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ABSTRACT

Our cloud services are losing too many battles to faults
like software bugs, resource interference, and hardware
failures. Many tools can help us win these battles: model
checkers to verify, fault injection to find bugs, replay to
debug, and many more. Unfortunately, tools are currently
afterthoughts in cloud service designs that must either be
tediously tangled into service implementations or inte-
grated transparently in ways that fail to effectively cap-
ture the service’s problematic non-deterministic (concur-
rent, asynchronous, and resource access) behavior.

This paper makes tooling a first-class concern by hav-
ing services encoded with tasks whose interactions re-
liably capture all non-deterministic behavior needed by
tools. Task interactions are then exposed in aspects that
are useful in encoding cross-cutting behavior; combined,
tools encoded as task aspects can integrate with services
effectively and transparently. We show how task aspects
can be used to ease the development of an online produc-
tion data service that runs on a hundred machines.

1 INTRODUCTION

Scalable fault-tolerant cloud services are notoriously dif-
ficult to develop and maintain. Service developers are in
continuous battle against faults like software bugs, hard-
ware failures, and mis-configurations, losses of which
can lead to significant financial loss [24]. Tools play a
very important role in improving the cloud service ro-
bustness. Failure injection tools test how services handle
various failures [34]; model checkers systematically ex-
plore state spaces to uncover misbehaviors [51} 135} 137];
and assertion tools check global invariants 32} 16]. When
errors occur, record-replay tools are used to reproduce
bugs [20 30, 144]]; and trace analysis tools diagnose per-
formance anomalies [21} 19, 42].

Unfortunately, tooling is currently an afterthought in
cloud service design. Invasive approaches to tool inte-
gration is expensive and tedious, often resulting in tools
not being used at all. On the other hand, transparent in-
tegration approaches sacrifice tool effectiveness through
the use of inappropriate mechanisms; e.g. system call in-
terception [23]] can be unreliable, miss important service
interactions as well as capture interactions that are too
low level for tools to efficiently reason about.

So that tools are both effective and can be integrated
with services transparently, tooling must be considered
as a first class concern in cloud service design. In a study
of cloud service tooling, we found that non-deterministic
behavior such as asynchronous, concurrent, and 10 oper-
ations are the primary focus of these tools. Accordingly,
we propose a new programming model where cloud ser-
vices are encoded using tasks whose interactions are
both useful and available to tools. Tasks are contiguous
chunks of deterministic execution that, to service devel-
opers, resemble event handlers; all non-deterministic be-
havior is then exposed to tools as task interactions.

We leverage aspects [25] to enhance services with
tooling features that essentially “cross cut” their imple-
mentations. Tools can reliably impose on service behav-
ior through join points that correspond to task interac-
tions. Through state extensions, tools can also inject and
propagate state along join point occurrences, allowing
for aggregate reasoning about service behavior. Finally,
tools can customize task scheduling for precise control
over when and how tasks will execute, which is useful
for tools like replay that manipulate task flows more in-
vasively. Aspects that manipulate services through their
tasks, i.e. task aspects, then provide a very reliable and
complete abstraction for expressing tools.

This paper presents Zion where services are imple-
mented against an enriched task model and all non-
deterministic behavior is gated through a concise set of
Zion APIs. Tools are then encoded as task aspects that
can transparently and effectively manipulate service be-
havior. Zion coherently integrates a variety of tools into
one platform so that they are applicable across multiple
stages of service development and deployment.

We used Zion to successfully develop a production
data service that runs on a hundred machines, tooling it
with global assertions, fault injection, model checking,
configuration-guided unit testing, record/replay, and so
on. We also ported to Zion services like memcached [[17]]
and LevelDB [13]] to show that the platform is general.
Based on our experiences in real production development
and in porting popular online services, we conclude that
tooling in Zion is both effective and transparent.

The paper continues in Section [2] with observations
on current tooling practices for cloud services. Section [3]
presents our cloud service framework, Zion, showing the



value of tasks and the effectiveness of task aspects. Sec-
tion [4] elaborates on Zion’s task-centric platform while
Section [5] evaluates Zion on a real production service as
well as other services to show breadth. Related work is
surveyed in Section[6]and Section [7]concludes.

2 TALES FROM THE TRENCHES

Services are often initially written without much concern
for tools, which are then either invasively adapted into
each service as needed, or integrated with multiple ser-
vices transparently. The invasive integration approach is
very expensive in terms of development effort, and of-
ten results in useful tools not being used at all. For ex-
ample, imposing an implementation-level model checker
on a service requires knowing the service’s semantics to
identify its states and actions [2636]]. Likewise, fault in-
jection often requires that developers tediously identify
where faults should be added to service code.

On the other hand, transparent approaches often sac-
rifice tool effectiveness through interposition granulari-
ties that are poorly suited to tooling needs. Integrating
a model checker into a service transparently via system
call interception causes it to capture uninteresting sys-
tem behaviors that increase exploration time for no ben-
efit. For example, loading a library involves manipulat-
ing runtime locks, while RPC involves low-level network
operations, both of which pointlessly increase the model
checking state space enormously. Likewise, doing fault
injection via system call instrumentation alone can only
introduce low-level failures, making the injection inef-
fective. A fault injection tool can introduce network mes-
sage loss in a replication service to simulate network fail-
ure; but if the service automatically resends lost protocol-
level messages, a network-level failure will not reliably
trigger higher-level failure recovery logic.

Transparent approaches also suffer from service plat-
forms that are uncooperative and not supportive of these
approaches. Consider a record-replay tool that must cap-
ture enough interactions to faithfully reproduce program
executions. Using system call interception, the tool de-
veloper has to manually inspect all system calls to mark
those with side effects; e.g. they must go through more
than 800 such API calls for Windows [20]. Similarly,
Linux 3.14 has 326 system call entries [31]]. Additionally,
hidden system invariants can be broken by tools execut-
ing along side system calls; e.g. both Linux and Windows
API use thread local storage to store auxiliary data such
as error codes that can be polluted by tool code.

There are also serious challenges in ensuring that
tools are integrated correctly at all. We applied a dis-
tributed trace analysis tool similar to Dapper [43] to di-

agnose correctness and performance issues in a map-
reduce like system and its underlying replicated storage.
So our tool could capture the system’s complete exe-
cution flow across multiple machines, we manually in-
spected its source code, modifying places where asyn-
chronous flow transitions are made.Although most of the
system’s asynchronous transitions were implemented in
utility libraries, we found 18 places that needed to be
modified in non-utility modules still without any assur-
ance that other places were yet to be found.

What can be learned from these experiences? First
and foremost, the current situation where tools are basi-
cally afterthoughts in service design is very problem-
atic. Tooling instead must be considered as a first-class
concern in the design of a service if tools are to be effec-
tive. However, transparency between service and tools
is strongly desired so that tool integration is economi-
cal. Both of these seemingly contradictory requirements
can be satisfied by constraining the service program-
ming model to ensure that all service behavior relevant to
tools is somehow exposed. For tools that focus on robust-
ness, of especial relevance are non-deterministic behav-
iors such as concurrent, asynchronous operations (such
as asynchronous 1/0), as these are the areas where most
robustness problems occur. Additionally, to ensure that
tools themselves are correctly integrated, the program-
ming model should also guarantee that all such behaviors
are gated through principled programming model points
that tool developers can reasonably enumerate.

The grain at which service behavior is exposed heav-
ily influences tool effectiveness. Exposing low-level be-
haviors can kill tool efficiency as well as miss significant
higher-level interactions. The grain at which a service’s
non-deterministic behaviors must be exposed also does
not correspond cleanly to procedure call boundaries, and
so a tool’s functionality “cross cuts” the grain of a ser-
vice implementation. The rest of this paper acts on these
lessons in the design of a new service platform.

3 TASKS AND ASPECTS

According to Section E]’s lessons, services should be de-
veloped with tooling in mind from the start. We ob-
serve that constraining the service programming model
can guarantee that relevant behavior is always exposed
to tools. Services in Zion, our cloud service platform, are
encoded using explicit fask constructs whose interactions
are useful and available to tools. A task is a contiguous
chunk of deterministic execution that, to service devel-
opers, resembles an event handler. Tasks execute concur-
rently on thread pools, where, as discussed later, their
scheduling can be customized to encode tools like replay.



As an example of a service built with Zion’s tasks,
Figure|[I|shows the simplified pseudocode of a real-world
replicated storage servicg'| To achieve high availabil-
ity, the storage service replicates data on multiple ma-
chines using four tasks that are defined using the task
keyword. Figure [2]illustrates one execution flow through
these tasks: a ClientWrite task on the primary replica ini-
tiates an RPC call that is handled by a Prepare task on
a secondary replica by writing the mutation to disk; af-
ter the write is completed, a LogCompleted task on the
secondary initiates an RPC reply that is handled by a
PrepareAck task back on the primary.

Looking at Figure [T} Zion’s task model would be
quite familiar to service developers who often handle
events and deal with asynchronous method calls; the nov-
elty of the model lies solely in how it supports tooling.
Tasks in Zion are designed to expose service behaviors
that our experience in Section [2] indicates are necessary
and relevant to robustness tools. In particular, we found
that non-deterministic behavior such as asynchronous,
concurrent, and IO interactions challenge many of these
tools. All such behavior then occurs through a concise
set of service APIs so that they can be exposed to tools
as interactions between tasks. Consider this call in Fig-
ure [If's ClientWrite task definition:

Rpc.Call(RPC_PREPARE, mutation, PrepareAck)

This call uses Zion’s Rpc.Call API to initiate RPC on a
primary replica, asynchronously causing a Prepare task
on a secondary replica to handle the RPC call. The call
also specifies that a PrepareAck task on the primary will
handle an RPC reply to the call made by the secondary.
APIs like Rpc.Call that involve non-deterministic behav-
ior must be Zion service APIs, while APIs that are deter-
ministic, like those that do string manipulation, do not as
they are not of interest to tools.

Tools as Task Aspects

By gating all non-deterministic behavior through Zion’s
service APIs, they can be exposed to tools without in-
vasive service modifications. But how can these be-
haviors be effectively presented to tools? As discussed
in Section [2] an approach like system call interception
does not correspond very well to the service-level non-
deterministic behavior that tools need to manipulate. In-
stead, we leverage aspects to transparently add tool-
ing features to a service that essentially “cross cut” its
implementation. With aspects, principled points in a pro-
gram’s execution are manipulated by aspect constructs.

!For presentation clarity we use Python-like pseudocode, although
services and tools are actually written in C++.

service Replication:
Rpc.Register(RPC_CLIENT_WRITE, ClientWrite)

Rpc.Register(RPC_PREPARE, Prepare)

task ClientWrite(mutation):
if Role = Primary: return
B log mutation
for secondary in replicalist: # | join with Rpc::OnCall (a)
Rpc.Call(RPC_PREPARE, mutation, PrepareAck)
task Prepare(mutation): # « join with Rpc::OnRequest (b)
if Role !'= Secondary: return # | join with File::0OnCall (c)
File.Write(LPC_LOG, mutation, LogCompleted)
# | join with File::0OnComplete (d)
task LogCompleted(mutation, err, length)
if err: ... # handle local failure
else if Role == Secondary: # | join with Rpc::OnReply (e)
Rpc.Reply(RPC_PREPARE_ACK, err, ...)
else: ...
task PrepareAck(err, req, ack): # < join with Rpc::0nResponse (f)
if err or ack.err: ... # handle timeout or remote failure

else: ... # ack secondary; commit

Figure 1: Zion pseudocode for a replication service; join point
occurrences are annotated in comments (#) with arrows point-
ing to the triggering statement.

Tool C Rpc::Or:CaII (a) DGpc::OnR'equest (@C FiIe::Or:CaII (c) )

Secondary

Primary

ClientWrite Prepare

Replication
Service

PrepareAck

b 1 1
Gpc::OnResponse (@CRpc::OnReply (eD@Ie ::0nComplete (@

Figure 2: An illustration of how tasks (rectangles) and task
aspect join points (capsules) execute in a flow starting from
Figure[I]s ClientWrite task; join point occurrences are labeled

LogCompleted

with letters that match those in Figure El’s comments.

In Zion, these principled points correspond to task inter-
actions, where tools are encoded as task aspects.

Task aspects manipulate task interactions in three
ways. First, kinds of task interactions are exposed as
event-like join points that can be acted on by join point
actions (aka “advice” [43]]). Second, task aspects can use
state extension to inject and propagate tool-specific state
across multiple join point occurrences, allowing for com-
prehensive reasoning about service behavior. Third, task
aspects can customize task scheduling for precise control
over when and how tasks will execute on a thread pool.
The rest of this section discusses these mechanisms.



tool Faultinjector:
do “Drop” on Rpc::OnCall(inTask, msg, replyTask):
if Env.Random32(...):
replyTask.Timeout() # timeout reply because it will never run
return false
else: return true

# do not send RPC message via msg
# no fault, all is normal

do “Unused” on Rpc::OnRequest(msg, requestTask):
# no fault injection for Rpc::Request

do “FailWrite” on File::OnCall(inTask, fileTask):
if Env.Random32(...):
file.SetError(...)
return false
else: return true

# 10 will never complete
# return false to not do 10

do “SlowWrite” on File::OnComplete(fileTask):
if Env.Random32(...):
file.Delay(...) # make IO slower
do “FailReply” on Rpc::OnReply(inTask, msg):
if Env.Random32(...):
return false # do not send RPC reply
else: return true
do “SlowRpl” on Rpc::OnResponse(msg, replyTask):
if Env.Random32(...):
replyTask.Delay(...) # make RPC reply slower

Figure 3: Leveraging join points to inject faults.

Join Points

A task aspect encoding of a fault injector tool is shown
in Figure [3] This tool can inject faults into any service
built on top of Zion, including the replication service of
Figure[T} An action on a join point is expressed using the
do keyword in the body of a tool, where the join point
being acted on proceeds the on keyword; e.g.

tool Faultinjector:
do “Drop” on Rpc::OnCall(inTask, msg, replyTask):
.. # do manipulation here

The fault injector is defined as a task aspect (keyword
tool) with a join point action labeled “Drop” that does work
at Rpc::OnCall join point occurrences. Each join point
has parameters that depend on the semantics of the join
point; e.g. the Rpc::OnCall join point is parametrized by
inTask that initiates the call; msg that is the message being
sent; and replyTask that will eventually handle the reply
to the RPC call. For a join point occurrence that han-
dles the call Rpc.Call(RPC_PREPARE, mutation, PrepareAck)
in Figure [T} inTask is the ClientWrite task that initiates the
RPC call; msg is formed from a mutation message, and re-
plyTask is bound to a PrepareAck task created to handle the
reply. Figure[2] (a) — (f) illustrates how the six join points
acted on in Figure [8occur in the replication service’s ex-
ecution, which are also annotated in Figure m

tool DependencyTracker:
do “TraceA” on Rpc::OnCall(inTask, msg, replyTask):

causalEvent = # label: node Id, thread id, logic clock
{ nodeld, threadld, ++clock }

MsgStateExt::Set(msg, causalEvent) # attaching
return true

do “TraceB” on Rpc::OnRequest(msg, requestTask):
++clock # advance the logic clock and retrieve the label
causalEvent = MsgStateExt::Get(msg)
TaskStateExt::Set(requestTask, causalEvent)

return true

Figure 4: State extension for dependency tracking.

As task aspects, tools can insert behavior into a ser-
vice’s execution via join points without requiring service
modifications. Tools also impose on service behavior at
a more appropriate granularity, abstracting away unin-
teresting lower level details. In our example, fault injec-
tion can manipulate RPC operations directly rather as op-
posed to lower-level network operations that could then
be counteracted by RPC’s error recovery code.

State Extension

Join points alone cannot expose aggregate service behav-
jor to tools. Consider that in Figure 2] imposing just on
Rpc::OnCall (a) and Rpc::OnRequest (b) cannot reveal to a
tool that the Prepare task that handles the RPC call on
a secondary replica is causally related to the ClientWrite
task that initiated the RPC call on the primary replica.
Task aspects can provide for this awareness by extending
tasks, and task-oriented objects like RPC messages, with
state that can be propagated along task execution flows.
The code in Figure [ extends tasks and RPC mes-
sages with state to perform dependency tracking us-
ing “state labels” MsgStateExt and TaskStateExt. Later
join point occurrences can read the labels of earlier
join point occurrences when they share arguments. For
the execution flow of Figure |Z|, the Rpc::OnCall (a) join
point occurrence shares its msg parameter with the next
Rpc::OnRequest (b) join point occurrence, even though
msg travels across the network between them. The
“TraceA” join point action in Figure [] attaches a causal
event to msg, and so the “TraceB” join point action in Fig-
ure [] is able to “propagate” the causal event attached
from msg in “TraceA” to the requestTask that will handle
the RPC call on the secondary. The requestTask will then
become input to a later File::OnCall (¢) joint point occur-
rence, where it can be propagated further (not shown).
With state extensions, tools can inject customized
state into task interactions at join points. Zion applies



tool Replay:
enqueue(inTask):
causalEvent = TaskStateExt::Get(inTask)
readyTasks[causalEvent] = inTask
if blockingThreads.ContainKey(causalEvent):

# task for causalEvent is ready, signal blocked thread
blockingThreads[causalEvent].Signal()
blockingThreads.RemoveAt(causalEvent)

dequeue():
causalEvent = LocalThreadLog.GetNext()
while(true)
if readyTaks.ContainKey(causalEvent):

outTask = readyTasks[causalEvent]

readyTasks.RemoveAt(causalEvent)

return outTask
else:

blockingThreads[causalEvent] = CurrentThread()

# wait for the task corresponding to causalEvent to be ready

CurrentThread().Wait()

Figure 5: Zion task aspect pseudocode for a replay tool.

state extension to tasks, RPC messages, and synchroniza-
tion constructs (locks and semaphore) that connect tasks
indirectly (Section[)). Tools can then aggregate multiple
task interactions to uncover service behavior that cannot
be observed in single task interactions alone.

Custom Task Scheduling

Many tools that focus on robustness must impose on how
tasks are scheduled in order to be effective. For exam-
ple, during the replay phase of a record-replay tool, re-
play must impose the same task scheduling order that
occurred in a recorded execution. Figure [5] shows how
a replay tool can be implemented through custom task
scheduling. In this pseudocode, dequeue and enqueue
statements replace original task scheduling policy with
one that ensures tasks are replayed in their recorded or-
der. When a task is scheduled to run using enqueue, it is
put into a readyTasks dictionary according to the causal
event associated and propagated with the task in Fig-
ure [ LocalThreadLog is then used in dequeue to ensure
tasks execute in a previously recorded order. If tasks are
enqueued out of the recorded order, the thread execut-
ing the task blocks until the task associated with the next
expected causal event is enqueued.

Combined with join points and state extension, cus-
tom task scheduling is very powerful. Besides replay,
custom task scheduling can prioritize the disk 1O re-
quests of interactive jobs over long-running jobs by using
state extension to differentiate between both kinds of re-
quests. Also, to ease debugging, a tool can also ensure
that only one task runs at a time; in this case, a custom
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Figure 6: Zion’s architecture.

task scheduler coordinates what task to execute while
Task::OnBegin and Task::OnEnd join points are used to ac-
quire and release a scheduling token that ensures only
one thread is executing a task at a time.

Together, join points, state extension, and custom
task scheduling allow tools to impose on service behavior
in powerful and reliable ways. By focusing on task inter-
actions, tools are exposed to service behavior at a grain
appropriate to their needs, abstracting over lower-level
details that would otherwise make them less effective.
Tools are also guaranteed access to all of a service’s non-
deterministic behavior, and so can be implemented reli-
ably. We provide more details about Zion’s task-centric
architecture in Sectiond] while we validate how Zion en-
hances tooling for services in Section[3]

4 A TASK-CENTRIC ARCHITECTURE

Zion’s architecture is illustrated in Figure [§] Cloud ser-
vices are built on top of Zion’s RPC, file, synchroniza-
tion, tasking, and environment APIs. Cloud services can
also use other APIs that do not involve non-deterministic
behavior, such as hash functions like MD5 or SHATL;
these do not need to be gated through Zion as their behav-
ior is uninteresting to robustness tools. Tools are written
according to join points, state extension, and custom task
scheduling that we introduced in Section 3]

Because many tools like model checkers also rely
on virtualizing system resources (e.g. disk or network),
Zion also provides built-in virtualization support. Tools
mainly use virtualization to make the underlying sys-
tem deterministic, and so it is not configured by tools
in diverse ways. Between the tool and service APIs is
a task-centric runtime that owns task-executing thread
pools, the RPC engine, and component wiring. Zion also
supports the configuration of which tools are applied to
services, and how services are deployed; e.g. within one
process or on many machines. Configuration also allows
control over how tasks are dispatched to thread pools.

A discussion of virtualization and configuration are
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beyond the scope of this paper, and we only mention
them here for completeness reasons. Zion provides APIs
to interact with an environment; e.g. to procure a random
number or get the current time. Most kinds of tools do not
need to deal with these APIs unless they require them to
be deterministic, in which case virtualization is usually
sufficient. The rest of this section elaborates on the RPC,
File, Tasking, and Synchronization subsystems.

RPC and File

The RPC and File APIs provide services with respective
IO capabilities. All APIs in these two sub-systems are
captured by join points: Rpc.Call by Rpc::OnCall; Rpc.Reply
by Rpc::OnReply; File.Write and File.Read by File::OnCall.
API join points are paired with join points that impose
on the scheduling of API call completing tasks. The Rpc-
::OnCall join point is paired with Rpc::OnRequest, which
imposes on the scheduling of a task to handle a RPC call;
likewise Rpc::OnReply is paired with Rpc::OnResponse
while File::OnCall is paired with File::OnComplete.

Understanding Rpc and File join points relationships
is crucial in writing effective tools. Relationships be-
tween join point occurrence parameters are illustrated
in Figure [7] for the flow of Figure [2] in Section [3] It
can be seen in this figure that the msg parameter of
Rpc::OnCall (a) is shared by Rpc::OnRequest (b), so any
state propagated through an RPC call must be attached
to msg. Zion will transmit state attached to msg through
the network to Rpc::OnRequest, although developers must
provide serialization logic as needed. Other relationships
are set by call order; e.g. the requestTask parameter of (b)
becomes the inTask parameter of (c) in Figure [7] because
that is what the task does next.

Except for state that is copied through the network,
state can be propagated by reference; this state must
be protected because it can be accessed concurrently.
RPC presents another challenge: the Rpc:OnResponse
join point receives the message from Rpc::OnReply, but
also uses replyTask from Rpc::OnCall! There is then two

tool LockDependencyTracker:
... # from Figure

do “LogAcquire” on Lock::OnAcquire(inTask, lock):
++clock

do “LogAcquired” on Lock::OnAcquired(lock,contTask):
LockStateExt::Get(lock).ToolLock.Acquire()
Log(lock, ACQUIRED)
LockStateExt::Get(lock). ToolLock.Release()

do “LogRelease” on Lock::OnRelease(inTask, lock):
++clock
LockStateExt::Get(lock).ToolLock.Acquire()

do “LogReleased” on Lock::OnReleased(lock, contTask):
Log(lock, RELEASED):
LockStateExt::Get(lock). ToolLock.Release()

do “LogTryLock” on Lock::OnTryAcquire(inTask, lock):
++clock
LockStateExt::Get(lock).ToolLock.Acquire()

do “LogTried” on Lock::OnTried(lock, success, contTask):
if (!success):

while(LockStateExt::Get(lock).LastKind == RELEASED)
LockStateExt::Get(lock).ToolLock.Release()
LockStateExt::Get(lock). ToolLock.Acquire()

Log(lock, TRIED)
LockStateExt::Get(lock).ToolLock.Release()

def Log(lock, kind):
LockStateExt::Get(lock).LastKind = kind
RecordCausalEvent({ nodeld, threadld, clock } )

Figure 8: Pseudocode for recording lock behavior.

versions of any state propagated completely through an
RPC call and reply that must be “merged” by the tool.

Tasking and Synchronization

Zion provides service APIs to explicitly fork (“enqueue”)
new tasks that run concurrently, allowing work to be di-
vided up as appropriate. Tasks can also explicitly wait on
other tasks; since this is a task interaction, Zion splits
the current task and spawns a new continuation [22]
task that executes the current task’s remaining logic after
waiting completes. Waiting is exposed to tools by a pair
of join points that mirror those for RPC and File APIs.

Generic join points are provided to tools to capture
when a task begins (Task::0OnBegin) and ends (Task::OnEnd)
executing, which is useful for imposing on all task exe-
cutions. As mentioned in Section [3] tools can also cus-
tomize task scheduling to implement tooling features.
Each thread pool that executes tasks is associated with
its own scheduler that can be customized separately, the
details of which are beyond this paper’s scope.

Because tasks can run concurrently, Zion provides fa-
miliar synchronization APIs, e.g., locks or semaphores,
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to protect the state that is shared between tasks. Similar
to task waiting, tasks fork continuation tasks when they
invoke synchronization APIs; Zion exposes these behav-
ior to the tools with joint point pairs that captures be-
fore the API is called and when the continuation task is
scheduled. Consider the pseudocode of a recording tool
shown in Figure [§] that records the causal order of a ser-
vice’s lock usage. Unlike the direct causal order recorded
in Figure [ lock causal order is non-deterministic since
task worker threads can be interleaved in different ways.
Consider the execution illustrated in Figure[0]where three
tasks interact with each other; solid lines are the ground-
truth of their causal dependencies. Merely recording each
invocation of lock methods in join points can capture
false dependencies as shown by dotted lines within the
figure: recording after a Lock.Acquire call can be executed
after a Lock.TryAcquire call has begun.

To solve this problem, state extension is used in Fig-
ure[8]to attach a ToolLock to the service-visible lock object
(lock) that is then acquired by join point actions; record-
ing is now atomic. However one corner case remains:
because Lock.Acquire is a blocking call, we cannot really
use ToolLock to lock its invocation. When Lock.TryAcquire
fails to acquire the lock, it must wait until recording for
Lock.Acquire is finished. The “LogTried” join point action in
Figure [§] must therefore wait until the last locking oper-
ation is from the “LogAcquired” join point action, which is
accomplished using state propagation via LastKind.

Dealing with locks in Figure [§] can be tricky, where
this trickiness is unavoidable in general. However, task
aspects provides to tools all the mechanisms needed to
deal with them: join points to capture their execution,
state extension to propagate state through task and lock
objects, and custom scheduling to manipulate locking or-
ders as needed. Through these join points, Zion can also
convert service executions into task execution even in the
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presence of blocking calls, greatly simplifying the build-
ing experience of tools as shown in Section 3]

5 EXPERIENCE AND EVALUATION

We have implemented Zion’s task-centric runtime, ser-
vice API, and tool API in around 7,700 lines of C++
code. The number of the service and tool APIs are 18 and
40 respectively, including API calls and interface classes.
Over the past one year, we have used Zion in the devel-
opment of Moab, a production distributed and replicated
table service; we have implemented and are using a set
of useful tools in the development, testing, debugging,
diagnosis, and pre-deployment of this service. We have
also ported five popular legacy cloud service components
to Zion to understand how close our programming model
is to those used in common practice.

Applying Zion to Moab

With the lessons of Section [2] in mind, we initiated the
Zion project at the same time that Moab began develop-
ment to solve service-tool integration problems by con-
sidering tooling as a first-class concern. For the needs
of this paper, Moab can be regarded as implementing a
distributed reliable table service that supports both query
and update on table entries. Figure[5|shows Moab’s high-
level architecture. A (large) table is split into a large
number of partitions that form a replication group and
are replicated on a set of partition servers. Each repli-
cation group runs a primary/backup protocol, relying on
a Paxos-based meta service to manage membership. A
partition server participates in the replication groups of
multiple partitions, taking different roles as needed.
Roles and their transitions are shown in Figure 5] (up-
per left part): normally a single primary orders update
requests, committing them on all replicas; a replica can
be removed from the group to become inactive; and a



Tool Phase | LOC | Mechanism
Failure injection D, O 200 J
Model checking D 39K | I,S, T,V
Targeted flow checking D, O 450 1, S
Config-based unit testing | D 550 J
Task tracing & profiling D,O | 270 J
Single-box debugging D 430 LT,V
Global assertion checking D 90 J
Record and replay D, O 14K | IL,S, T,V

Figure 11: Tools we built on top of Zion, including their
names, usage phase, line of code (LOC), and used mecha-
nisms; D and O stand for whether the tool is used during
Development and/or when the service is Online; and J, S, T,
and V are short for Join points, State extension, Task sched-
uler, and Virtualization, respectively.

new partition must through the catch-up role to get its
state up-to-date before joining as a secondary. The meta
service monitors each replication group, making changes
for load balancing and failure handling; e.g. on primary
failure, a secondary is upgraded to be the new primary.
Monotonically increasing decrees are attached to mem-
bership configurations to indicate which is newer.

Moab is implemented in around 234K lines of C++
code on Zion; 50K lines of code is related to replica-
tion, implemented using 52 different kinds of Zion tasks.
Correctness of replication is crucial to data consistency
in Moab, which is challenged by performance optimiza-
tions to achieve low-latency query and update requests.
Tools are then very important in understanding, testing,
debugging, and diagnosing replication related issues.

Figure E] lists the tools that we have built on Zion,
some used during development/testing and others used
during deployment—Moab has been pre-deployed on a
cluster of 100 machines, each running 50 instances of
partition managers that simulates a testbed of 5000 ma-
chines. Moab will be deployed to over ten thousands of
machines within months. Also listed for each tool are
lines of code (LOC) as well as the Zion mechanisms
(i.e. join points, state extension, task scheduler, and vir-
tualization) used. Because Moab is designed to maintain
correctness in the face of a variety of failures, we focus
here on failure-injection type tools. Where we showed
how basic failure injection capabilities can be built using
join points in Section [3] we now highlight the advanced
failure injection capabilities that we have built on Zion
for Moab like model checking, targeted flow checking,
and config-based unit testing. Some of those capabilities
leverage other tools, such as a global assertion checker;
we will describe them briefly when used.

Advanced failure injection

Failure injection is a powerful mechanism [34] that is
particularly appropriate for validating Moab’s replica-
tion implementation. With Zion, failure injection is done
through joint point actions (e.g. on a File::OnCall to mimic
disk failures and on File::OnCompleted to mimic slow disk
operations) or a special task (e.g. Replica::Close to mimic
crashes). In our test deployment, failures are injected ran-
domly and task tracing capability built on Zion is lever-
aged to capture traces related to any misbehavior.

We use implementation-level model checking to ex-
plore different service behavior systematically by con-
trolling non-determinism such as scheduling and decid-
ing when to inject failures. Better yet, Zion further en-
ables us to easily build other advanced failure injec-
tion capabilities that leverage application semantics to
thoroughly explore interesting state spaces. We describe
these advanced failure injection capabilities here.
Model checking. We built an implementation-level
model checker on Zion that is also capable of inject-
ing failures systematically. We previously implemented a
model checker [51]] using system-call interception where
the contrast between the two approaches is particularly
revealing. The new model checker required only one
person-month of work with 3,700 lines of code in total,
while the previous one took more than a year of work,
handling nearly 200 common system calls that alone re-
quires more than 22,000 lines of code.

Figure [12] uses file read as an example to compare
model checking using system call interception with that
using Zion. Figure [[2[a) shows the procedures for in-
tercepting the ReadFile and SleepEx system calls. For
ReadFile, callback must be exposed to the model check-
ing scheduler so the model checker can gain control. OS
data structure used in callback must also be translated to
the model checker’s action data structure loCallbackAction.
In reality, there are five different kinds of asynchronous
I/0 methods that must be handled; we only show loCall-
backAction here. Similarly, SleepEx must expose a Con-
tinuationAction that further needs to get instruction from
the model checker scheduler to resume (as done in Wait-
Schedule). One additional complication is that the model
checker scheduler must track the constraints associated
with certain actions; e.g. an loCallbackAction requires that
the caller thread be waken up from an alertable state.

In contrast with Zion, the callback fileTask in File::Read
is already a Zion task; nothing extra needs to be done.
The TP_TaskScheduler, which manages the thread pool,
simply exposes tasks to the model checker and schedules
task as instructed. Model checking with Zion uses tasks
as actions, while the system call interception is forced to



bool MC_ReadFile(hFile, buffer, count, offset, callback) {

e f=
auto action = new loCallbackAction(callback, ...);
action->Submit();

returnr;

}
void MC_SleepEXx(...) {
auto action = new ContinuationAction();

action->Submit();
while ((act = WaitSchedule(FLAG_ALERTABLE)) != action)
act->Execute();

(a) system call interception approach.

void File::Read(hFile, buffer, count, offset, fileTask);
class TP_TaskSchduler {
void Enqueue(task) {

(new TaskAction(task))->Submit();

}
Task Dequeue() {
return WaitSchedule().Task;

}
Ko
(b) Zion approach.
Figure 12: Comparison of model checking with the system
call interception approach and the Zion approach.

define actions at the system call level. Our statistics for a
10-minutes stress test of Moab show that an action with
Zion (i.e. a task) requires 5.39 actions, on average, at the
system-call level; e.g. a RPC caller task involves 10 lock
operations and 2 socket related system calls. This allows
the Zion model checker to search a much smaller state
space at the task level, making it more effective.

Targeted flow checking. Although model checkers are
effective in exploring corner cases, the state space is gen-
erally too large for them to be exhaustive. We therefore
build other advanced tools to inject failures systemati-
cally like target flow checking that aims to exhaustively
explore a space along one task flow.

Figure [I3] shows a task flow of how a replica tran-
sitions from a catch-up role into a secondary by learn-
ing all committed requests from the primary. The flow
starts with the meta server sending a proposal to the pri-
mary node to ADD_SECONDARY (®). The primary then
instructs a new replica to enter the catch-up role to start
learning from the primary (®,®). The primary sends
some meta information about what should be learned,
e.g. the collections of on-disk files (®). The catch-up
replica starts an asynchronous generic task in a sepa-
rate thread pool to pull these files from remote machines
(®). The task notifies the replica once all remote files are
copied to the local machine (®). After that, the replica
tries another round of learning just in case the primary

Catch-up Primary
@ A OnConfi < @ i
A gProposal 5
OnCatchup (ADD_SECONDARY)
A | ® 1 Meta Server
A ;
0O i 1 : @
OnLearnReply €«==———+— OnLearn
.\ ply @® ﬁ
A OnStateReconfig
OnlLearnRemoteState
®
MOy @
OnLearnRemoteStateCompleted — A
OnReconfigCompleted

Figure 13: Learning task flow in Moab. The numbers repre-
sent the flow steps and the triangles are the join point occur-
rences where fault injection is applied.

has generated new files during the learning process (@—
@). When the primary decides that the catch-up replica’s
state is ready to be served as a secondary, it updates
the replication group membership on the meta server

(@,®). At this point, learning is completed and the sta-
tus of the catch-up replica will be lazily updated once
it gets the new membership configuration. The task flow
graph is constructed from the output of our tracing and
profiling tool using join points.

This task flow captures an important part of the repli-
cation protocol and so it is meaningful to inject failures at
various flow points to check robustness. For the task flow
in Figure [T3] there are 15 join point occurrences (some
join points are executed twice), and so, to inject a single
failure, we only need to explore 15 failure cases. When
injecting multiple failures, the task flow graph can branch
after the first failure injection. Our tool keeps track of
branching and can choose to inject failures further in that
branch based on the specified policy.

Targeted flow checking uses state extension to track
the task flow graph, where the graph is constructed along
the execution by attaching and propagating state. It fur-
ther uses join points to inject failures.

Config-guided unit test. Replication in Moab can work
in different replication-group configurations, handle dif-
ferent kinds of failures, and at the same time process up-
date requests. Unit tests must be constructed to test the
code for these different cases. In particular, the unit test
must look at different configurations: with up to three
replicas, we can have 6 configurations: (P), (P,S), (P, S,
S), (S), (S, 5), (S, S, S), where P is a primary and S is a
secondary. In any of those configurations, it will inject a
set of pre-defined failures, such as disk failure, network
disconnection, and node crash, and at the same time pos-
sibly process an update request. Writing such unit tests
would usually require adding lots of code into the service
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Figure 14: A simplified task flow for a bug triggered by using
model checking.

to control execution, check global state, and inject fail-
ures systematically; but this becomes feasible with Zion.

Our unit test tool leverages the single-box debugging
tool that we developed on Zion, which makes all ser-
vice nodes run in a single process with serialized task
execution and logical time to avoid false RPC timeouts
and concurrent state updates during service debugging. It
does this with a custom task scheduler coordinated with
join point actions in Task::Begin and Task::End, as well as a
virtualized network. The single-box debugging tool also
serves as a platform where other tools can be built on
top and integrated; e.g. our unit test tool further uses the
global assertion checking tool, built on single-box de-
bugging, that can inspect the global state at consistent
points by using Task::End join point actions.

The unit test is constructed by getting execution fol-
lowing a specified sequence of steps into a targeted con-
figuration and then injecting failures systematically. The
unit test also monitors if the system can be fully repaired,
reporting an error after a configured time interval.

Tools in action

No single tool is a panacea, and multiple tools are usually
combined to expose bugs more effectively and find root
causes more quickly. Zion makes it easy to use tools to-
gether as they share the same underlying platform. Here
we describe how we used a set of tools together to dis-
cover a bug, analyze a trace, and find its root cause.

We first ran the model checking tool with fault injec-
tion enabled. After making 4,224 scheduling decisions,
the tool flagged a bug identified by a local assertion on
a partition server. Figure [I4]shows a simplified task flow
of how this bug occurs. A catch-up replica at configu-
ration decree 1 (marked as D1) on a partition server is
learning state from the primary (marked @ in the figure).
The primary removes itself due to a disk failure injected
by our tool, causing all catch-ups to abort and transition
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into inactive in the new configuration at decree 2 (D3).
The meta server sends a OnConfigChange RPC message
to all catch-ups to stop their learning process, which is
further dropped due to failure injection (®). This creates
an inconsistency between the meta server and the replica,
which still believes that it is in the configuration.

The meta server runs periodic routines to checks
memberships of each replication group, and decides to
suggest that the catch-up replica be the new primary at
decree 3 (D3) via an RPC message, which also piggy-
backs the current configuration for this replica (i.e, in-
active at decree 2) (®). The OnProposal task handles the
proposal (®). There is a map data structure on each parti-
tion server that tracks all replication groups that it partic-
ipates in. The task handles a proposal in the group only
after ensuring that the group is in that map data struc-
ture, performing necessary initialization if the group is
not yet in the data structure. However, in this case, when
processing the proposal, the replication group is in the
map. The task then starts processing two operations in a
batch, with the first one removing the replication group
in the map data structure. The processing of the second
operation assumes that the replication group is already in
the map (while it is no longer true), leading to inconsis-
tencies. But the bug is not exposed yet. After the replica
updates the configuration with the meta server (®), the
violation is detected (®) in the task OnReconfigCompleted
with an assertion checking that any active replicas (e.g.
primary) must be included in the map.

It was hard to figure out what caused inconsistencies
when assertion failures occur. We first used the tracing
tool to build a task flow graph, verifying flow’s valid-
ity itself. The task flow graph exposes only structure at
task granularity, which is insufficient to discover the root
cause. We then replayed execution using our replay tool,
eventually finding the root cause through breakpoints.

Beyond debugging and testing tools. During Moab’s
development, we realized that task aspects can be ap-
plied beyond debugging and testing, like performance
and model-based reasoning. Moab has a strict query la-
tency SLA with a somewhat higher tolerance for write
latency. Because replication can interfere with query pro-
cessing, we wrote a custom task scheduler so that query
requests are processed with higher priority, and write re-
quests are throttled when the query latency is close to
the upper limit of its SLA. We also built a simulator for
Moab because adopting the task model in Zion leads to a
naturally born queuing network [14], making it possible
to do some performance analysis and estimation using
the simulator.

Tooling experience summary. In general, we found that



tasks and task aspects enable many tools. The task ab-
straction and limited pre-defined task interaction points
greatly reduce the cost of building tools; the complete-
ness of task interactions through a small tool API eases
the correctness and/or reliability of the tools; and the
tools are successfully applied to a service with almost
no additional integration cost.

We found a few limitations to our approach. First,
Zion assumes that tasks will acquire locks before access-
ing shared data, leading to the possibility of data races,
which tools like replay are especially vulnerable to. Sec-
ond, although Zion can easily capture task-level execu-
tion flow, it does not understand higher level semantics
like batching. This prevents us from implementing some
tools like tracking privacy and security information for
a given request using state propagation. When task flow
hits a batch operation, the flow ends and propagated in-
formation is lost, making it impossible to check later
when the request is recovered from a batch.

Porting Services

We ported five popular services to Zion, mem-
cached [17], LevelDB [13], Xlock (similar to
Chubby [7]]), a thumbnail server, and Kyoto Cabi-
net [L6], with changed or added lines of code ranging
from 200 to 500. The changed code mostly replaces
original invocations of low-level system services to that
provided by Zion, including locks, time, random, and file
operations. For those services used as local components
(e.g. LevelDB), we added code for wrapping their
interfaces (e.g. read or write a key/value pair) as RPC
request and response tasks. We also removed original
thread code because all tasks are now redirected to
Zion’s thread pool for execution.

While porting was mostly straightforward, a couple
of features did not fit into our task model very cleanly.
The first was background threads; e.g. LevelDB uses a
background thread that waits for jobs from write request
handlers to compact disk files as necessary. To fit into
Zion’s task model, background threads are broken down
by considering each job as a task that are executed in a
separate thread pool.

The second problematic feature is synchronous 10
where Zion only supports more batch-performance
friendly asynchronous I0. However, many services use
synchronous IO to optimize for latency while the use of
flash disks already improves performance substantially.
Task.Wait calls are then combined Zion’s asynchronous
interface to mimic synchronous IO.
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Performance

We further measure the overhead of Zion and tools by
applying them to the five ported services above. Over-
head of some tools is not measured because it is applied
only when services are not online (e.g. model checking)
or overhead is not applicable (e.g. fault injection); we
use a tracing and profiling tool as well as a replay tool
as two representatives. The experiments are done on two
machines, acting as client and server respectively, which
have 4 cores at 2.0GHz with 8 hyper threads, 32 GB
memory, 1Gbps network, and 3 TB hard disk. For each
native version of the service (without Zion), the client
sends RPC requests to the server with a large throughput
so that the server always has 100% CPU utilization. The
request type and size vary for each service, and the CPU,
not network, is always the bottleneck. We then change
the configurations on the server side, and measure the re-
quest throughput on the server. We tried five kinds of dif-
ferent configurations: (i) native; (ii) (Zion w/o ext) with
Zion but without tooling primitives; (iii) (Zion w/ ext)
with Zion and all tooling primitives enabled; (iv) (Zion
T&P) with the tracing and profiling tool enabled for all
tasks in the service; and (v) (Zion record) with the record
phase of the replay tool. Because MemCached, Kyoto-
Cabinet, and LevelDB are local components, we instead
use the second configuration as their base. For all cases,
we use 8 threads to run all configurations for 5 minutes
with 10 rounds, and observed that the CPU utilization
is constantly 100% except MemCached where the CPU
utilization is only around 50%, indicating bad scalability.

Figure [T3] depicts the overhead of Zion under these
five configurations. Our ported versions of Xlock and
Thumbnail server actually have slightly better perfor-
mance than the native version, mostly due to replace-
ment of RPC related code. (We adapted the original net-
work code to work with Zion’s RPC engine to minimize
the change of the underlying runtime.) As shown in fig-
ure, the overhead of Zion itself is negligible, both with
or without tooling extensions. The overhead of the tools
is acceptable (< 8%) for all cases except MemCached
recording, which is because memcached is not scalable
and the tool’s overhead accumulates across threads.

6 RELATED WORK

This paper does not focus on traditional systems tools
that detect memory leaks, detect data races, or handle
misconfigurations, but rather it focuses on supporting
tools that promote robustness in cloud services. Con-
sider distributed trace analysis tools like Magpie [Sl],
Pinpoint [9], X-Trace [19], Pip [42], and Dapper [43];
configuration and performance troubleshooting tools like
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Figure 15: Overhead of Zion and the tools atop. The number
below the service name is the request throughput we used.

ConfAid [3] and X-Ray [2]; failure injection tools
like LFI [34] and AFEX [4]; record-replay tools like
ODR [1], R2 [20], PRES [40], Respec [30], and Double-
Play [46]; and model checking tools like MaceMC [26],
Chess [38], and CrystalBall [49].

Tools traditionally impose on program behavior in a
variety of ways. Pip [42] relies heavily on application-
level instrumentation, while Pinpoint [9] and Magpie [5]]
leverage instrumented libraries and middleware; Zion
also leverages an instrumented runtime for transparent
integration, but exposes task interactions to retain the
effectiveness of application-level instrumentation. Many
tools also leverage system call interception and binary in-
strumentation frameworks like [23)141]] to achieve trans-
parent integration without runtime modifications, but as
observed in Section 2} these techniques are often too un-
reliable and low level for cloud service tooling needs.

Failure injection has been recognized as an effective
tool for testing system recovery code [34} 4]]. LFI [34]
proposed to inject failures at the library level to test re-
covery code effectively. AFEX [4] further proposes a
metric-driven approach for fast black-box testing using
fault injection. We also rely on failure injection heavily
in our replication service while Zion allows us to effi-
ciently explore interesting state spaces.

Some tools also propagate information along the
communication paths. For example, ConfAid [3]] does
dynamic information flow analysis to automate config-
uration troubleshooting, which requires interposition on
communication primitives to propagate taints. X-Ray [2]
uses both deterministic replay and ConfAid for perfor-
mance troubleshooting using performance summariza-
tion. Zion’s task model, together with join points and
state extensions, would be convenient for building such
tools. Tools are often built with hardware support [39,
48] or virtual machines [15} 29] to record and replay
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all aspects of an application’s environment, including
scheduling decisions made by the underlying system;
Zion tools can achieve this instead with just join points,
state extension, and custom task scheduling.

Zion’s task model descends from event-driven sys-
tems that can be more performant and robust than purely
threaded systems; e.g. see libasync [12] and SEDA [47].
Libeel [L1] observes that by making event callbacks
explicit, the writing, reading, and verification of event
handler code can be significantly simplified. Work in
[28] shows how scheduling of an explicit event handling
“task” construct can be customized for better perfor-
mance. Zion goes beyond these works by showing how
tasks can further be leveraged to tool cloud services.

There is a lot of work on platforms for building dis-
tributed systems like cloud services. Analogous to Zion,
Mace [27] has unified APIs for networking and event
handling, imposes a restricted programming model, and
leverages aspects to enable model checking [26] and
causal-path debugging. In contrast to Mace, Zion focuses
on supporting cloud services with a wider range of tools.
Similar to state extension in Zion, meta-applications in
Causeway [8]] can inject and access meta-data (state)
along distributed system execution paths, which can then
be used for scheduling or debugging. Causeway services,
however, are implemented according to an actor model
that is much less conventional than Zion’s task model.
Work in [50] propose a model where services expose
environment-related “choices” to be made that are then
maximized by a model checker [49]]; a Zion tool could
do this by imposing on task interactions.

Our work is inspired by aspect programming as pi-
oneered by Kiczales et al [25]. Aspect techniques have
been previously applied to systems; e.g. [10} 33]] demon-
strate that concerns that crosscut traditional OS layers
can be cleanly defined as aspects, while [18] applies as-
pects to the chore of patching operating system behavior.
Zion additionally shows how aspects can be combined
successfully with tasks to tool cloud services.

7 CONCLUSION

We have shown how tools that enhance cloud service ro-
bustness can be effectively encoded as task aspects in
Zion. By restricting the cloud service programming to
an enriched task model where all non-deterministic be-
havior is gated through service APIs, non-deterministic
behavior is completely and reliably exposed to tools as
task interactions. Task aspects that impose on task inter-
actions then provide a convenient way to tool services.
We have successfully applied Zion to the development of
a large-scale production replicated data service, and have



found that it does indeed make tools easier to apply. Fu-
ture work includes focusing on enhancing what is meant
by a “task interaction” in Zion to provide better feedback
to tools; e.g. by adding data flow tracking between tasks
to better support information flow tools.
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