
associated with penalties d; - g(HRD) (i = 1,2, 3 respectively),
where di = 2d2 = 4ds. Such mapping would facilitate dynamic
division of buffer pool memory based on actual usage, rather than
a static and potentially inefficient allocation.

3. EFFICIENT SLA METERING

Consider a tenant with an SLA for buffer pool memory as de-
scribed in Section[2] whose workload is currently executing. Recall
that the performance metric upon which the SLA is based is the hit
ratio degradation (HRD) described by Equation (3) in Section [2.1
To enforce the SLA, the metric HRD needs to be computed. De-
pending on the HRD and the penalty function, the penalty incurred
by the service provider is determined. The metering can be done at
a suitably fine-grained interval (e.g., 30 secs or 1 minute).

To compute HRD (see Equation (3)), three quantities need to be
measured for the tenant’s workload: hp,(the number of hits in the
baseline), h 4 (number of hits in the actual system) and N (the total
number of pages accessed by the tenant’s workload). Measuring
ha and N is relatively straightforward, and can be done at low

Pageld access
sequence
101’
208’
233
105*

Baseline buffer pool (LRU policy) for Tenant 1
HRg' =3/7 [101] 105] 123] 140]

M=4
123
2877
105*
2332
140"
101*
105"
2877

Baseline buffer pool (LRU policy) for Tenant 2
[208] 233] 287]

HRg® = 2/5

M=3
Actual buffer pool (LRU policy)

M=6

HRA'=2/7 HRA’=2/5
Figure 3: . Example of hit ratios in Baseline and Actual Buffer

Pools for two tenants.

overhead - in fact today’s DBMSs already keep counters that mea-
sure the number of hits and the total number of pages accessed in
the buffer pool. The only extension required is to keep these coun-
ters per tenant. The main challenge however is measuring hp of
the tenant, since this is the hit ratio in the baseline setting. We first
describe how the hp can be measured with high accuracy. Next
we analyze the memory and CPU overheads associated with such
metering.

3.1 Measuring hit ratio in Baseline

To illustrate what it means to measure the number of hits in the
baseline for a tenant’s workload, consider the following example.
Example 2. Suppose we have two tenants: Tenant 1 and Tenant
2; and execution of their workloads results in a sequence of page
accesses as shown in Figure 3] The superscript denotes which ten-
ant accessed the page (note that tenants do not share data). Also,
suppose that the actual buffer pool has 6 pages, and Tenant 1 and
Tenant 2 were promised 4 pages and 3 pages respectively in their
SLAs; thus the system is overbooked. Observe that in the actual

case, the hit ratio achieved for Tenant 1is HRY = 2/7. Figure

depicts which pages are in the buffer pool at the end of the sequence
of page accesses, and also shows which pages were replaced (e.g.
101, 208, 233 are replaced assuming LRU policy). Similarly the hit
ratio for Tenant 2 in the actual case is HR% = 2/5. However in
the baseline case for Tenant 1, which has 4 pages, the first 4 page
accesses are misses, but after the remaining 3 pages accesses are
hits. Thus H Ry = 3/7. Likewise, in the baseline case for Tenant
2, HR% = 2/5.

The basic observation which enables us to measure H Rp effi-
ciently is that we only need to know the following two pieces of
information to compute H Rp for a tenant: (a) The sequence of
pages accessed by that tenant. (b) The number of pages promised
to the tenant. Since we know the page replacement policy of the
DBMS, we can then simulate the exact page replacement policy
that the DBMS would have carried out for the given workload se-
quence and the promised memory size.

The key question is therefore the computation and memory over-
heads incurred by such a ”what-if” simulation. The new data struc-
ture required is a baseline buffer pool for each tenant T. The base-
line buffer pool is identical to a real buffer pool except it does not
contain the actual data pages, rather it only tracks the page-IDs of
pages accessed by tenant T.

The page replacement policy in Microsoft Azure SQL Database
is a variant of LRU-K [20], which we need to simulate during me-
tering. Thus in our implementation, we maintain: (a) A hash ta-
ble of page-IDs per tenant, and associate the LRU-K counters with
each page id. (b) A free list to store page-id reclaimed by the re-
placement scheme. Our simulation of the replacement policy of
Microsoft SQL Server captures many important details. For exam-
ple, the policy defines a notion of correlated references ([20]) to

729

a page to avoid giving unnecessary importance to pages that expe-
rience a burst of references very close to one another (e.g. within
a single transaction). Such correlated references are treated as a
single reference to the page.

The above algorithm can, in principle, be adapted to other DBMSs
that might use a different page replacement policy. The CPU and
memory overheads would vary depending on the exact page re-
placement policy being simulated. For example, in the original
LRU-K algorithm there is an additional data structure for tracking
pages that have been discarded from the buffer pool for a certain pe-
riod of time — referred to as the Retained Information Period [20].
Such logic could also be implemented, although it would add some
memory overhead for tracking page-id discarded from the baseline
buffer pool.

3.2 Analysis of Metering Overheads

CPU Overheads: During the "what-if” simulation, when the page
id is found in the baseline buffer pool, the overheads only pertain
to finding the page-id in a hash table and incrementing a counter.
When the page-id is not found in the hash-table, then additional
CPU overheads are incurred to simulate page replacement in the
baseline buffer pool. Since this code is invoked only when the
page-id is not found in the baseline buffer pool, the CPU time it
incurs is proportional to the hit ratio of the tenant’s workload in the
baseline buffer pool. As we show in our experiments (Section [3)),
across a variety of different settings, this overhead is typically very
small - negligible enough in practice that it falls within bounds of
measurement error.

Memory Overheads: There are two components of memory over-
heads. First there is a fixed overhead per page frame in the actual
buffer pool. This is required to track which tenant that page belongs
to. Assuming that a tenant id can be stored in 4 bytes and each page
is 8KB, this fixed overhead is 0.048% per page in the actual buffer
pool. Second, there is a variable amount of memory overhead for
the data structures of the baseline buffer pool of each tenant. This
depends on the memory promised to the tenant. In the worst case,
this is the memory for tracking page-IDs and associated page re-
placement counters (e.g., LRU-K counters) per page promised to
the tenant. Observe that at any point in time, if the tenant’s work-
load does not actually fill its promised size in the SLA, then the
worst case may not be reached. We illustrate the variable memory
overhead with an example. Consider an actual buffer pool of size
16GB and a page size of 8KB. Suppose that the tenants in aggregate
are promised 32GB buffer pool memory, and each tenant accesses
sufficient number of pages such that their respective baseline buffer
pools would have been full. Suppose also that bookkeeping over-
head of the LRU-K page replacement scheme is 40 bytes per page.
In that case the total variable amount of memory would be 140MB
(which is around 0.85% of 16GB). Finally, it is important to note
that the variable memory overhead also depends on how much the
service provider overcommits memory on the system (as described
earlier) - the greater the degree of overcommitment, the higher the
worst case memory overhead.

4. MULTI-TENANT PAGE REPLACEMENT
ALGORITHM

In this section, we present our online page replacement algo-
rithm MT-LRU that enables effective support of SLAs for buffer-
pool memory in a multi-tenant setting. We start in Section [£.1] by
framing the problem as an online caching problem and identifying
the key differences from the “classic” online caching models. We
outline the algorithmic challenges in Section|.2] In Section[d.3] we

highlight the intuition behind MT-LRU, using a simplified version
of the algorithm, which we term Sequential-MT-LRU; theoretical
guarantees for the latter are also provided. A full description of
MT-LRU, including a discussion of implementation issues appears
in Section[£.4]

4.1 Formulation

As mentioned earlier, we treat our problem as an online caching
(or paging) problem [24], where the buffer-pool plays the role of
a cache (we use the terms “buffer pool memory” and “cache” in-
terchangeably throughout this section). In the basic online caching
problem, we have a cache of size B and a sequence of page requests
o = (p1,...,pr). At every time step ¢, we receive an access to
page p: and if the page is not in the cache, we incur a page miss and
the page p: is brought in the cache. If the cache is full and there is
no space for page p;, the algorithm has to make a decision about
which page to evict from the cache. The cost of any algorithm is
the number of page misses over the complete sequence.

In our context, we deal with a multi-tenant setting with asym-
metric tenants: We have a fixed set of tenants that share a com-
mon buffer pool of size B. Each tenant has an SLA with the
database provider. The individual SLA includes (i) a cache of size
bs, (ii) a (possibly non-linear) penalty function f; : [0,1] — R*.
Each tenant is promised a cache hit ratio for its workload com-
mensurate to having a cache of size b; and running LRU (or LRU-
K) on this cache for the pages belonging to the tenant. Unlike
traditional caching models, the algorithm is not charged by each
miss individually, but rather pays for the total number of memory
misses. That is, if the algorithm makes n; misses for tenant 7’s
pages while the baseline algorithm running on a cache of size b;
has m; misses, then the hit ratio degradation (HRD) for tenant ¢ is
HRD; = max{0, *5™t}, where N; is the total number of page
accesses of tenant 7. The service provider’s objective is to minimize
the sum of penalties), fi(HRD;).

As mentioned in Section 2] the above formulation can corre-
spond to maximizing revenue, namely f;(HRD;) = d;g;(HRD;)
(examples for g; are given in Figure @ The same formulation,
however, can be applied for additional objectives; for example, the
provider may wish to minimize the number of tenants whose HRD
is greater than 10%. This objective could be easily expressed using
penalty functions, by having a step-based function for each tenant,
with a single step at HRD = 10%.

4.2 Challenges

Variants of LRU, in particular LRU-K [20J], perform well in prac-
tice for database systems — theoretical guarantees can be estab-
lished under stochastic assumptions. Page replacement in LRU-K
depends only on the times of the last K accesses to a page. Our
focus is on designing an algorithm that would reduce to LRU-K for
any individual tenant while being able to handle new requirements
arising from multiple tenants with SLAs including: (i) Asymmetry
of tenants. Tenants could differ in the amount of memory promised
in the SLA and their penalty functions. Furthermore, different ten-
ants could be active at different times. (ii) Unlike LRU-K which
aims to maximize the likelihood of a page being found in the cache,
we need to optimize for different objectives, e.g., minimizing total
penalties. This is hard, particularly since penalty functions could
be non-linear (see Section[2.2). Observe that the requirement of re-
ducing to LRU-K for an individual tenant means that the sequence
of evictions of pages of a tenant is the same as in LRU-K. There-
fore, the challenge is to devise a method that can capture both the
effects of time and penalty when making page replacement deci-
sions. Finally, any viable page replacement algorithm must also

730

1 Let current time be 7" and let pr be the accessed page

2 Let ¢ be the tenant owning this page, and let n; be its total
number of misses

3 Sete(pr) = f'(ni)

4 if page pr is not in the cache then

5 n, =n; + 1

6 Setc(p) = c(p) + f'(n:) — f'(n; — 1) for any other

page of tenant ¢

7 if there is space in cache then
8 \ Place page pr in the cache
9 else
10 Let p* be the page with the smallest ¢(p) value in

the cache; evict page p* and replace with pr.

11 Setc(p’) = c(p’) — c(p*) for each page p’ in the
cache

12 end

13 end

Algorithm 1: Pseudo-Code of Sequential-MT-LRU algo-
rithm.

accommodate practical considerations that arise while implement-
ing in a relational database engine (see Section[4.4.2).

The above challenges rule out several obvious approaches to
tackle the problem. We briefly discuss below the most promi-
nent ones. One straightforward approach is to allocate a dedicated
fixed part of cache to each tenant, in some proportion based on
its SLA and possibly other competing tenants’ SLAs. Unfortu-
nately, such an algorithm is not able to utilize the fact that peak
activity of tenants can be temporal and the cache size dedicated
to a tenant should vary over time accordingly. An orthogonal ap-
proach is to run LRU-K on the whole cache. However, this algo-
rithm does not distinguish between tenants and could suffer badly
when tenants have asymmetric SLAs, for example when tenants
have been promised different amounts of memory or the penalty
functions differ significantly over tenants (see Section 3] for exper-
imental results). Another approach is to directly use algorithms for
weighted caching [2||31]] which generalize LRU to settings when
pages have different weights. Such an approach fails in our set-
ting since penalty functions can be non-linear, i.e. each additional
miss does not necessarily cost the same as is assumed in weighted
caching.

4.3 Key ideas behind MT-LRU

To understand the intuition behind MT-LRU, we first present a
simplified version of the MT-LRU algorithm, which we refer to as
Sequential-MT-LRU. We make two simplifying assumptions. First,
we assume that cache eviction decisions can be made after each
page access, whereas in practice, database systems need to perform
evictions in batches to control overheads. Second, we assume that
the provider is penalized according to the total number of misses of
each tenant, rather than based on HRDs; with some abuse of notion,
we use f;(n;) for the penalty function of tenant 4, where n; is its
total number of misses.

To better isolate the essential elements pertaining to requirements
from multi-tenancy, we develop Sequential-MT-LRU as an “SLA-
aware” version of LRU (rather than LRU-K, K > 1). We describe
below the main aspects of the algorithm (see Algorithm [T]for the
pseudo-code).

Handling penalties: Observe that when a page p is accessed, the
Sequential-MT-LRU algorithm assigns it a shadow price c(p) which
is set equal to the derivative of the penalty function for the tenant
owning the page, evaluated at the current time (Line [3). The intu-

ition is that this assignment is equivalent to the additional penalty
that will be incurred if the tenant owning this page has a miss at
the current time 7. When the algorithm needs to make space in
the cache to accommodate a newly referenced page, it evicts the
page with the smallest c¢(p) value, and reduces shadow prices of
all other pages in the cache by that amount. The assignment of
shadow prices to pages deals with the issue of asymmetry among
tenants as well as non-linearity of penalty functiony’| In partic-
ular, the update of the shadow price (Line incorporates both
time and penalty considerations: a page that remains in the cache
sees its shadow price value reduced until reaching zero and being
evicted; this achieves the effect of aging. The principle of account-
ing for the page’s age appears also in traditional LRU-K. However,
unlike LRU-K, each elapsed time unit is weighted differently. Intu-
itively, existing pages in the cache should be “punished”” more for
an eviction of a page with higher ¢(p*). This factor, along with the
initial assignment of ¢(p) which captures penalty considerations,
distinguishes Sequential-MT-LRU from traditional LRU-K. Note
that pages with high shadow price are expected to remain longer in
the cache, but not necessarily in full correlation with their age as
in LRU-K. For example, a newer page of a tenant with low penalty
derivative could be evicted before an older page of a different tenant
with high penalty derivative.

Reducing to LRU for an individual tenant: Observe that in Line
@ the ¢(p) values of all pages of the tenant are either increased or
decreased by the same amount equal to f'(n;) — f’(n; — 1). Since
at any point in time the ¢(p) of an older page of the tenant has been
reduced more times than a newer page (Line [TT)), the ordering of
the tenant’s pages by c(p) values is consistent with the ordering
that would have been achieved by LRU. Ties in ¢(p) if any, could
be broken using the standard LRU timestamp.

Guarantee on penalties: We next provide a worst-case guarantee
on penalties for the sequential-MT-LRU algorithm. Towards that
end, we assume that each f;(-) is a convex increasing function. Un-
der this setting, we give a guarantee on the total penalty incurred by
the algorithm relative to the best offfine algorithm for the problem,
which knows the sequence of arriving pages in advance. We note
that the technical assumption of convexity of f;(-) is necessary for
the proof; and it is natural in the sense that each additional miss has
an increasingly greater impact on tenant performance.

THEOREM 1. The algorithm Sequential-MT-LRU returns a so-
lution such that), fi(n:) < >, fi(y - B - 0i + B), where B is
the buffer-pool size, o; is the number of misses for tenant i in the

best offline algorithm and v =

Proof is omitted for brevity. We note that in order to demonstrate
the robustness of our algorithm, we include in our experiments
penalty functions that are not necessarily convex (see Section [5.4).
Finally, it is worth noting that if f;(x) = x for each tenant 4, then
the objective is to minimize the total number of misses. Theorem[T]
suggests that algorithm Sequential-MT-LRU is B-competitive which
is the best deterministic guarantee of any algorithm [24].

Similar theoretical guarantees cannot be obtained for the more
complicated setting of MT-LRU. Nevertheless, the main ideas be-
hind Sequential-MT-LRU form the basis for MT-LRU’s design: (i)
The use of shadow price as the basis for page replacement (ii) The
use of the penalty function’s derivative as the initial shadow price
of a page.

4.4 The MT-LRU algorithm

'In cases where the penalty functions are not differentiable or even discontinuous, we
first take a smooth approximation of the function and then take its derivative.

731

We first highlight the practical considerations that must be taken
into account in any viable implementation of a page replacement
algorithm such as batch evictions and low additional bookkeeping
overhead. We illustrate these requirements by summarizing rele-
vant aspects of the implementation of LRU-K in Microsoft Azure
SQL Database. Next we describe MT-LRU which carries over the
main ideas behind the simpler sequential algorithm, while incorpo-
rating these practical requirements and ensuring that page replace-
ment within pages of a tenant still reduces to the LRU-K algorithm.

4.4.1 Page replacement in Microsoft Azure SQL Database

The page replacement policy in Microsoft Azure SQL Database
is a variant of LRU-K. It maintains a free list of pages from which
a page is allocated when a new page is accessed. When the number
of pages in the free list becomes small, it reclaims a certain fraction
() of pages currently in the buffer pool and places them in the free
list. The pages reclaimed are those having the largest estimated
inter-arrival time as required by LRU-K. Observe that determin-
ing these pages exactly could be expensive when the buffer pool
memory size is large. Therefore, for efficiency, this step is done by
sampling [pages and determining a cutoff threshold based on those
sampled pages for reclaiming the desired fraction « of pages. Then
a “clock hand” (similar to the CLOCK algorithm [5]]) sweeps across
the pages reclaiming all pages whose LRU-K timestamp is below
the previously determined cutoff value, until the desired number
of pages has been reclaimed. The key points to note are that page
evictions are done in batches, the use of sampling to determine cut-
off threshold based on LRU-K timestamp, and that typically « is
reasonably large (e.g., 0.25) to keep overheads low.

4.4.2 Practical considerations

Sampling: Since a relatively large fraction of the cache is evicted in
each batch, we need to find the right thresholds for batch eviction
using a sampling mechanism.

Smoothing: Despite evicting pages in batches, we want pages be-
longing to the same tenant with similar LRU-K time stamps to have
similar shadow prices; this helps reduce unnecessary fluctuations in
buffer pool memory allocated per-tenant.

Efficient bookkeeping: In principle, for each eviction, we need to
account for the fact that multiple pages are evicted and reduce the
shadow prices of existing pages in the cache accordingly. To keep
bookkeeping overheads low we must avoid updating every page’s
shadow price (as in Line[TT]of the Sequential-MT-LRU algorithm).
Time thresholding: While we use the shadow prices on the sampled
pages to determine which pages to evict, the eviction criteria should
be translated to using simple time thresholds (as in LRU-K) for two
reasons. First, for an individual tenant, we want the sequence of
pages evicted to be the same as in LRU-K. Second, we would like to
avoid any shadow price calculations during the eviction loop itself.
With time-thresholding, we simply maintain one time threshold for
each tenant, and remove every tenant’s pages in the buffer pool
whose relevant LRU-K timestamp is earlier than the threshold.

4.4.3 Eviction in MT-LRU

The pseudo-code of the main loop of MT-LRU is given as Al-
gorithm [2] For every tenant ¢, we are given a penalty function
fi(HRD;). For each tenant, we maintain the number of misses
n; as well as the number of misses m; for the baseline case. Note
that this logic must be implemented for SLA metering as discussed
in Section 3 so no additional overheads are incurred due to MT-
LRU. The shadow price of each page p is denoted by c(p). We also
maintain a Virtual Cost vector, denoted V C(t) (indexed by time
t). The vector V C(t) stores an (approximate) c-percentile shadow

price among the pages in the cache (cf. Line[I9). As we elaborate
below, this vector is used for calculating the shadow prices. The
vector is highly sparse, as it is updated only at times when the evict
operation is called.

Sampling: In each evict operation, we first obtain a sample set of [
pages drawn uniformly at random from the cache.

Smoothing: Each sampled page is assigned a shadow price (Line
[). Note that for each tenant ¢, the page with the latest timestamp
is assigned a shadow price equal to the value of its current penalty
derivative. Older pages are assigned a shadow price through a lin-
ear interpolation using the vector V' C(t) for times between the ear-
liest LRU-K timestamp and current time; the interpolation achieves
the required smoothing of shadow price values. Observe further
that this update preserves the original LRU-K property that for each
tenant, pages with more recent timestamps cannot be evicted before
pages with older timestamps.

Efficient bookkeeping: The vector VC allows for efficient book-
keeping — instead of decreasing all shadow prices in each evic-
tion operation, we simply hold the required price updates within
that vector and do the updates in retrospect. VC(T') is assigned
the shadow price of peric (Line [T9), where peric is the page whose
shadow price is at the a-fraction of shadow prices among the [sam-
pled pages (Line [[I). Thus if we reduce the shadow price of all
pages in the cache by VC(T'), then approximately a-fraction of
pages will have their shadow price go below zero and therefore,
can be removed. VC is an approximate measure because it is cal-
culated based on the sampled pages. This means that in practice we
will be evicting slightly more or slightly less pages than required,
but this is not a significant issue given the scale involved.

Time thresholding: For each tenant ¢, we find the page p; that is
closest to peric in the sorted order. We then set 7; (the time thresh-
old of 7) as the timestamp of page p;. The actual evictions are
done in the same manner as in the original Microsoft Azure SQL
Database page replacement implementation: a clock hand loops
over the buffer pool (Line[I3)) and removes all pages whose times-
tamp is earlier than the corresponding 7;.

Computational Overhead: The computational overhead of MT-LRU
over the standard Microsoft Azure SQL Database eviction mecha-
nism is minimal. Since the algorithm outputs a time threshold for
each active tenant, we conservatively sample a larger number of
pages compared to the original implementation (2X); however, the
increased sample size has negligible impact on running time. Fur-
ther, the computational overhead of sorting shadow prices is similar
to the overhead of sorting timestamps in LRU-K. Similarly, mem-
ory requirements of the algorithm are comparable to LRU-K. In
particular, we emphasize that the memory overhead of the vector
V C is independent of the number of tenants, and only needs to be
updated during batch evictions, which are relatively infrequent. In
addition, the system can ignore very old virtual costs for all practi-
cal purposes (i.e., treat them as zeros). Together these imply that in
practice the memory requirements for the V'C' vector are at most a
few thousands of entries, where each entry consists of a timestamp
(of the eviction) and the corresponding V' C' value.

4.4.4 Additional implementation details

Handling step-based functions: To use MT-LRU when penalty
functions are step-based (e.g., PF1 in Fig. 2), we require a pre-
processing step of smoothening the penalty function. Intuitively,
the reason is that the derivative of such functions does not capture
useful information about the “marginal penalty” of the tenant (note
that the derivative is either 0, or undefined at the break points). To
address this issue, we smoothen the penalty function by interpolat-
ing the break points of the function, resulting in a piecewise linear

732

1 Let current time be 7.
2 Sample [pages uniformly at random from the cache
3 foreach tenant i do
4 Let t? denote the earliest LRU-K time stamp of any page
of tenant ¢ in the sample.
5 | Set AVC; =31 0 VO(t)
// Observe that AV (C; is dependent on ¢ via
the starting point of the sum.
6 Let y; be the total number of pages of ¢ in the sample.
7 For each tenant, sort its pages by the LRU-K timestamp
in increasing order;
8 Denote by pos, (p) the position of page p of tenant 4 in
the sorted order, pos, (p) € [0,y; — 1]
// Shadow price assignment:
9 | Sete(p) = (fI(HRD;) — AVC;) + AVC; - P20
10 end
11 Sort the | pages in increasing order of c(p)’s, let p.jc denote

the page at « fraction.

foreach renant i do

Let p; denote a page of tenant ¢ whose shadow price is
closest to C(pcric)' Let 7; denote the timestamp of p;
(set 7; to zero if p; doesn’t exist)

12
13

end

foreach page p do

Let ¢ be the tenant owning page p

Remove p from memory if its time-stamp is less than 7;.

14
15
16
17
18 end

19 Set VO(T) = c(peric)-

Algorithm 2: Pseudo-Code of MT-LRU’s EVICT(«) op-
eration; «v is the fraction of pages that need to be evicted.

function, whose derivative is well defined (with the exception of
the break point themselves, for which we arbitrarily pick either the
right or left derivatives).

Fairness: While our objective is to minimize the sum of penalties,
we may also wish to enforce a certain fairness criterion to ensure
that tenants with less stringent penalty functions are not completely
starved. MT-LRU is flexible to allow for such refinements. To that
end, in practice we modify the penalty function by increasing the
derivative of the penalty function for high HRDs. This ensures,
for example, that the HRD of low paying tenants will not be ex-
tremely high as compared to higher paying tenants. Using similar
techniques, it is also possible to ensure that each active tenant re-
ceives a small minimum number of pages regardless of the penalty
function.

5. EXPERIMENTS

We have implemented the techniques described in this paper for
SLA metering (Section [3) and multi-tenant buffer pool page re-
placement policy (Section[d) in a commercial database engine: Mi-
crosoft Azure SQL Database. The goals of our experiments are to
evaluate: (a) The accuracy and overheads of SLA metering. (b)
The effectiveness of the new buffer pool page replacement policy.

5.1 Experimental Setup

Machine and Database Server: We use a machine with a 2 pro-
cessor, Quad-Core, 2.1GHz CPU, and 32GB RAM. We run an in-
stance of the Microsoft Azure SQL Database server extended as
described in this paper for supporting multi-tenancy. Although the
machine has 32GB physical memory, for a given experiment we

can configure the database server so that it uses only a specified
amount of memory for the buffer pool (e.g. 8GB). Database: Each
tenant’s data resides in a separate database. We use a copy of the
TPC-H [23] 10GB database for each tenant.

Workload: Since our techniques pertain to the buffer pool, we gen-
erate workloads so that we can systematically vary the page ac-
cess patterns, and hence control the buffer pool memory demands
of each tenant. We therefore generate synthetic workloads, where
each query performs a range access of ¢ pages (q is a parameter
with a default value of 10) on the clustered index of the lineitem
table in TPC-H. The entire clustered index is around 8GB in size.
We control locality in the workload by generating queries where
the start of a range is selected at random using a Zipfian distribu-
tion (which follow a power law); where the Zipfian factor Z=0 is a
uniform distribution that gets progressively skewed as Z increases.
In addition to the above workload that accesses pages at random
in the table, we also generate workloads that sequentially scan a
given number of pages from the table. We refer to these two kinds
of workloads as RAND and SCAN respectively. For each tenant
we execute the workload on 4 connections simultaneously and on
each connection we run 100,000 queries.

Number of Active Tenants: For any given experiment, we pick a
certain number of tenants (between 1 and 32) to execute their work-
loads. In practice in Daas8, it is rare that more than a few tenants
(typically around 10) are active on a server at a particular point in
time. By controlling the physical memory configured for the buffer
pool, and the memory promised to tenants, we can control the over-
all degree of overbooking by the service provider.

Buffer Pool Aware Page Replacement strategies: As a default
for comparison we use the native policy of Microsoft Azure SQL
Database, which uses an adaptation of LRU-K as described in Sec-
tion[d We refer to this policy as SQL. In addition to MT-LRU, we
also include for comparison another SLA-aware page replacement
policy that we refer to as CURRENT. In this policy, the impor-
tance of a page during eviction is computed as the current penalty
for the tenant according to the penalty function divided the inter-
arrival time as estimated by LRU-K. Thus, while CURRENT cap-
tures effects of both LRU-K and penalty, it does not incorporate the
marginal changes in the penalty function, and is thus potentially
susceptible to non-linear penalty functions.

5.2 Accuracy of SLA Metering

We consider the case where there is a single tenant who has been
promised X GB of memory (X is varied between 1 and 8) and the
actual buffer pool memory of the server is also set to X GB. In
this case since all the memory in the actual buffer pool is available
for this single tenant, we know that if SLA metering is perfectly
accurate, then the number of hits in the actual (h4) and baseline
(h) should be identical. We record the hits measured in the actual
buffer pool, and also the hits measured by the SLA metering code
for the baseline case. We define accuracy as 1 — ’% ’ Thus,
if the actual and baseline hits are identical, accuracy is 100%. We
report the average (and min) accuracy over all metering intervals.
Note that by taking the absolute value of the difference between h 4
and hp we count both overestimation or underestimation errors.

We first report the accuracy of SLA metering as the amount of
buffer pool memory (M) promised to the tenant is varied between
1GB and 8GB and the skew in the workload is varied between Z=0
and Z=1.25. We find that the average accuracy is almost always
close to 100%. There are a few time intervals where there are small
errors (the largest of these never exceeds 3%). The explanation for
this is that our technique for estimating h p that simulates the actual
buffer pool does not model all nuances of the behavior of the actual

733

buffer pool. For example, the actual buffer pool replacement policy
withholds under certain situations a small amount of memory in re-
serve (around 10 MB per core), and does not always give that to the
workload. Since we do not model this effect in our simulation, we
occasionally observe small errors. In principle, even these small
errors could be further reduced by modeling such additional effects
in the simulation code. Finally, we also note that there is a small
amount of non-determinism arising out of the fact that in the page
replacement policy of Microsoft Azure SQL Database the cutoff
threshold is determined via a random sample. Thus two successive
runs of the same workload could exhibit a slightly different behav-
ior with respect to pages in the buffer pool. These experiments
demonstrate that it is feasible to achieve very accurate SLA meter-
ing of hit ratio for buffer pool memory of a commercial DBMS.

5.3 Overheads of SLA Metering

To measure the computational overheads of SLA Metering, we
run each workload with SLA metering turned off and turned on (but
keeping all other settings identical), and measure the difference in
end-to-end time of the workloads.

Varying promised memory: First, we consider a single tenant
case. We vary the amount of memory promised to the tenant while
keeping the physical memory for the buffer pool constant (to 4GB)
and measure the percentage difference in time with and without
SLA metering for different values of promised memory. We notice
that the overheads are indistinguishable from the inherent varia-
tions of the system and experimental error. Only for one data point
are the overheads positive, and in that case it is 0.04%.

Varying number of tenants: To measure the sensitivity of over-
heads to number of tenants, we vary the number of active tenants (1,
2,4, 8, 16, 32), promising each tenant a memory of 2GB and hold-
ing the overbooking ratio constant at 2x. Once again we observe
that the CPU overheads of what-if simulation for SLA metering are
negligible (below 0.25%).

Varying workload skew: In the final experiment, we measure how
the workload characteristics affect overheads. This time we hold
the memory promised to a tenant constant at 8GB and the physi-
cal memory in the actual buffer pool to 4GB; and vary the Zipfian
factor for the workload (Z = 0,0.5,1.0). We observe again that
the overheads are negligible (below 0.5%). Overall, this experi-
ment indicates that SLA metering of hit ratio in the baseline case
can be implemented with very low overheads. As described in Sec-
tion 4.2, the memory overheads are also modest. The accuracy and
overheads results above indicate that SLA metering can be done
effectively for hit ratio of buffer pool memory.

5.4 Effectiveness of MT-LRU

We next study the benefits of our SLA-aware page replacement
policy. As described in Section [} MT-LRU is designed to mini-
mize the sum of penalties incurred over all tenants. We report here
conclusive experimental results which show the advantage of MT-
LRU over other page replacement algorithms.

5.4.1 Sensitivity to SLAs

In our first experiment, we study how the different buffer pool
memory promised to tenants affects penalties. We set the actual
buffer pool memory to 4GB and have two active tenants, each being
promised a certain amount of memory (varied from 1GB to 5GB).
In effect this varies the factor by which the service provider over-
commits memory from 0.5 (for 1GB case) to 2.5 (for 5GB). Each
tenant runs an identical SCAN workload. Both tenants use penalty
function PF1 (see Figure , however Tenantl has a price of $100
for the SLA, Tenant2 has a price of $10. This is a simple scenario

=@ MT-LRU

saL

Percentage revenue

1 2 3 a

Memory promised per tenant[GB]
Figure 4: Overall percentage of revenues as a function of promised

memory.

where Tenantl is much more performance sensitive than Tenant2
and is willing to pay more for it. In this setting, observe that mini-
mizing penalty implies maximizing service provider revenue from
the tenants.

Fig. E| shows the results. The y-axis is the percentage revenue
achieved by the policy, and the x-axis is the memory promised to
each tenant . When the total memory promised to tenants is below
the actual memory (4GB), both SQL and MT-LRU obtain the max-
imal revenue. This is expected, because each tenant gets at least
its promised memory, thus the HRDs are 0 and no penalty is in-
curred. The other extreme occurs when each tenant is promised a
large amount of memory (5GB or above), which substantially ex-
ceeds the total memory available. In this scenario, both tenants will
exhibit maximal HRDs, hence the total revenue of 20%, which cor-
responds to a maximal penalty of 80% per tenant. The “interesting”
scenario is when the promised memory per tenant lies within the in-
terval (2G' B, 5GB) (excluding 2G' B and 5G B). For that memory
range, the hit ratio degradation for at least one of the tenants is un-
avoidable since the memory available is less than what the tenant is
promised and is demanded by its workload; on the other hand, for
that range, the provider can avoid paying large penalties, by appro-
priately favoring one tenant over the other, based on penalty con-
siderations. Accordingly, we can view the interval (2GB,5GB)
as the active range, i.e., the range in which MT-LRU (or any other
algorithm) can obtain penalty reductions. We shall use the notion
of active range in similar contexts throughout this section.

As expected, the default SQL policy is unable to distinguish be-
tween tenants thereby incurring similar hit ratio degradations for
each tenant. This results in a substantial penalty for Tenantl, the
higher paying tenant. Notably, for a memory requirement of 4GB
per tenant, the total penalty is maximal. On the other hand, MT-
LRU allocates a disproportionate amount of buffer pool memory to
Tenant 1 and is thus able to significantly reduce penalty over the
active range.

5.4.2 Sensitivity to Workload

In this experiment, we vary the tenant workloads while hold-
ing other factors constant. Specifically, we set the actual buffer
pool memory to 3GB and the number of tenants to 2, each being
promised 4GB buffer pool memory. As before, both tenants use
PF1. Tenantl pays $100 for the SLA, while Tenant2 pays $10. We
then run the RAND workload varying Z from zero to 1.3. The
(normalized) total revenue is shown in Figure El We observe that
MT-LRU consistently outperforms SQL in the active range, which
is Z € (0.9,1.25). To understand why, we also provide the rev-
enue breakdown by tenant (Table E[) Compared to SQL, MT-LRU
always obtains greater or equal revenues from the higher-paying
tenant (Tenantl), which leads to higher total revenue. Interestingly,
for Z = 1.1, MT-LRU “sacrifices” Tenant2 (obtains a lower rev-

734

100%

90%

80%

70%

60%

50% ——MT-[RU
40%
——s50L
30%

Percentage revenue

20% @ ® ¢
10%
0%
0.8

085 09

0.95 1

105 11 115 12 125 13

Zipfian skew factor
Figure 5: Effect of workload characteristics on revenue.

Zipfian factor
Revenues 09 095 10 105 1.1 115 12 1.25
TI1 - SQL 20 20 20 20 50 50 90 100
T1 - MT-LRU 20 50 50 90 90 100 100 100
T2 - SQL 2 2 2 2 5 5 9 10
T2 - MT-LRU 2 2 2 2 2 5 10 10
Total - SQL 22 22 22 22 55 55 99 110
Total - MT-LRU | 22 52 52 92 92 105 110 110

Table 1: Effect of workload characteristics- Revenue breakdown

enue of $2, compared to $5 under SQL) to extract more revenue
from Tenant1.

Generally, the active range in this set of experiments corresponds
to scenarios where the access pattern over pages in the table is not
too skewed, i.e., each tenant still accesses a large number distinct
pages. In this case, there is significant pressure on the buffer pool
memory and the page replacement policy plays an important role.
As expected, MT-LRU is able to appropriately incorporate penalty
considerations and thus do much better than the SQL policy. Out-
side the active range, both algorithms perform the same: For small
Z’s the effective working set of each tenant is too large, in the sense
that the buffer-pool size is too small to accommodate even a sin-
gle tenant (independent of the underlying algorithm). At the other
extreme, for Z > 1.25 the workload has a fairly skewed access
pattern (i.e., only a few distinct pages are accessed). Since the fre-
quently accessed pages of both tenants combined likely fits within
the buffer pool memory, the specific page replacement policy plays
little role in this case, and both achieve revenues of 100% (i.e. no
penalties).

Both the above experiment sets demonstrate the same qualitative
properties. When the memory pressure is either too low or two
high, then algorithms are not distinguishable in penalties. On the
other hand, in the active range, the algorithm choice is crucial, and
MT-LRU has significant merits. The experiments that we have re-
ported so far compare the algorithms in a controlled setting: i.e., we
modify a single dimension of the input (either the promised mem-
ory or the skew coefficient). We have also run experiments that
examine hundreds of different settings; all of which exhibit sub-
stantial penalty reductions for MT-LRU. The average performance
of the different algorithms (MT-LRU, SQL and CURRENT) is de-
scribed at the end of this section.

5.4.3 Drill-down into behavior of MT-LRU

In order to better understand the behavior of MT-LRU, we drill
down into the point Z = 1.1 in Figure [5]- where each of the two
tenants is promised 4GB (for a total of 8GB), and the actual buffer
pool memory on the machine is 3GB. We measure: (a) how much

memory each tenant receives according to the policy, measured ev-
ery second (see Figure ; (b) the hit ratio degradation of the
tenants (Figure [6(D)). Recollect that the tenants execute identical
workloads and that Tenantl pays much more than Tenant2. For
about the first minute or so, the tenants get almost equal amounts
of memory (of around 1.5GB each) since the page replacement pol-
icy does not kick in until then. After that, there is no longer ade-
quate memory in the buffer pool to keep all pages of both tenants.
From that point on, MT-LRU policy tends to evict pages of Tenant2
much more, and thus more of Tenantl’s pages are in memory. As
time progresses, the system reaches a fairly steady memory allo-
cation of around 2.15GB for the high-paying tenant, Tenantl, and
0.65GB for Tenant2. This leads to an HRD of less than 0.1 for
Tenantl, which results in a relatively low penalty of just 10%. The
HRD for Tenant2 reaches 0.3, which result in a maximal penalty
of 80%. Overall, by aggressively reducing Tenant1’s penalty, MT-
LRU is able to achieve 84% of the maximal revenue. SQL on the
other hand treats both tenants the same, resulting in almost equal
memory shares and HRD. Because both HRD are above 10%, the
provider pays 50% penalty for each tenant, and obtains overall rev-
enue of just 50% of the maximum.

One point to notice in Figures [6(a)] is the spike in memory al-
location which occurs at early stages of the experiment (around
5th minute). Such fluctuation is expected due to initialization ef-
fects when HRDs become non-zero. The algorithm starts with an
empty buffer-pool, hence the HRDs are zero for both tenants until
the first time there is memory pressure. Subsequently, when the
HRDs become non-zero and penalties are manifested, this leads to
an aggressive attempt to recover from high penalties, which results
in transient lumpy behavior. In practice, one could mitigate this ini-
tialization effect by adjusting the derivative of the penalty functions
for this brief transient period.

5.4.4 Varying number of tenants and workloads

We now consider an experiment in which we vary both the pay-
ment and workload characteristics across tenants. We have eight
active tenants running workload RAND, each requiring a memory
of 2GB; the total buffer-pool size is 6GB. In particular, we assign
two tenants to each of the four combinations: ($100, Z = 1.2),
(3100, Z = 1.1), (810, Z = 1.2), ($10, Z = 1.2). We refer
to these four groups of tenants as (high/low paying,higher/lower
skew) tenants.

For this setting, MT-LRU is able to achieve 84% of the maxi-
mal revenue, by keeping the HRDs of high paying tenants between
6 and 9 percent; the steady state memory allocation for these ten-
ants are around 1GB for the higher skew tenants, and 1.2GB for the
lower skew tenants. Low paying tenants get memory allocations of
around 0.2GB (higher skew) and 0.4GB (lower skew), and their re-
sulting HRD is around 30%. SQL allocates around 0.6GB to higher
skew tenants and 0.8GB to lower skew tenants, regardless of their
payment. This leads to an almost identical HRD of around 14.5%
across tenants, and an overall revenue of 50% of the maximum rev-
enue. CURRENT actually does worse than SQL in this particular
example. The high-paying tenants get around 0.8GB (higher skew)
and 1.0GB (lower skew) of memory, but their HRD remains above
10% (around 11%), hence the provider still pays a penalty of 50%.
Because the low-paying tenants now get less memory compared to
SQL (around 0.4GB and 0.65GB for higher and lower skew tenants,
respectively), their HRD becomes higher than 15% (almost 20%),
and their penalties are at maximal level, higher than the SQL pol-
icy penalties. This example demonstrates once more the advantage
of MT-LRU in being able to suitably weight the time and penalty
dimensions.

735

2500
2000 p——

1500 ;N

=
s
£
5]
=
1000
500
o
1 256 511 766 1021 1276 1531 1786 2041 2296 2551 2806 3061 3316
Time[sec]
(a) Buffer pool memory given to tenants vs. Time
0.35
===1-MT-LRU
03 1-saL
0.25 2 - MT-LRU
. 2-saL
o
=
xr

0.15

0.1

0.05

1 256 511 766 1021 1276 1531 1786 2041 2296 2551 2806 3061 3316

Time[sec]
(b) HRD of tenants vs. Time

Figure 6: Temporal behavior of MT-LRU and SQL. The buffer-
pool size is 3GB, and each tenant is promised 4GB. Both tenants
have RAND workflow (Z = 1.1). Both tenants use PF1, but Ten-
antl (dotted lines) pays $100 for the SLA, while Tenant2 pays $10.

5.4.5 Comparing different algorithms

We next provide a more comprehensive comparison of average
performance for the different algorithms. To that end, we run MT-
LRU, SQL and CURRENT on 320 different settings. The settings
correspond to different configurations within the active-range of
the algorithms. To obtain different settings, we vary the number of
tenants (either 2 or 4), the penalty functions (in each experiment
we choose either step-based or piecewise linear penalties from a
pool of several penalty functions), the promised memory, the type
of workload and the skew (if relevant). The performance results
are summarized in Figure[7]] MT-LRU stands out as the best algo-
rithm, retrieving almost 90% of the maximum revenue on average.
CURRENT, which is also an SLA-aware policy, does better than
SQL, but still lags behind MT-LRU. We wish to emphasize that the
results are consistent, in the sense that in each individual run, MT-
LRU would do better than the other two algorithms. Finally, we
point out that additional heuristic policies that we tried performed
worse than CURRENT, and hence are not included in the figure.

5.5 Experiments with Real Workloads

We conclude this section by reporting the results we obtain when
running real customer workloads. We note that some of the real
workloads that we experimented with turned out to be CPU-bound
with very small buffer pool memory requirements (100 — 300 MB).
For such workloads there are no benefits in using penalty-aware
memory replacement algorithms because there is no substantial
memory pressure even with tens of tenants. However, in a signifi-
cant fraction of the real workloads there is substantial pressure on
buffer pool memory. We report below two such workloads, which
we term REAL1 and REAL2. REALLI is a reporting and analysis

Percentage revenue

2T_SCAN 2T_RAND 4T_SCAN 4T_RAND

msQL CURRENT = MT-LRU

Figure 7: Average results for SQL, CURRENT and MT-LRU. Re-
sults are averaged over 320 different settings. The different settings
vary by the number of tenants (either 2 or 4), the penalty functions,
the amount of memory promised to tenants and workload.

Memory promised (Gb)
Revenues 2 3 4 5 6 7 8 9 10
TT-SQL 100 9 50 20 20 20 20 20 20 20 20
TI - MT-LRU 100 100 90 90 90 90 50 50 50 50 50
T2-SQL 10 9 5 2 2 2 2 2 2 2 2 2
T2 - MT-LRU 10 9 5 2 2 2 2 2 2 2 2 2
Total - SQL 1m0 99 55 22 22 22 22 22 22 22 22 22
Total -MT-LRU | 110 109 95 52 52 2 52 2

92 92 92 52
Table 2: REAL1 workload. Effect of promised memory per tenant
- Revenue breakdown

11 12

database for a large cosmetics retailer and REAL2 is a data ware-
house that tracks sales of different products sold by the company.
Both workloads consist of joins over 6 to 12 tables, typically with
grouping and aggregation.

We use the same experimental setting as in Section[5.4.1} Namely,
we have an even number of tenants. All tenants are promised the
same memory, however half of them pay $100 (per tenant) for the
SLA, while the other half pays only $10. The total size of the
buffer-pool memory is set to 6GB. In each run, we vary the size
of the memory promised per tenant, and examine the effect on rev-
enues. We first run the above experiment for REALL. Table [2]
provides the revenue breakdown by tenant. As before, MT-LRU
consistently achieves higher revenues than SQL. As observed from
the revenue breakdown, this is a consequence of giving preference
to the high paying tenant T1.

We repeat this experiment for REAL?2, this time with six tenants.
The aggregate revenues of both SQL and MT-LRU are shown in
Figure [8] Besides the superior performance of MT-LRU, we can
draw additional interesting observations. First, comparing to the
experiment done with synthetic data (cf. Figure[d), the active range
here is much larger. Since the active range is directly related to
the overbooking ratio, this shows that the range of overbooking
ratios for which the provider can get adequate gain is workload
dependent, and needs to be set on a trial and error basis. Second,
this graph demonstrates that even a considerably high overbooking
ratio can be sustained with minimal penalties. For example, notice
that for an overbooking ratio of 10 (corresponding to 10 GB of
promised memory for each of the 6 tenants), the provider extracts
85% of the maximal revenue.

6. RELATED WORK

Multi-tenant database-as-a-service commercial offerings such as
Database.com [§], Google Cloud SQL [T1], Windows Azure SQL
Database [16]], Oracle Database Cloud Service are available
today. Our work is a first step in enabling such systems to go be-
yond static reservation of buffer pool memory on behalf of a tenant,
and enable sharing of buffer pool memory across tenants in an ac-
countable and principled manner. All commercial database engines

736

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
0

== MT-LRU
—SQL

Percentage revenue

5 10 15 20 25
Memory promised per tenant [GB]
Figure 8: REAL?2 workload. Overall percentage of revenues as a

function of promised memory.

30

today have resource governance capabilities. For example, IBM
DB2 Workload Manager [9] provides the ability to provide lim-
its on resources such memory assigned to a particular application.
However, our techniques goes well beyond this by clearly defining
an SLA for minimum resources that a tenant is promised and can
be objectively metered. Further, we provide new resource alloca-
tion policies (via our page replacement algorithm) that allows the
service provider to trade-off performance with cost.

Our technique for SLA metering for the buffer pool has some
similarity to the technique of simulated buffer pool in [26]], which
simulates the impact of making the buffer pool larger (say by 10%)
on the number of hits for the workload. In the setting of @], such
simulation is used for determining if it would be beneficial to give
the buffer pool more memory or not. In contrast, in our case, buffer
pool simulation is required to meter the performance SLA promised
to the tenant. Unlike simulated buffer pool which only extends the
current pool by a certain percentage, we are required to simulate
the buffer pool for the entire memory promised to a tenant.

There is extensive work on buffer pool page replacement policy
dating back to the early ’80s where it was shown why LRU
is not ideal for relational database environments. Several improve-
ments have been made over simpler schemes such as LRU, e.g.
DBMIN [4], LRU-K [220], 2Q [12], ARC [[13], CAR [3])). All these
techniques focus on the goal of maximizing performance (i.e. hit
ratio) for a given workload. Our work can be viewed as extend-
ing state-of-the-art policies (e.g. LRU-K) to the multi-tenant case
to make the page replacement algorithm SLA-aware, thereby en-
abling the system to make judicious cost-performance trade-offs.

This work was done in the context of the SQLVM project
at Microsoft Research. We have previously studied how to define
and implement resource SLAs for I/O and CPU [[7] resources.
Curino et al. [6]] and Lang et al. approach consolidation of
multiple databases in a single server by analyzing the workloads,
identifying how these workloads interact with one another, and rec-
ommending which databases should be co-located in order to meet
performance goals (or SLO — Service-Level-Objectives). Xiong et
al. [29], constructs machine learning models to predict query
performance as a function of resources allocated to it, and then use
such models to perform admission control and allocate resources
so that query latency SLO can be met. Similarly, Duggan et al.
builds a machine learning model to predict query performance in
a DBMS; develops statistical models for helping predict re-
source usage if a workload were to change (e.g. queries/sec were
to double). SQLVM is complementary to these approaches since
it provides resource-level isolation from other tenants, and makes
no assumptions about the specific workloads of tenants. SQLVM
can potentially be used as a building block to build such recom-
menders, since it can ensure that the tenants are actually allocated

the resources that the models assume. In [[14] and [[17] methods
for tenant placement and load balancing across nodes in a clus-
ter are presented so as to maximize profit (or reduce SLA viola-
tions). Such mechanisms are orthogonal and more coarse-grained
compared to our techniques which provides isolation across tenants
within a server by controlling resource allocation at a fine granular-
ity. Both techniques can be used to together in principle — e.g., the
SLA metering mechanisms we provide can assist in detection of
when such load balancing in necessary.

Sharing memory of a machine across tenants also occurs in IaaS
offerings. For example, Amazon RDS [1] provides a MySQL or
Oracle database server running inside a virtual machine (VM) to
a tenant. Service providers have the ability to overbook memory
to increase consolidation and reduce cost [27]. The hypervisor can
automatically change the physical memory available to a VM using
techniques such as ballooning [28]]. Further, in [22], techniques for
application level ballooning are developed for applications which
need to manage their own memory (e.g. databases). SLAs on mem-
ory become important in this setting since tenants can no longer be
assured of statically reserved resources for their applications.

7. CONCLUSION

Our model of SLAs for buffer pool memory is relative to a base-
line of statically reserved memory, and it retains meaning regard-
less of the tenant’s data size, data distribution, workload charac-
teristics, and the extent to which the service provider overbooks
resources. We design and prototype an SLA-aware page replace-
ment algorithm, which enables dynamically sharing memory in
overbooked DaaS.

Acknowledgements

We thank Arnd Christian Konig, Sudipto Das, and the anonymous
reviewers for their useful feedback.

8. REFERENCES

[1] Amazon Relational Database Service (RDS).
http://aws.amazon.com/rds,

N. Bansal, N. Buchbinder, and J. S. Naor. A primal-dual
randomized algorithm for weighted paging. Journal of the
ACM (JACM), 59(4):19, 2012.

S. Bansal and D. S. Modha. CAR: Clock with Adaptive
Replacement. In FAST, volume 4, pages 187-200, 2004.
H.-T. Chou and D. J. DeWitt. An Evaluation of Buffer
Management Strategies for Relational Database Systems.
Algorithmica, 1(1-4):311-336, 1986.

F. J. Corbato. A paging experiment with the Multics system.
Technical report, DTIC Document, 1968.

C. Curino, E. P. Jones, R. A. Popa, N. Malviya, E. Wu,

S. Madden, H. Balakrishnan, and N. Zeldovich. Relational
Cloud: A Database service for the cloud. In CIDR.

S. Das, V. R. Narasayya, F. Li, and M. Syamala. CPU
Sharing Techniques for Performance Isolation in
Multi-tenant Relational Database-as-a-Service. Proceedings
of the VLDB Endowment, 7(1), 2013.

Database.com. http://www.database. com.

DB2 Workload Manager for Linux, Unix and Windows.
http://www.redbooks.ibm.com/redpieces/
abstracts/sg247524.html.

J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal.
Performance prediction for concurrent database workloads.
In SIGMOD, pages 337-348, 2011.

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

737

[11] Google Cloud SQL.
http://code.google.com/apis/sqll
[12] T. Johnson and D. Shasha. 2Q: A low overhead high
performance buffer management replacement algorithm. In
VLDB, pages 439-450, 1994.
W. Lang, S. Shankar, J. M. Patel, and A. Kalhan. Towards
multi-tenant performance SLOs. In ICDE, pages 702-713.
Z. Liu, H. Hacigiimiig, H. J. Moon, Y. Chi, and W.-P. Hsiung.
Pmax: tenant placement in multitenant databases for profit
maximization. In EDBT, pages 442-453. ACM, 2013.
N. Megiddo and D. S. Modha. Arc: A self-tuning, low
overhead replacement cache. In FAST, volume 3, pages
115-130, 2003.
Microsoft Azure SQL Database (formerly SQL Azure).
http://www.windowsazure.com/en-us/services/
sqgl-database/.
H. J. Moon, H. Hacigiimiis, Y. Chi, and W.-P. Hsiung.
SWAT: A Lightweight Load Balancing Method for
Multitenant Databases. In EDBT, pages 65-76. ACM, 2013.
B. Mozafari, C. Curino, A. Jindal, and S. Madden.
Performance and Resource Modeling in Highly-Concurrent
OLTP Workloads. In SIGMOD, pages 301-312, 2013.
V. R. Narasayya, S. Das, M. Syamala, B. Chandramouli, and
S. Chaudhuri. SQLVM: Performance Isolation in
Multi-Tenant Relational Database-as-a-Service. In CIDR,
2013.
E. J. O’neil, P. E. O’neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In ACM
SIGMOD Record, volume 22, pages 297-306. ACM, 1993.
Oracle database cloud service.
http://cloud.oracle.com.
T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone.
Application Level Ballooning for Efficient Server
Consolidation. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 337-350, 2013.
Azure SQL Database Service Tiers and Performance Levels.
http://msdn.microsoft.com/en-us/library/azure/
dn741336.aspx.
D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM,
28(2):202-208, 1985.
M. Stonebraker. Operating system support for database
management. Communications of the ACM, 24(7), 1981.
A.J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao,
and M. Surendra. Adaptive self-tuning memory in DB2. In
VLDB, pages 1081-1092, 2006.
The role of memory in VMWare ESX server 3.
http://www.vmware.com/pdf/esx3_memory.pdf.
C. A. Waldspurger. Memory resource management in
VMware ESX server. ACM SIGOPS Operating Systems
Review, 36(SI):181-194, 2002.
P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. HacigiimiiS. Intelligent management of virtualized
resources for database systems in cloud environment. In
IEEFE ICDE, pages 87-98, 2011.
P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and
H. HacigiimiiS. ActiveSLA: a profit-oriented admission
control framework for database-as-a-service providers. In
SOCC, page 15, 2011.
N. Young. The k-server dual and loose competitiveness for
paging. Algorithmica, 11(6):525-541, 1994.

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

http://aws.amazon.com/rds
http://www.database.com
http://www.redbooks.ibm.com/redpieces/abstracts/sg247524.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg247524.html
http://code.google.com/apis/sql
http://www.windowsazure.com/en-us/services/sql-database/
http://www.windowsazure.com/en-us/services/sql-database/
http://cloud.oracle.com
http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx
http://msdn.microsoft.com/en-us/library/azure/dn741336.aspx
http://www.vmware.com/pdf/esx3_memory.pdf

	Introduction
	SLA for Buffer Pool Memory
	SLA Metric
	Penalty Function
	Discussion

	Efficient SLA Metering
	Measuring hit ratio in Baseline
	Analysis of Metering Overheads

	Multi-Tenant Page Replacement Algorithm
	Formulation
	Challenges
	Key ideas behind MT-LRU
	The MT-LRU algorithm
	Page replacement in Microsoft Azure SQL Database
	Practical considerations
	Eviction in MT-LRU
	Additional implementation details

	Experiments
	Experimental Setup
	Accuracy of SLA Metering
	Overheads of SLA Metering
	Effectiveness of MT-LRU
	Sensitivity to SLAs
	Sensitivity to Workload
	Drill-down into behavior of MT-LRU
	Varying number of tenants and workloads
	Comparing different algorithms

	Experiments with Real Workloads

	Related work
	Conclusion
	References

