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ABSTRACT
Kleinberg proposed a family of small-world networks to ex-
plain the navigability of large-scale real-world social net-
works. However, the underlying mechanism that drives real
networks to be navigable is not yet well understood. In
this paper, we present a game theoretic model for the for-
mation of navigable small world networks. We model the
network formation as a game in which people seek for both
high reciprocity and long-distance relationships. We show
that the navigable small-world network is a Nash Equilib-
rium of the game. Moreover, we prove that the navigable
small-world equilibrium tolerates collusions of any size and
arbitrary deviations of a large random set of nodes, while
non-navigable equilibria do not tolerate small group collu-
sions or random perturbations. Our empirical evaluation
further demonstrates that the system always converges to
the navigable network even when limited or no information
about other players’ strategies is available. Our theoretical
and empirical analyses provide important new insight on the
connection between distance, reciprocity and navigability in
social networks.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Network
problems

General Terms
Theory
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1. INTRODUCTION
In 1967, Milgram published his work on the now famous

small-world experiment [30]: he asked test subjects to for-
ward a letter to their friends in order for the letter to reach
a person not known to the initiator of the letter. He found
that on average it took only six hops to connect two people
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in U.S., and coined the term six-degree of separation. This
seminal work inspired numerous researches on the small-
world phenomenon and small-world models, which last till
the present day of information age.

In [36] Watts and Strogatz investigated a number of real-
world networks such as film actor networks and power grids,
and showed that many networks have both low diameter and
high clustering (meaning two neighbors of a node are likely
to be neighbors of each other), which is different from ran-
domly wired networks. They thus proposed a small-world
model in which nodes are first placed on a ring or a grid with
local connections, and then some connections are randomly
rewired to connect to long-range contacts in the network.
The local and long-range connections can also be viewed as
strong ties and weak ties respectively in social relationships
originally proposed by Granovetter [14, 13].

Kleinberg notices an important discrepancy between the
small-world model of Watts and Strogatz and the original
Milgram experiment: the latter shows not only that the av-
erage distance between nodes in the network are small, but
also that nodes can efficiently navigate in the network with
only local information. To address this issue, Kleinberg ad-
justed Watts-Strogatz model so that the long-range connec-
tions are selected not uniformly at random among all nodes
but inversely proportional to a power of the grid distance
between the two end points of the connection [21].

More specifically, Kleinberg modeled a social network as
composed of nk nodes on a k-dimensional grid, with each
node having local contacts to other nodes in its imme-
diate geographic neighborhood. Each node u also estab-
lishes a number of long-range contacts, and a long-range
link from u to v is established with probability proportional
to dM (u, v)−r, where dM (u, v) is the grid distance between
u and v, and r ≥ 0 is the model parameter indicating how
likely nodes prefer to connect to remote nodes, which we call
connection preference in the paper. Watts-Strogatz model
corresponds to the case of r = 0, and as r increases, nodes
are more likely to connect to other nodes in their vicinity.
Kleinberg modeled Milgram’s experiment as decentralized
greedy routing in such networks, in which each node only
forwards messages to one of its neighbors with coordinate
closest to the target node. He showed that when r = k,
greedy routing can be done efficiently in O(log2 n) time in
expectation, but for any r 6= k, it requires O(nc) time for
some constant c depending on r. Therefore, the small world
at the critical value of r = k is meant to model the real
network, and we call it the navigable small-world network.



0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Distance d (km)

C
D

F

Renren data
   Linear fit

Figure 1: The fraction of
nodes within distance d in
Renren.

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

Distance d (km)

L
in

k 
p

ro
b

a
b

ili
ty

 P
(d

)

P(d) ∝  d−0.9

Figure 2: Friendship
probability vs. distance
in Renren.

After Kleinberg’s theoretical analysis, a number of empir-
ical studies have been conducted to verify if real networks
indeed have connection preference close to the critical value
that allows efficient greedy routing [28, 1, 7, 10, 34]. Since
real network population is not evenly distributed geograph-
ically as in the Kleinberg’s model, Liben-Nowell et al. [28]
proposed to use the fractional dimension α, defined as the
best value to fit |{w : dM (u,w) ≤ dM (u, v)}| = c ·dM (u, v)α.
They showed that when the connection preference r = α,
the network is navigable. They then studied a network of
495,836 LiveJournal users in the continental United States
who list their hometowns, and find that α ≈ 0.8 while
r = 1.2, reasonably close to α. We apply the same ap-
proach to a ten million node Renren network [19, 38], one
of the largest online social networks in China. We map the
hometown listed in users’ profiles to (longitude, latitude)
coordinates. The resolution of our geographic data is lim-
ited to the level of towns and cities and thus we cannot get
the exact distance of nodes within 10km. We found that
α ≈ 1 (Figure 1) and r ≈ 0.9 (Figure 2) in Renren net-
work. Other studies [1, 7, 10, 34] also reported connection
preference r to be close to 1 in other online social networks
(including Gowalla, Brightkite and Facebook). Even though
they did not report the fractional dimension, from both the
LiveJournal data in [28] and our Renren data, it is reason-
able to believe that the fractional dimension is also close to 1.
Therefore, empirical evidences all suggest that the real-world
social networks indeed have connection preference close to
the critical value and the network is navigable.

A natural question to ask next is how navigable networks
naturally emerge? What are the forces that make the con-
nection preference become close to the critical value? As
Kleinberg pointed out in his survey paper [22] when talk-
ing about the above striking coincidence between theoret-
ical prediction and empirical observation, “it suggests that
there may be deeper phenomena yet to be discovered here”.
There are several studies trying to explain the emergence
of navigable small-world networks [29, 16, 8, 33, 5], mostly
by modeling certain underlying node or link dynamics (see
related work for more details).

In this paper, we tackle the problem in a novel way us-
ing game-theoretic approach, which is reasonable in model-
ing individual behaviors in social networks without central
coordination. One key insight we have is that connection
preference r is not a global preference but individual’s own
preference — some prefer to connect to more faraway nodes
while others prefer to connect to nearby nodes. Therefore,
we establish small-world formation games where individual
node u’s strategy is its own connection preference ru (Sec-

tion 3). This game formulation is different from most exist-
ing network formation games where individuals’ strategies
are creating actual links in the network (c.f. [35]). It allows
us to directly explore the entire parameter space of connec-
tion preferences and answer the question on why nodes end
up choosing a particular parameter setting leading to the
navigable small world.

In terms of payoff functions, we first consider minimizing
greedy routing distance to other nodes as the payoff, since
it directly corresponds to the goal of navigable networks.
However, Gulyás et al. [15] prove that with this payoff the
navigable networks cannot emerge as a equilibrium for the
one-dimensional case. Our empirical analysis also indicates
that nodes will converge to random networks (ru = 0, ∀u)
rather than navigable networks for higher dimensions. Our
empirical analysis further shows that if we adjust the pay-
off with a cost proportional to the grid distance of remote
connections, the equilibria are sensitive to the cost factor.

The above unsuccessful attempt suggests that besides the
goal of shortening distance to remote nodes, some other nat-
ural objective may be in play. Reciprocity is regarded as a
basis mechanism that creates stable social relationships in a
person’s life [12]. A number of prior works [18, 28, 31] also
suggest that people seek reciprocal relationships in online
social networks. Therefore, we propose a payoff function
that is the product of average distance of nodes to their
long-range contacts and the probability of forming recipro-
cal relationship with long-range contacts. We call this game
distance-reciprocity balanced (DRB) game. In practice, in-
creasing relationship distance captures that individuals at-
tempt to create social bridges by linking to “distant people”,
which can help them search for and obtain new resources.
Meanwhile, increasing reciprocity captures that individuals
look at social bonds by linking to “people like them”, which
could help them preserve or maintain resources. Therefore,
the DRB game is natural since it captures sources of bridg-
ing and bonding social capital in building social integration
and solidarity [9].

Even though the payoff function for the DRB game is
very simple, our analysis demonstrates that it is extremely
effective in producing navigable small-world networks as the
equilibrium structure. In theoretical analysis (Section 4),
we first show that both navigable small world (ru = k, ∀u)
and random small world (ru = 0,∀u) are the only two uni-
form Nash equilibria of the DRB game. Although we do
not know whether non-uniform equilibria exist, we prove
that the navigable small world is a strong Nash equilibrium,
which means that it tolerates collusion of any size trying
to gain better payoff, and it also tolerates arbitrary devia-
tions (without the objective of increasing anyone’s payoff)
of large groups of random deviators. In contrast, any non-
navigable equilibrium such as the random small world or
possible non-uniform equilibria does not tolerate either col-
lusions or random perturbations of a small group of nodes.
Our theoretical analysis provides strong support that navi-
gable small-world network is the unique stable equilibrium
that would naturally emerge in the DRB game.

We further conduct empirical evaluations to cover more
realistic game scenarios not covered by our theoretical anal-
ysis (Section 5). We first test random perturbation cases
and show that arbitrary initial profiles always converge to
the navigable equilibrium in a few steps, while a very small
random perturbation (less than theoretical prediction) of the



random small world causes it to quickly converge back to the
navigable equilibrium. Next, we simulate more realistic sce-
narios where nodes have limited or no information about
other nodes’ strategies. We show that if they only learn
their friends’ strategies (with some noise), the system still
converges close to the navigable equilibrium in a small num-
ber of steps. Finally, even when the node has no information
about other players’ strategies and can only use its obtained
payoff as feedback to search for the best strategy, the sys-
tem still moves close to the navigable equilibrium within a
few hundred steps (in the 100× 100 grid). These empirical
results further demonstrate the robustness of the navigable
small world in the DRB game.

In summary, our contributions are the following: (a) we
propose the small-world formation game and design a bal-
anced distance-reciprocity payoff function to explain the
navigability of real social networks; (b) we conduct compre-
hensive theoretical and empirical analysis to demonstrate
that navigable small world is a unique robust equilibrium
that would naturally emerge from the game under both ran-
dom perturbation and strategic collusions; and (c) our game
reveals a new insight between distance, reciprocity and navi-
gability in social networks, which may help future research in
uncovering deeper phenomena in navigable social networks.
To our best knowledge, this is the first game theoretic study
on the emergence of navigable small-world networks, and the
first study that linking relationship reciprocity with network
navigability.

Additional related work. We provide additional de-
tails of prior works on explaining the emergence of navigable
small-world networks, and other related studies not covered
in the introduction.

Some studies try to explain navigability by assuming that
nodes form links to optimize for a particular property. Math-
ias et al. [29] assume that users try to make trade-off be-
tween wiring and connectivity. Hu et al. [16] assume that
people try to maximize the entropy under a constraint on
the total distances of their long-range contacts. These works
rely on simulations to study the network dynamics. More-
over, the navigability of a network is sensitive to the weight
of wiring cost or the distance constraint, and it is unlikely
that navigable networks as defined by Kleinberg [21] would
naturally emerge.

Another type of works propose node/link dynamics that
converge to navigable small-world networks. Clauset and
Moore [8] propose a rewiring dynamic modeling a Web surfer
such that if the surfer does not find what she wants in
a few steps of greedy search, she would rewire her long-
range contact to the current end node of the greedy search.
They use simulations to demonstrate that a network close
to Kleinberg’s navigable small world will emerge after long
enough rewiring rounds. Sandberg and Clarke [33] propose
another rewiring dynamic where with an independent prob-
ability of p each node on a greedy search path would rewire
their long-range contacts to the search target, and provide a
partial analysis and simulations showing that the dynamic
converges to a network close to the navigable small world.
Chaintreau et al. [5] use a move-and-forget mobility model,
in which a token starting from each node conducts a random
walk (move) and may also go back to the starting point (for-
get), and use the distribution of the token on the grid as the
distribution of the long-range contacts of the starting node.
They provide theoretical analysis showing that the move-

and-forget model with a particular harmonic forget function
converges close to the navigable small world. However, it
is unclear if the harmonic forget function used is natural in
practice and what is the effect of other forget functions.

The approach taken by these studies can be viewed as or-
thogonal and complementary to our approach: they aim at
using natural dynamics (rewiring or mobility dynamics) to
explain navigable small world, while we focus on directly ex-
ploring the entire parameter space of connection preferences
of nodes and use game theoretic approach to show, both the-
oretically and empirically, that the nodes would naturally
choose their connection preferences to form the navigable
small world. Moreover, all the prior studies only show that
they converge approximately to the navigable small world,
while in our game the navigable small world is precisely the
only robust equilibrium. Finally, none of these works intro-
duce reciprocity in their model and we are the first to link
reciprocity with navigability of the small world.

Some studies use hyperbolic metric spaces or graphs to try
to explain navigability in small-world networks (e.g. [4, 32,
23, 24, 6]). However, they do not explain why connection
preferences in real networks are around the critical value
and how navigable networks naturally emerge. In particu-
lar, Chen et al. [6] show that the navigable small world in
Kleinberg’s model does not have good hyperbolicity.

A number of network dynamics are proposed to address
general network evolution, but they do not address network
navigability in particular. For example, models in [3, 27,
26, 11] leverage preferential attachment or triangle closure
mechanisms to capture power-law degree or high clustering
coefficient, and other models [2, 20] capture spatial effects
using a gravity model, balancing the effect of spatial distance
with other node properties (e.g., node degree).

2. PRELIMINARIES
In this section, we present the Kleinberg’s small-world

model and some basic concepts of a noncooperative game.

2.1 Kleinberg’s Small-World Model
Let V = {(i, j) : i, j ∈ [n] = {1, 2, . . . , n}} by the set

of n2 nodes forming an n × n grid. For convenience, we
consider the grid with wrap-around edges connecting the
nodes on the two opposite sides, making it a torus. For any
two nodes u = (iu, ju) and v = (iv, jv) on this wrap-around
grid, the grid distance or Manhattan distance between u and
v is defined as dM (u, v) = min{|iv − iu|, n − |iv − iu|} +
min{|jv − ju|, n− |jv − ju|}.

The model has two universal constants p, q ≥ 1, such that
(a) each node has undirected edges connecting to all other
nodes within lattice distance p, called its local contacts, and
(b) each node has q random directed edges connecting to
possibly faraway nodes in the grid called its long-range con-
tacts, drawn from the following distribution. Each node u
has a connection preference parameter ru ≥ 0, such that the
i-th long-range edge from u has endpoint v with probabil-
ity proportional to 1/dM (u, v)ru , that is, with probability
pu = dM (u, v)−ru/c(ru), where c(ru) =

∑
∀v 6=u dM (u, v)−ru

is the normalization constant. Let r be the vector of ru
values on all nodes. We use r ≡ s to denote ru = s,∀u ∈ V .

Greedy routing on the small-world network from a source
node u to a target node v is a decentralized algorithm start-
ing at node u, and at each step if routing reaches a node
w, then w selects one node from its local and long-range



contacts that is closest to v in grid distance as the next
step in the routing path, until it reaches v. In [21], Klein-
berg shows that when r ≡ 2, the expected number of greedy
routing steps (called delivery time) is O(log2 n), but when
r ≡ s 6= 2, it is Ω(nc) for some constant c related to s.

The above model can be easily extended to k dimensional
grid (with wraparound) for any k = 1, 2, 3, . . ., where each
long range contact is still established with probability pro-
portional to 1/dM (u, v)ru . It is shown that r ≡ k is the
critical value allowing efficient greedy routing. Henceforth,
we call Kleinberg’s small world with r ≡ k the navigable
small world. Another special network is r ≡ 0, in which ev-
ery node’s long-range contacts are selected among all nodes
uniformly at random, and we refer it as the random small
world. We use K(n, k, p, q, r) to refer to the class of Klein-
berg random graphs with parameters n, k, p, q, and r.

2.2 Game and Solution Concepts
A game is described by a system of players, strategies and

payoffs. We denote a game by Γ = (Su, πu)u∈V , where V
represents a finite set of players, Su is the set of strategies
of player u, and πu : S → R is the payoff function of node u,
with S = S1×S2×. . .×Sn. An element s = (s1, s2, . . . , sn) ∈
S is called a strategy profile.

Let C = 2V \ ∅ denote the set of all coalitions. For each
coalition C ∈ C, let −C = V \C, and if C = {u}, we denote
−C by −u. We also denote by SC the set of strategies of
players in coalition C, and sC the partial strategy profile of
s for nodes in C.

Definition 1 (Best response). Player u’s strategy
s∗u ∈ Su is a best response to the strategy profile s−u ∈ S−u
if

πu(s∗u, s−u) ≥ πu(su, s−u), ∀su ∈ Su \ {s∗u},
Moreover, if “≥” above is actually “>” for all su 6= s∗u, then
s∗u is the unique best response to s−u.

Nash equilibrium (NE) for a strategic game is a strategy
profile such that each player’s strategy is a best response to
the other players’ strategies.

Definition 2 (Nash equilibrium). A strategy profile
s∗ ∈ S is a Nash equilibrium if for every player u ∈ V , s∗u is
a best response to s∗−u; s∗ is a strict Nash equilibrium if for
every player u ∈ V , s∗u is the unique best response to s∗−u.

While in an NE no player can improve its payoff by unilat-
eral deviation, some of the players may benefit (sometimes
substantially) from forming alliances/coalitions with other
players. The strong Nash equilibrium (SNE) is a strategy
profile for which no coalition of players has a joint deviation
that improves the payoff of each member of the coalition.

Definition 3 (Strong Nash equilibrium). For a
real number f ∈ (0, 1], a strategy profile s∗ ∈ S is an
f-strong Nash equilibrium if for all C ∈ C with |C| ≤ f |V |,
there does not exist any sC ∈ SC such that

∀u ∈ C, πu(sC , s
∗
−C) ≥ πu(s∗), ∃u ∈ C, πu(sC , s

∗
−C) > πu(s∗).

When f = 1, we simply call s∗ the strong Nash equilibrium.

When restricting |C| = 1, SNE falls back to NE; when re-
stricting C = V , SNE means Pareto-optimal, which requires
that no player can improve her payoff without decreasing
the payoff of someone else. Therefore, SNE is a very strong
equilibrium concept allowing collusions of any size.
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3. SMALL-WORLD FORMATION GAMES
Connection preference ru in Kleinberg’s model reflects u’s

intention in establishing long-range contacts: When ru = 0,
u chooses its long-range contacts uniformly among all nodes
in the grid; as ru increases, the long-range contacts of u
become increasingly clustered in its vicinity on the grid. Our
insight is to treat connection preference as node’s strategy
in a game setting and study the game behavior.

More specifically, we model this via a non-cooperative
game among nodes in the network. First, we assume that
each ru is taken from a discrete set Σ = {0, γ, 2γ, 3γ, . . . , },
where γ represents the granularity of connection preference
and is in the form of 1/g for some positive integer g ≥ 2. Us-
ing discrete strategy set avoids nuances in continuous strat-
egy space and is also reasonable in practice since people are
unlikely to make infinitesimal changes. Next, we model the
small-world network formation as a game Γ = (Σ, πu)u∈V ,
where V is the set of nodes in the grid, connection prefer-
ence ru ∈ Σ is the strategy of a player u, and πu is the
payoff function of u. Our objective is to study intuitively
appealing payoff functions πu and find one that would allow
the navigable small-world network to emerge.

3.1 Routing-based Payoff
As navigable small world achieves best greedy routing effi-

ciency, it is natural to consider the payoff function as the ex-
pected delivery time to the target in greedy routing. Given
the strategy profile r ∈ S, let tuv(ru, r−u) be the expected
delivery time from source u to target v via greedy routing.
The payoff function is given by:

πu(ru, r−u) = −
∑
∀v 6=u

tuv(ru, r−u). (1)

We take a negation on the sum of expected delivery time
because nodes prefer shorter delivery time.

Although the above payoff function is intuitive and simple,
it has some serious issues. Prior work [15] has already proved
that, with the length of greedy paths as the payoff, player
u’s best response is to link uniformly (i.e., ru = 0) for the
one-dimensional case. For high dimensions, Figure 3 shows
the expected delivery time for a single node u at a 100×100
grids, where each node generates q = 10 links. We see that
when other nodes fixed their strategy (e.g., r−u ≡ 2), the
best strategy of a single node u is 0. More tests on different
initial conditions reach the same result that the system will
converge to the random small-world networks. The intuitive
reason is that to reach other nodes quickly, it is better for a
node to evenly spread its long-range contacts in the network.



This is inconsistent with empirical evidence that real-world
networks are navigable ones. ([28, 7, 1, 10, 25, 17]).

In practice, creating and maintaining long-range links
have higher costs, so one may adapt the above payoff func-
tion by adding the grid distances of long-range contacts as
a cost term in the payoff function:

πu(ru, r−u) = −
∑
∀v 6=u

tuv(ru, r−u)− λ
∑
v 6=u

pu(v, ru)dM (u, v),

(2)
where λ is a factor controlling the long range cost. A larger
λ means users are more concerned with distance costs. Fig-
ure 4 shows that the best strategy of a user u is significantly
influenced by the cost factor. Similar result is also shown
in [15]. Thus, it is unclear if the navigable small-world net-
work can naturally emerge from this type of games.

3.2 Distance-Reciprocity Balanced Payoff
The previous section demonstrates that seeking short

routing distance alone cannot explain the emergence of nav-
igable small world, and thus people in the social network
must have some other objective to achieve. Reciprocity is
regarded as a basis mechanism that creates stable social re-
lationships in the real world [12]. Several empirical studies
[18, 28, 31] also show that high reciprocity is also a typical
feature present in real small-world networks (such as Flickr,
YouTube, LiveJournal, Orkut and Twitter).

Therefore, we consider the payoff of a user u as the fol-
lowing balanced objective between distance and reciprocity:

πu(ru, r−u) =∑
∀v 6=u

pu(v, ru)dM (u, v)

×
∑
∀v 6=u

pu(v, ru)pv(u, rv)

 ,

(3)

where
∑
∀v 6=u pu(v, ru)dM (u, v) is the mean grid distance of

u’s long-range contacts, and
∑
∀v 6=u pu(v, ru)pv(u, rv) is the

mean probability for u to form bi-directional links with its
long-range contacts, i.e., reciprocity. We refer the small-
world formation game with payoff function in Eq.(3) the
Distance-Reciprocity Balanced (DRB) game.

The payoff function in Eq.(3) reflects two natural objec-
tives users in a social network want to achieve: first, they
want to connect to remote nodes, which may give them di-
verse information as in the famous ”the strength of weak
tie argument” by Granovetter [14]; second, they want to es-
tablish reciprocal relationship which are more stable in long
term. However, these two objectives can be in conflict for
a node u when others prefer linking in their vicinity (i.e.,
other nodes v choosing positive exponent rv). In this case,
faraway long-range contacts are less likely to create recip-
rocal links. Therefore, node u should obtain the maximum
payoff when it achieves a balance between the two objec-
tives. We use the simple product of distance and reciprocity
objectives to model this balancing behavior.

4. PROPERTIES OF THE DRB GAME
In this section, we conduct theoretical analysis to discover

the properties of the DRB game. When player u’s strategy
ru is the unique best response to a strategy profile r−u, we
denote this unique best response as Bu(r−u).

4.1 Equilibrium Existence in DRB Game
We first show that navigable small-world network is a

Nash Equlibrium of the DRB game.

Theorem 1. For the DRB game in a k-dimensional grid,
the following is true for sufficiently large n: 1 For every node
u ∈ V , every strategy profile r, and every s ∈ Σ, if r−u ≡ s,
then u has a unique best response to r−u ≡ s:

Bu(r−u ≡ s) =

{
k if s > 0,

0 if s = 0.

Proof (Sketch). The intuition is as follows. When s >
0, all other nodes prefer long-range contacts in their vicinity.
In this case, when node u chooses 0 ≤ ru < k, it achieves
good average grid distance to long-range contacts but its
long-range contact v is unlikely to have the reciprocal link
to u because u is not likely to be in the vicinity of v. On the
other hand, if u chooses ru > k, it achieves good reciprocity
but its average grid distance to long-range contacts is low.
The case of ru = k provides the best balance between grid
distance to long-range contacts and reciprocity. The detailed
proof is included in Appendix A.

When s = 0, all others nodes link uniformly. In this case,
the reciprocity for node u becomes a constant independent
of its strategy ru. Thus, ru should be selected to maximize
average distance of u’s long-range contacts, which leads to
ru = 0. The detailed proof for the case of s = 0 is included
in [37].

Theorem 1 shows that when all other nodes use the same
nonzero strategy s, it is strictly better for u to use strategy
k; when all other nodes uniformly use the 0 strategy, it is
strictly better for u to also use 0 strategy. When setting
s = k and s = 0, we have:

Corollary 2. For the DRB game in the k-dimensional
grid, the navigable small-world network (r ≡ k) and the ran-
dom small-world network (r ≡ 0) are the two strict Nash
equilibria for sufficiently large n, and there are no other uni-
form Nash equilibria.

The above analysis shows that DRB game has two uniform
Nash equilibria r ≡ k and r ≡ 0, corresponding to navigable
and random small-world networks, respectively. Other non-
uniform equilibria may exist. Given that multiple equilibria
exist, we need to further investigate if the navigable small
world possess further properties making it the likely choice
in practice. This is the task of the remaining sections.

4.2 Equilibrium Stability in DRB Game
In this section, we show the important results that the

navigable small-world network is stable in terms of toler-
ating both collusions of any group of players and arbitrary
deviations of random players’ strategies, while other non-
navigable equilibria do not tolerate either collusions or ran-
dom perturbations of a small group of players.

We first show that the navigable small-world network tol-
erates collusion of players of any size.

1Technically, a statement being true for sufficiently large n
means that there exists a constant n0 ∈ N that may only
depend on model constants such as k and γ, such that for
all n ≥ n0 the statement is true in the grid with parameter n.



Theorem 3. For the DRB game in the k-dimensional
grid, the navigable small-world network (r ≡ k) is a strong
Nash equilibrium for sufficiently large n.

Proof (Sketch). We prove a slightly stronger result —
any node u in any strategy profile r with ru 6= k has strictly
worse payoff than its payoff in the navigable small world.
Intuitively, when u deviates to 0 ≤ ru < k, its loss on reci-
procity would outweigh its gain on link distance; when u
deviates to ru > k, its loss on link distance is too much to
compensate any possible gain on reciprocity. The detailed
proof is in Appendix B.

The above theorem shows that the navigable small-world
equilibrium is not only immune to unilateral deviations, but
also to deviations by coalitions, and in particular it is Pareto-
optimal, such that no player can improve her payoff without
decreasing the payoff of someone else.

Next, we would like to see if the navigable equilibrium can
also tolerate deviations of a random set of players, even if
the deviations could be arbitrary and there is no guaran-
tee that deviated players are better off. To do so, we define
the following δ-deviation Nash equilibrium, which intuitively
means that even if each player has an independent probabil-
ity of p ≤ δ to deviate to an arbitrary strategy, the unique
best response of every node u after the deviation is still r∗u.

Definition 4 (δ-deviation Nash equilibrium). Let
Dp ⊆ V be a random set of nodes where each node u ∈ V
is independently selected to be in Dp with probability p. An
NE r∗ ∈ S is a δ-deviation NE if for any 0 < p ≤ δ, with
probability at least 1− 1/n, for all u ∈ V , all ru ∈ Σ \ {r∗u},
all r′Dp

∈ Σ|Dp|,

πu(r∗u, r
∗
V \(Dp∪{u}), r

′
Dp

) > πu(ru, r
∗
V \(Dp∪{u}), r

′
Dp

),

where the probability is taken from the probability space of
Dp.

The equilibrium is more robust when δ is larger. With the
above definition, we have the following theorem:

Theorem 4. For the DRB game in a k-dimensional grid
(k > 1), For any constant ε with 0 < ε < γ/4, there exists
n0 ∈ N (depending only on k, γ, and ε), for all n ≥ n0, the
navigable small-world network (r ≡ k) is a δ-deviation NE
for δ = 1− n−ε.

Proof (Sketch). The independently selected deviation
node set Dp satisfies that with high probability, for any
node u, at sufficiently many distance levels from u there are
enough fraction of non-deviating nodes. We then show that
u obtains higher order payoff just from these non-deviating
nodes than any possible payoff she could get from any pos-
sible deviation. The full proof is in [37].

Notice that δ is close to 1 when n is sufficiently large,
meaning that the navigable equilibrium tolerates arbitrary
deviations from a large number of random nodes.

After showing that the navigable small-world is very sta-
ble, we now examine the stability of other possible equilibria.

Theorem 5. For the DRB game in a k-dimensional grid
(k > 1), For any constant ε with 0 < ε < γ/4, there exists
n0 ∈ N (depending only on k, γ, and ε), for all n ≥ n0,
any possible NE r 6≡ k is not an f-strong NE for f = 2/nε.
Moreover, we can find a class of coalition sets C such that
every node u ∈ C would deviate to ru = k, and then the best
response of all nodes in the next step is to select k.

Proof (Sketch). The proof is based on Theorem 4. We
notice that a large random set D of nodes deviating arbi-
trarily from r ≡ k can be viewed as a small random set V \D
of nodes collude together to deviate to rD ≡ k from an ar-
bitrary strategy profile. We then bound the size of coalition
|V \D| using Chernoff bound. The full proof is in [37].

When n is sufficiently large, we see that f is close to 0,
which means that the collusion by a small portion of play-
ers could drive the system out of the current non-navigable
equilibrium and make the system quickly converge to the
navigable equilibrium. Therefore, non-navigable equilibria
are not stable under collusions of small groups of nodes.

In terms of random perturbation, a symmetric view of
Theorem 4 already implies that if a small number of ran-
dom nodes could perturb to strategy k from an arbitrary
strategy profile, then the best response of all nodes after the
perturbation is to select k. In addition, we show below that
for the random small-world network, which is shown to be
another NE, it does not tolerate a small set of random nodes
randomly perturbing to a finite set of other strategies (not
necessarily including k). Again, in this case the unique best
response for every node after the perturbation is to select k.

Theorem 6. For the DRB game in a k-dimensional grid
(k > 1) with the initial strategy profile r ≡ 0 and a finite
perturbed strategy set S ⊂ Σ with at least one non-zero entry
(0< maxS ≤ β), for any constant ε with 0 < ε < γ, there
exists n0 ∈ N (depending only on k, γ, and ε), for all n ≥ n0,
if for any u ∈ V , any s ∈ S \ {0}, ru is perturbed to s

with independent probability of p ≥ 1/n
(k−1)ε
k+β , then with

probability 1− 1/n,

Bu(r′−u) = k, ∀u ∈ V,

where r′ is the strategy profile after the perturbation.

Proof (Sketch). We consider the gain of a node u when
selecting ru = k separately from each group of nodes with
the same strategy after the perturbation, and then apply the
results in Theorem 1. See [37] for details.

An example of the above perturbation assumption is
that each node is selected independently with probability

|S|/n
(k−1)ε
k+β for perturbation, and perturbed strategy is se-

lected from S uniformly at random. Note that |S|/n
(k−1)ε
k+β is

very small for large enough n and a finite perturbed strategy
set S, which implies that the best response of any node u in
the perturbed profile becomes ru = k as long as a small num-
ber of random nodes are perturbed to a finite set of nonzero
strategies. Suppose that every node chooses his/her best
response against others simultaneously, the random small-
world NE (r ≡ 0) would be switched to the navigable small-
world NE (r ≡ k) in just one step after the perturbation.

4.3 Implications from Theoretical Analysis
Combining the above theorems together, we obtain a bet-

ter understanding of how the navigable small-world network
is formed. From any arbitrary initial state, best response dy-
namic drives the system toward some equilibrium, with the
navigable small world as one of them (Corollary 2). Even if
the systems temporarily converges to a non-navigable equi-
librium, the state will not be stable — either a small-size
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to navigable small-world
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Figure 6: From ran-
dom NE to small-world
NE (perturbed probabil-
ity p=0.01).

collusion (Theorem 5) or a small-size random perturbation
(Theorem 6) would make the system leave the current equi-
librium and quickly enter the navigable equilibrium. Once
entering the navigable equilibrium, it is very hard for the
system to move away from it — no collusion of any size
would drive the system away from this equilibrium (Theo-
rem 3), and even if a large random portion of nodes deviate
arbitrarily the system still converge back to the navigable
equilibrium in the next step (Theorem 4). These theoretical
results strongly support that the navigable small world is the
unique stable system state, which suggests that the funda-
mental balance between reaching out to remote people and
seeking reciprocal relationship is crucial to the emergence of
navigable small-world networks.

5. EMPIRICAL EVALUATION
In this section, we empirically examine the stability of

navigable small-world NE. We simulate the DRB game on
two dimensional grids, and consider nodes having full in-
formation, limited information, or no information of other
players’ strategies.

Before the main empirical evaluation, we also test the ef-
fect of the grid size on navigable equilibrium, since our theo-
retical results require sufficiently large grids. We found that
for r ≡ 2.4 for 10 × 10 grid and r ≡ 2.03 for a 1000 × 1000
grid, with the granularity of γ = 0.01 (see [37] for more de-
tails). In our following experiments, we use a 100× 100 grid
with the navigable equilibrium r ≡ 2.1.

5.1 Stability of NE under Perturbation
To demonstrate the stability of navigable NE, we simulate

the DRB game with random perturbation. At time step 0,
each player is perturbed independently with probability p.
If the perturbation occurs on a player u, we assume that the
player u chooses a new strategy uniformly at random from
the interval [0, 10] ∩ Σ. Notice that for strategy ru > 10,
the behavior of nodes is similar to ru = 10 as nodes only
connect to the 4 grid neighbors. We use a granularity of
γ = 0.1 that covers the equilibrium r ≡ 2.1 while reducing
the simulation cost. Let r0 be the strategy profile at time 0
after the perturbation. At each time step t ≥ 1, every player
picks the best strategy based on the strategies of others in
the previous step.

rtu = argmax
ru∈Σ∩[0,10]

π(ru, r
t−1
−u ),∀u, ∀t > 1.

Figure 5 shows an extreme case where every player is per-
turbed when the initial profile is r ≡ 2. The box-plot shows
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Figure 7: Network evolution where each player only
knows the strategies of their friends.

the distribution of players’ strategies at each step. The fig-
ure shows that in just two steps the system returns to the
navigable small-world NE. We tested 100 random starting
profiles, and all of them converge to the navigable NE within
two steps. This simulation result indicates that the naviga-
ble NE is very stable for random perturbations.

To contrast, we study the stability of the random small-
world network in terms of tolerating perturbations. Figure 6
shows the result of randomly perturbing only 1% of players
at the random NE, which are shown as the outliers at step 0.
Note that 1% perturbation does not meet the requirement
in Theorem 6. However, this small fraction of players would
affect the decision of additional players in their vicinity, who
can significantly improve the reciprocity by also linking in
the vicinity. The figure clearly shows that in a few steps,
more and more players would change their strategies, and
the system finally goes to the navigable small-world NE.2 We
tested 100 random starting profiles, and all of them converge
to the navigable NE within at most 12 steps.

These results show that the navigable small-world NE are
robust to perturbations, while random small-world NE is
not stable and easily transits to the small-world NE under
a slight perturbation.

5.2 DRB Game with Limited Knowledge
Scenario 1: knowing friends’ strategies. In practice,
a player does not know the strategies of all players. So we
now consider a weaker scenario where a player only knows
the strategies of their friends. With these limited knowledge,
a player can guess the strategies of all other players and pick
the best response to the estimated strategies of all players.

To examine the convergence of navigable small-world NE
in this scenario, we simulate the DRB game as follows. At
time step 0, each player chooses an initial strategy uniformly
at random from the interval [0, 10]∩Σ. At every step t ≥ 0,
each player u creates q out-going long-range links based on
her current strategy rtu, and learns the connection prefer-
ences of these q long-range contacts. Let F tu be the set of
these q long-range contacts. We further allows a random
noise term ε for each connection preference learned from the
friends. Let rtv (v ∈ F tu) be the learned (noisy) connection
preference. Then based on these newly learned connection
preferences, player u estimates the strategies of all other
players. One reasonable estimation method is to assume
that players close to one another in grid distance have simi-
lar strategy. More specifically, for a non-friend node v 6∈ F tu,

2In step 1 and 2 in Figure 6, the number of outliers is larger
than in step 0, even though the rendering make it seems
they are less.
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u estimates the strategy of v by the average weight of known
strategies:

rtv =

∑
f∈F tu

rf,t−1/dM (v, f)∑
f∈F tu

1/dM (v, f)
.

Here we do not use the connection preferences learned in the
previous steps and effectively assume that those old links are
removed. This is both for convenience, and also reasonable
since people could only maintain a limited number of con-
nections and it is natural that new connections replace the
old ones. Moreover, the connection preferences of those old
connections may become out-dated in practice anyway. Af-
ter the estimation procedure, player u uses the strategy rtv
from all other players (either learned or estimated) to com-
pute its best response rt+1

u for the next step.
In our experiment, we set q = 30. Figure 7(a) shows that

when players have accurate knowledge of the strategies of
their friends without noise, the system converges in just two
steps. Even when the information on friends’ strategies is
noisy, the system can still quickly stabilize in a few steps to
a state close to the navigable small-world NE, as shown in
Figure 7(b). We tested 100 random starting profiles and also
other estimation methods such as randomly choosing a con-
nection preference based on friends’ connection preference
distributions, and results are all similar. This experiment
further demonstrates the robustness of the small-world NE
even under limited information on connection preferences.

Scenario 2: No information about others’ strategies.
We now consider the weakest scenario where each player has
no knowledge about the strategies of other players. To get
the payoff in this scenario, a player creates a certain number
of links with the current strategy, and computes the payoff
by multiplying the average link distance and the percentage
of reciprocal links.

To make it even harder, we do not allow the player to
try many different strategies at each step before fixing her
strategy for the step. Instead, at each step each player only
has one chance to slightly modify her current strategy. If the
new strategy yields better payoff, the player would adopt
the new strategy. So as the time goes on, the player could
change the strategy towards the best one.

We simulate the DRB game as follows: At time step 0,
each player chooses an initial strategy uniformly at random
from the interval [0, 10] ∩ Σ. Every player creates q out-
going links with her current strategy. At each time step
t ≥ 1, each player changes the strategy, i.e.,ru ← ru + δ,
and creates q new links with this new strategy, where δ is a
random number determined as follows. First, for the sign of

δ, in the first step it is randomly assigned positive or negative
sign with equal probability; in the raining steps, to make the
search efficient, we keep the sign of δ if the previous change
leads to a higher payoff; otherwise we reverse the sign of δ.
For the magnitude of δ, i.e. |δ|, we sample a value uniformly
at random from (0, 1] ∩ Σ.

We simulate this system with q = 30. Figure 8 demon-
strates that the system can still evolve to a state close to the
navigable small-world NE in a few hundred steps, e.g., the
strategies of 80.5% players fall in the interval [1.8, 2.4], and
the median of the strategies is the navigable NE strategy of
2.1. We test 50 random starting profiles, and take snapshots
of the strategy profiles at the time step t = 500. On average,
the strategies of 79.8% players in the snapshots fall in the
interval [1.8, 2.4].

In summary, our empirical evaluation strongly supports
that our payoff function considering the balance between
link distance and reciprocity naturally gives rise to the nav-
igable small-world network. The convergence to navigable
equilibrium will happen either when the players know all
other players’ strategies, or only learn their friends’ strate-
gies, or only use the empirical distance and reciprocity mea-
sure. Once in the navigable equilibrium, the system is
very stable and hard to deviate by any random perturba-
tion. Furthermore, other equilibria such as the random small
world is not stable, in that a small perturbation will drive
the system back to the navigable small-world network.

6. FUTURE WORK
Our study opens many possible directions of future work.

For example, one may extend the current study to non-
uniform population distributions on the grid and conduct
theoretical and empirical analysis to see if the navigable
small world would still emerge as a stable equilibrium. An-
other direction is to investigate deeper reasons or models
on why individual’s connection preference follows a power
law form of dM (u, v)−ru . Such studies may need to inte-
grate prior studies on node and link dynamics and our game
theoretic approach, and the integration may provide a more
complete picture of the underlying mechanisms for navigable
small-world networks.
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APPENDIX
A. PROOF OF THEOREM 1 FOR THE

CASE OF S > 0
In all proofs in the appendix, for a given node u ∈ V , we

denote D(ru) =
∑
∀v 6=u pu(v, ru)dM (u, v) as its average grid

distance of its long range contacts (simply referred to as the
link distance), and Pu(ru, r−u) =

∑
∀v 6=u pu(v, ru)pv(u, rv)

as its reciprocity. When r−u ≡ s, we simply use P (ru, s) to
denote Pu(ru, r−u ≡ s). The subscript u in both D(ru) and
P (ru, s) is omitted because their values are the same for all



u ∈ V . Let nD be the longest grid distance among nodes
in K(n, k, p, q, r). We have that nD = kbn/2c. We denote
bu(j) as the number of players at grid distance j from u.
We can find two constants ξ−k and ξ+

k only depending on

the dimension k, so that ξ−k j
k−1 ≤ bu(j) ≤ ξ+

k j
k−1 for 1 ≤

j ≤ bn/2c and 1 ≤ bu(j) ≤ ξ+
k j

k−1 for bn/2c < j ≤ nD.3

Note that the payoff function (Eq. (3)) for the DRB game is
indifferent of parameters p and q of the network, so we treat
p = q = 1 for our convenience in the analysis.

Proof of Bu(r−u ≡ s) = k if s > 0. Given r−u ≡ s, we
now prove that the decision of ru = k is the unique best
response of player u as long as s > 0.

Payoff of ru = k: We have the lower bound for the link
distance and the reciprocity:

D(ru) ≥
∑n/2
j=1 bu(j) · j

−k · j
c(k)

≥
ξ−k n

2c(k)
, (4)

P (ru, s) ≥
∑n/2
j=1 bu(j) · j

−k · j−s

c(k)c(s)
≥ ξ−k

n/2∑
j=1

j−1−s

c(k)c(s)
≥

ξ−k
c(k)c(s)

.

(5)
Notice that the normalization coefficient c(k) can be

bounded as:

c(k) =
∑
∀v 6=u

dM (u, v)−k ≤
nD∑
j=1

bu(j)j
−k ≤ ξ+

k

nD∑
j=1

1

j
≤ ξ+

k ln(2kn).

(6)

Based on above inequalities, we can get the lower bound
for the payoff of player u in the case of ru = k:

π(ru = k, r−u ≡ s) ≥
(ξ−k )2

2(ξ+
k )2c(s)

n

ln2(2kn)
. (7)

Payoff of ru < k. We now turn to the player’s payoff
when ru < k and we write ε = k − ru (γ ≤ ε ≤ k). In this
case, the upper bound for the link distance and reciprocity
are as follows:

D(ru) ≤
∑nD
j=1 bu(j) · j

−ru · j
c(ru)

≤
ξ+
k

∫ nD+1
1 xεdx

c(ru)

≤
ξ+
k (nD + 1)1+ε

(1 + ε)c(ru)
≤
ξ+
k (kn)1+ε

c(ru)
, (8)

P (ru, s) ≤
∑nD
j=1 bu(j) · j

−ru · j−s

c(ru)c(s)
≤ ξ+

k

nD∑
j=1

jε−1−s

c(ru)c(s)
. (9)

In the case of ε ≥ 1 + s, we have:

P (ru, s) ≤ ξ+
k

∫ nD+1

j=1

jε−1−s

c(ru)c(s)
≤

ξk(nD + 1)ε−s

(ε− s)c(ru)c(s)
≤
ξ+
k (kn)ε−s

c(ru)c(s)
.

(10)

In the case of ε < 1 + s, we have:

P (ru, s) ≤
ξ+
k

c(ru)c(s)

(
1 +

∫ nD

j=1
jε−1−s

)

≤


ξ+
k

((kn/2)ε−s+ε−s−1)

(ε−s)c(ru)c(s)
if ε 6= s,

2ξ+
k

ln(2kn)

c(ru)c(s)
if ε = s.

(11)

3The exact values of ξ−k and ξ+
k can be derived by the combi-

natorial problem of counting the number of ways to choose k
non-negative integers such that they sum to a given positive
integer j.

The coefficient c(ru) can be bounded as:

c(ru) =
∑
∀v 6=u

dM (u, v)−ru ≥
n/2∑
j=1

bu(j)j
−ru ≥ ξ−k

n/2∑
j=1

jε−1

≥ ξ−k

∫ n/2

1
xε−1dx ≥

ξ−k
ε

(n
2

)ε
−
ξ−k
ε
≥
ξ−k
2ε

(n
2

)ε
.

(12)

The last inequality above relies on a loose relaxation of
1
2

(
n
2

)ε ≥ 1, which is guaranteed for all n ≥ 21+1/γ since
ε ≥ γ.

Combining Eq.(8), (10), (11), and (12), we have the payoff
of node u in the case of ru < k:

π(ru = k − ε, r−u ≡ s) ≤

if ε > s,
(ξ+
k

)222ε+2ε2k1+2ε−s

(ξ−
k

)2(ε−s)c(s)
n1−s ≤ (ξ+

k
)222k+2k2k+3

(ξ−
k

)2γc(s)
n1−γ ,

if ε = s,
(ξ+
k

)222ε+32ε2k1+εn1−ε ln(2kn)

(ξ−
k

)2c(s)
≤ (ξ+

k
)222k+3kk+3

(ξ−
k

)2c(s)
n1−γ ln(2kn),

if ε < s,
(ξ+
k

)222ε+2ε2k1+ε

(ξ−
k

)2c(s)

(
1 + 1

s−ε

)
n1−ε ≤ (ξ+

k
)222k+3kk+3

(ξ−
k

)2γc(s)
n1−γ .

(13)

The inequalities in the three cases above use the facts γ ≤
ε ≤ k, s ≥ γ (since s > 0), and ε− s ≥ γ when ε > s.

Comparing Eq.(13) with Eq.(7), the common denominator
c(s) can be ignored. For the rest terms, Eq.(7) is in strictly
higher order in n than Eq.(13), which implies that we can
find a large enough n0 (only depending on model constants
k and γ) such that for all n ≥ n0, π(ru = k, r−u ≡ s) >
π(ru = s′, r−u ≡ s), for all s ∈ Σ \ {0} and all s′ ∈ Σ with
s′ < k.

Payoff of ru > k. We write ε = ru − k (ε ≥ γ). The
bound for the link distance is:

D(ru) ≤
∑nD
j=1 bu(j) · j

−ru · j
c(ru)

≤ ξ+
k

nD∑
j=1

j−ε

c(ru)

≤ ξ+
k

1 +
∫ nD
1 x−εdx

c(ru)
≤


ξ+
k

(1−ε)c(ru)
(kn/2)1−ε if ε < 1,

ξ+
k

c(ru)
ln(2kn) if ε ≥ 1.

(14)

The bound on the reciprocity is:

P (ru, s) ≤
∑nD
j=1 bu(j) · j

−ru · j−s

c(ru)c(s)
≤
∑nD
j=1 bu(j)j

−ru

c(ru)c(s)
=

1

c(s)
.

(15)

On the other hand, the lower bound for the coefficient
c(ru) is:

c(ru) =
∑
∀v 6=u

dM (u, v)−ru ≥
n/2∑
j=1

bu(j)j
−r ≥ bu(1) ≥ ξ−k . (16)

Combining Eq.(14), (15), and (16), we get:

π(ru = k + ε, r−u ≡ s) ≤
ξ+
k
k1−ε

ξ−
k

(1−ε)c(s)
n1−ε ≤ ξ+

k
k

ξ−
k
γc(s)

n1−γ if ε < 1,

ξ+
k

ξ−
k
c(s)

ln(2kn) if ε ≥ 1.
(17)



Comparing Eq.(17) with Eq.(7), the common denominator
c(s) can be ignored. For the rest terms, Eq.(7) is in strictly
higher order in n than Eq.(17), which implies that we can
find a large enough constant n0 (only depending on model
constants k and γ) such that for all n ≥ n0, π(ru = k, r−u ≡
s) > π(ru = s′, r−u ≡ s), for all s ∈ Σ \ {0} and all s′ ∈ Σ
with s′ > k.

We complete the proof when combining the cases of ru < k
and ru > k.

B. PROOF OF THEOREM 3
We introduce some notations first. Given the strategy

profile r and a node u with ru 6= k, we partition the rest
nodes V \{u} into three sets: V<k = {u ∈ V \{u} | ru < k},
V>k = {u ∈ V \ {u} | ru > k}, V=k = {u ∈ V | ru = k}. For
any A ⊆ V , Let Pu,A(r) =

∑
v∈A pu(v, ru)pv(u, rv) be the

reciprocity u obtained from subset A. Then we have

πu(r) = D(ru)
(
Pu,V<k (r) + Pu,V>k (r) + Pu,V=k

(r)
)
. (18)

In this section, we actually prove a slightly stronger result:
any node u in any strategy profile r with ru 6= k is strictly
worse off than its payoff in the navigable equilibrium, when
n is large enough. To prove this result, we first show the
following key lemma, which will be used in later theorems
too.

lemma 1. In the k-dimensional DRB game, there exists
a constant κ (only depending on model constants k and γ),
for sufficiently large n (in particular n ≥ max(e4, 2k)), the
following statement holds: for any strategy profile r, any
node u with ru 6= k, πu(ru, r−u) ≤ κn1−γ .

Proof. We now consider the case of ru < k and ru > k
separately.

Payoff of ru < k. Let ε = k − ru (γ ≤ ε ≤ k). We first
consider the reciprocity player u obtains from the players in
V<k. We have c(rv) ≥ c(k−γ) for ∀v ∈ V<k, since rv ≤ k−γ.
Then we have:

Pu,V<k (r) =
∑

v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)
≤

∑
v∈V<k

dM (u, v)−ru

c(ru)c(k − γ)

≤
∑
∀v 6=u dM (u, v)−ru

c(ru)c(k − γ)
=

1

c(k − γ)
. (19)

Combining the above inequality with the bounds in Eq.(8)
and (12), we get:

D(ru)Pu,V<k (r) ≤
ξ+
k 2ε+3εk1+ε

(ξ−k )2
n1−γ ≤

ξ+
k 2k+3kk+2

(ξ−k )2
n1−γ .

(20)

Next we examine the reciprocity that player u obtains
from the players in V>k. Note that for all v ∈ V>k, rv ≥
k + γ. Using Eq.(16), we have:

Pu,V>k (r) =
∑

v∈V<k

dM (u, v)−ru−rv

c(ru)c(rv)

≤
∑n
j=1 bu(j) · j−ru · j−k−γ

ξ−k c(ru)
=
ξ+
k

∑n
j=1 j

−1−ru−γ

ξ−k c(ru)

≤
ξ+
k (1 +

∫ n
1 x−1−ru−γdx)

ξ−k c(ru)
≤

ξ+
k (1 + ru + γ)

ξ−(ru + γ)c(ru)
≤
ξ+(k + 1)

ξ−γc(ru)
.

Based on the bounds in Eq.(8) and (12), we get:

D(ru)Pu,V>k (r) ≤
ξ+
k 22ε+2ε2(k + 1)k1+ε

(ξ−k )2γ
n1−ε

≤
ξ+
k 22k+3kk+4

(ξ−k )2γ
n1−γ . (21)

We now examine the reciprocity of player u from players
in V=k. Notice that the coefficient c(k) can be bounded as:

c(k) ≥ ξk
n/2∑
j=1

j−1 ≥ ξ−k

∫ n/2

1
x−1dx ≥ ξ−k (lnn− ln 2) ≥

ξ−k lnn

2
,

(22)

where the last inequality is true when n ≥ e4. Using Eq.(13)
with s = k, together with Eq.(22), we get:

D(ru)Pu,V=k
(r) ≤ π(ru = k − ε, r−u ≡ k)

≤


(ξ+
k

)222k+4kk+3 ln(2kn)

(ξ−
k

)3 lnn
n1−γ ≤ (ξ+

k
)222k+5kk+3

(ξ−
k

)3
n1−γ if ε = k.

(ξ+
k

)222k+4kk+3

γ(ξ−
k

)3
n1−γ

lnn
if ε < k.

(23)

The last inequality in the case of ε = k requires n ≥ 2k.
Adding up results in Eq.(20), (21), (23), we obtain that

π(ru, r−u) ≤
3(ξ+

k )2 · 22k+5kk+4

γ(ξ−k )3
n1−γ ≤

(ξ+
k )222k+7kk+4

γ(ξ−k )3
n1−γ ,

(24)
when n ≥ max{e4, 2k}.
Payoff of ru > k. Let ε = ru − k (ε ≥ γ). For this
case, we can relax the reciprocity Pu(ru, r−u) to one and
only upper bound link distance D(ru). Applying bounds in
Eq.(14) and (16), we obtain:

π(ru = k+ε, r−u) ≤


ξ+
k

ξ−
k

(1−ε)
(kn/2)1−ε ≤ ξ+

k
k

ξ−
k
γ
n1−γ if ε < 1,

ξ+
k

ξ−
k

ln(2kn) ≤ 2n1−γ if ε ≥ 1.

(25)

The last inequality in the above case of ε ≥ 1 holds when
n ≥ 2k and γ ≤ 1/2.

Finally, the lemma holds when we combine Eq.(24) and
(25)

Proof of Theorem 3. Before derivation, a player u has
the following payoff lower bound, according to Eq.(6) and
(7).

π(ru = k, r−u ≡ k) ≥
(ξ−k )2

2(ξ+
k )3

n

ln3(2kn)
. (26)

Suppose that a coalition C deviates, and the new strategy
profile is r. Then some node u ∈ C must select a new
ru 6= k. By Lemma 1, there is a constant κ such that for
all sufficiently large n, π(ru, r−u) ≤ κn1−γ . Comparing with
Eq. (26), we see that the payoff of u before the deviation is in
strictly higher order in n than its payoff after the deviation.
Therefore, for all sufficiently large n, u is strictly worse off,
which means no coalition could make some member strictly
better off while others not worse off. Hence, navigable small-
world network (r ≡ k) is a strong Nash equilibrium.
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[4] Boguñá, M., Krioukov, D., and Claffy, K.
Navigability of complex networks. Nature Physics 5
(2009), 74–80.

[5] Chaintreau, A., Fraigniaud, P., and Lebhar, E.
Networks become navigable as nodes move and forget.
In Proc. of ICALP ’08 (2008).

[6] Chen, W., Fang, W., Hu, G., and Mahoney,
M. W. On the hyperbolicity of small-world and
treelike random graphs. Internet Mathematics 9, 4
(2013), 434–491.

[7] Cho, E., Myers, S. A., and Leskovec, J.
Friendship and mobility: User movement in
location-based social networks. In Proc. of KDD
(2011).

[8] Clauset, A., and Moore, C. How do networks
become navigable. In Arxiv preprint arXiv:0309.415v2
(2003).

[9] Gittell, R., and Vidal, A. Community Organizing:
Building Social Capital as a Development Strategy.
Sage publicaiton, 1998.

[10] Goldenberg, J., and Levy, M. Distance is not
dead: Social interaction and geographical distance in
the internet era. In Arxiv preprint arXiv:0906.3202.
(2009).

[11] Gong, N. Z., Xu, W., Huang, L., Mittal, P.,
Stefanov, E., Sekar, V., and Song, D. Evolution
of social-attribute networks: Measurements, modeling,
and implications using google+. In Proc. of IMC
(2012).

[12] Gouldner, A. W. The norm of reciprocity: a
preliminary statement. American Sociological Review
25, 4 (1960), 161–178.

[13] Granovetter, M. Getting a job: A study of contacts
and careers. Harvard University Press, 1974.

[14] Granovetter, M. S. The strength of weak ties.
American Journal of Sociology (1973), 1360–1380.
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and Vahdat, A. Greedy forwarding in dynamic
scale-free networks embedded in hyperbolic metric
spaces. In Proceedings of the 29th IEEE International
Conference on Computer Communications
(INFOCOM) (2010), pp. 2973–2981.

[33] Sandberg, O., and Clarke, I. The evolution of
navigable small-world networks. In Arxiv preprint
arXiv:cs/0607025 (2006).

[34] Schaller, M., and Latank, B. Distance matters:
Physical space and social impact. Personality and
Social Psychology Bulletin 25 (1995).

[35] Tardos, E., and Wexler, T. Network formation
games and the potential function method, 2007. In
Algorithmic Game Theory.

[36] Watts, D. J., and Strogatz, S. H. Collective
dynamics of ‘small-world’ networks. Nature 393, 6684
(1998), 440–442.

[37] Yang, Z., and Chen, W. A game theoretic model for
the formation of navigable small-world networks, 2014.
full technical report, Arxiv preprint arXiv:1411.4097.

[38] Yang, Z., Wilson, C., Wang, X., Gao, T., Zhao,
B. Y., and Dai, Y. Uncovering social network sybils
in the wild. In Proc. of IMC (2011).


	Introduction
	Preliminaries
	Kleinberg's Small-World Model
	Game and Solution Concepts

	Small-world Formation Games
	Routing-based Payoff
	Distance-Reciprocity Balanced Payoff

	Properties of the DRB Game
	Equilibrium Existence in DRB Game
	Equilibrium Stability in DRB Game
	Implications from Theoretical Analysis

	Empirical Evaluation
	Stability of NE under Perturbation
	DRB Game with Limited Knowledge

	Future Work
	Acknowledgments
	Proof of Theorem 1 for the Case of s > 0
	Proof of Theorem 3
	References

