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ABSTRACT

Influence diffusion and influence maximization in largeleaan-
line social networks (OSNs) have been extensively studiedlse
of their impacts on enabling effective online viral marketi Exist-
ing studies focus on social networks with only friendshifatiens,
whereas the foe or enemy relations that commonly exist inyman
OSNSs, e.g., Epinions and Slashdot, are completely igndneithis
paper, we make the first attempt to investigate the influeifae d
sion and influence maximization in OSNs with both friend amel f
relations, which are modeled using positive and negatigegdn
signed networks. In particular, we extend the classic votiel to
signed networks and analyze the dynamics of influence dtffusf
two opposite opinions. We first provide systematic charazgon
of both short-term and long-term dynamics of influence diffa in
this model, and illustrate that the steady state behavibtiseody-
namics depend on three types of graph structures, whichfeetoe
as balanced graphs, anti-balanced graphs, and strictiglamied
graphs. We then apply our results to solve the influence maaim
tion problem and develop efficient algorithms to selecfahigeeds
of one opinion that maximize either its short-term influenoger-
age or long-term steady state influence coverage. Extessive
ulation results on both synthetic and real-world netwogksh as
Epinions and Slashdot, confirm our theoretical analysisndli-i
ence diffusion dynamics, and demonstrate that our influereoe-
mization algorithms perform consistently better than ptieuristic
algorithms.
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1. INTRODUCTION

As the popularity of online social networks (OSNs) such azFa
book and Twitter continuously increases, OSNs have became a
important platform for the dissemination of news, ideasnions,
etc. The openness of the OSN platforms and the richness ef con
tents and user interaction information enable intelligetiine rec-
ommendation systems and viral marketing techniques. Famex
ple, if a company wants to promote a new product, it may idignti
a set of influential users in the online social network and/ioi®
them with free sample products. They hope that these infalent
users could influence their friends, and friends of friemde net-
work and so on, generating a large influence cascade so timgt ma
users adopt their product as a result of such word-of-moffiglate
The question is how to select the initial users given a lichiiedget
on free samples, so as to influence the largest number ofempl
purchase the product through this “word-of-mouth” proceisn-
ilar situations could apply to the promotion of ideas anchapis,
such as political candidates trying to find early supporfersheir
political proposals and agendas, government authoritiesom-
panies trying to win public support by finding and convincisag
initial set of early adopters to their ideas.

The above problem is referred to as th8uence maximization
problem in the literature, which has been extensively suiih re-
cent years [8-10, 15-17, 20, 21, 25, 34, 36]. In these studes
eral influence diffusion models are proposed to formulagetth-
derlying influence propagation processes, including lirlkegesh-
old (LT) model, independent cascade (IC) model, voter maztel
A number of approximation algorithms and scalable heusstire
designed under these models to solve the influence maxionizat
problem.

However, all existing studies only look at networks with ipiue
(i.e., friend, altruism, or trust) relationships, whereéality, rela-
tionships also include negative ones, such as foe, spitéstust
relationships. In Ebay, users develop trust and distrustgients
in the network; In online review and news forums, such as Epin
ions and Slashdot, readers approve or denounce reviewsrnd a
cles of each other. Some recent studies [11, 23, 24] alrezaly |
into the network structures with both positive and negatisa-
tionships. As a common sense exploited in many existingasoci
influence studies [8-10, 15, 20], positive relationshipgsyctne in-
fluence in a positive manner, i.e., you wouttbre likelytrust and
adopt your friends’ opinions. In contrast, we consider thega-
tive relationships often carry influence in a reverse dioect— if
your foe chooses one opinion or votes for one candidate, yaddv
more likelybe influenced to do the opposite. This echoes the prin-
ciples that “the friend of my enemy is my enemy” and “the enemy
of my enemy is my friend”. Structural balance theory has been
developed based on these assumptions in social sciencElfape



ter 5 of [13] and the references therein). We acknowledgeitha
real social networks, people’s reactions to the influenemftheir
friends or foes could be complicated, i.e., one could takeot
posite opinion of what her foe suggests for one situatioropict
but may adopt the suggestion from the same person for a-differ
ent topic, because she trusts her foe’s expertise in thatpiar
topic. In this study, we consider the influence diffusiondaingle
topic, where one always takes the opposite opinion of whatdee
suggests. This is our first attempt to model influence difusn
signed networks, and such topic-dependent simplificasarom-
monly employed in prior influence diffusion studies on unsid
networks [8-10, 15, 17, 20]. Our work aims at providing a math
ematical analysis on the influence diffusion dynamic inooaged
with negative relationship and applying our analysis toelgerith-
mic problem of influence maximization.

1.1 Our contributions

In this paper, we extend the classic voter model [12, 19]¢orin
porate negative relationships for modeling the diffusibaopinions
in a social network. Given an unsigned directed graph (gigra
the basic voter model works as follows. At each step, evedgrio
the graph randomly picks one of ibsitgoingneighbors and adopts
the opinion of this neighbor. Thus, the voter model is slitabin-
terpret and model opinion diffusions where people’s opisimay
switch back and forth based on their interactions with opiemple
in the network. To incorporate negative relationships, wester
signed digraphs in which every directed edge is either pesir
negative, and we consider the diffusion of two opposite iopis,
e.g., black and white colors. We extend the voter model tneslg
digraphs, such that at each step, every node randomly piekefo
its outgoing neighbors, and if the edge to this neighbor stpe,
the node adopts the neighbor’s opinion, but if the edge istieg
the node adopts the opposite of the neighbor’s opinion (@e2).

We provide detailed mathematical analysis on the voter inode
dynamics for signed networks (Section 3). For short-termaty-
ics, we derive the exact formula for opinion distributioneaich
step. For long-term dynamics, we provide closed-form fdasu
for the steady state distribution of opinions. We show thmt t
steady state distribution depends on the graph structieaivide
signed digraphs into three classes of graph structures anbed
graphs, anti-balanced graphs, and strictly unbalancgehgraach
of which leads to a different type of steady state distritmsi of
opinions. While balanced and unbalanced graphs have béemex
sively studied by structural balance theory in social smefi3],
the anti-balanced graphs form a new class that has not been co
ered before, to the best of our knowledge. Moreover, our-teng
dynamics not only cover strongly connected and aperiogjaghs
that most of such studies focus on, but also weakly connetdd
disconnected digraphs, making our study more comprehensiv

We then study the influence maximization problem under the
voter model for signed digraphs (Section 4). The problene lier
to select at most initial white nodes while all others are black, so
that either in short term or long term the expected numberhifen
nodes is maximized. This corresponds to the scenario where o
opinion is dominating the public and an alternative opinjery. a
competing political agenda, or a new innovation) tries to wwer
supporters as much as possible by selecting some initidssee
influence on. We provide efficient algorithms that find optisa
lutions for both short-term and long-term cases. In paldigfor
long-term influence maximization, our algorithm providesoan-
prehensive solution covering weakly connected and disected
signed digraphs, with nontrivial computations on influenoger-
age of seed nodes.

Finally, we conduct extensive simulations on both realtdvand
synthetic networks to verify our analysis and to show theeff
tiveness of our influence maximization algorithm (SectipnThe
simulation results demonstrate that our influence maxiticizal-
gorithms perform consistently better than all other heiarizlgo-
rithms. To the best of our knowledge, we are the first to study in-
fluence diffusion and influence maximization in signed neksp
and the first to apply the voter model to this case and prowiile e
cient algorithms for influence maximization under voter relddr
signed networks.

Due to space constraints, some of the proofs and additioaal m
terials are omitted and delegated to our technical rep6it [2

1.2 Related work

In this subsection, we discuss the topics that are closkliectto
our problem, such as: (1) influence maximization and votedeho
(2) signed networks, and (3) competitive influence diffasio
Influence maximization and voter model. Influence maximiza-
tion has been extensively studied in the literature. Théaini
work [20] proposes several influence diffusion models andiges
the greedy approximation algorithm for influence maximaat
More recent works [8-10, 15, 17, 21, 25, 34] study efficienti-op
mizations and scalable heuristics for the influence maxtion
problem. In particular, the voter model is proposed in [B2, &nd
is suitable for modeling opinion diffusions in which peoptey
switch opinions back and forth from time to time due to theiat-
tions with other people in the network. Even-Dar and Shgfiish
study the influence maximization problem in the voter model o
simple unsigned and undirected graphs, and they show tnaett
seeds for long-term influence maximization are simply tlghést
degree nodes. As a contrast, we show in this paper that seed se
lection for signed digraphs are more sophisticated, eafhgdor
weakly connected or disconnected signed digraphs. Morer vot
model related research is conducted in physics domain,enxther
voter model, the zero-temperature Glauber dynamics forsing
model, invasion process, and other related models of pbpalidy-
namics belong to the class of models with two absorbing statd
epidemic spreading dynamics [1, 32, 38]. However, none efe¢h
works study the influence diffusion and influence maximaaf
voter model under signed networks.
Signed networks.The signed networks with both positive and neg-
ative links have gained attentions recently [3, 22—24]. 28, 4],
the authors empirically study the structure of real-woddial net-
works with negative relationships based on two social s&ehe-
ories, i.e., balance theory and status theory. Kunegis.g22]
study the spectral properties of the signed undirectedhgrapith
applications in link predictions, spectral clustering;.eBorgs et
al. [3] proposes a generalized PageRank algorithm [35]ifpresl
networks with application to online recommendations, \ehte
distrust relations are considered as adversarial or arpitrser be-
haviors, thus the outgoing relations of distrusted usexscarored
while ranking nodes. Our algorithm can also be viewed as & nod
ranking algorithm that generalizes the PageRank algorithyn
treating distrust links as generating negative influentieerathan
ignoring distrusted users’ opinions, and thus our rankireghod is
different from [3]. Overall,none of the above work studies influ-
ence diffusion and influence maximization in signed network
Competitive influence diffusion. A number of recent studies fo-
cus on competitive influence diffusion and maximization4%,
7,18, 31], in which two or more competitive opinions or inaev
tions are diffusing in the network. Although they consideotor
more competitive or opposing influence diffusions, theyaiten
unsigned networks, different from our study here on difiasiith
both positive and negative relationships.



2. VOTER MODEL ON SIGNED NET-
WORKS

We consider a weighted directed graph (digraph) =
(V,E, A), whereV is the set of vertices is the set of directed
edges, and! is the weighted adjacency matrix with;; # 0 if and
only if (4,7) € E, with A;; as the weight of edgg, j). The voter
model was first introduced for unsigned graphs, with nontiega
adjacency matriced’s. In this model, each node holds one of two
opposite opinions, represented by black and white colaisally
each node has either black or white color. At each stepl, every
node: randomly picks one outgoing neighbpmith the probabil-
ity proportional to the weight ofi, j), namelyA;;/>", Ay, and
changes its color tg’s color. The voter model also has a random
walk interpretation. If a random walk starts froitand stops at
nodej at stept, theni’s color at step is j’s color at ste.

In this paper, we extend the voter model to signed digraphs, i
which the adjacency matrid may contain negative entries. A pos-
itive entry A;; represents thatconsiders as a friend ot trustsy,
and a negativel;; means thai considersj as a foe ofi distrusts
j. The absolute valugd;;| represents the strength of this trust or
distrust relationship. The voter model is thus extendedrady
such that one always takes the same opinion from his/herdrie
and the opposite opinion of his/her foe. Technically, athestep
t > 1, i« randomly picks one outgoing neighbgmwith probabil-
ity |Aizj|/ >, |Aic|, and if A;; > 0 (edge(s, 5) is positive) theri
changes its color tg’s color, but if A;; < 0 (edge(z, j) is nega-
tive) theni changes its color to the opposite 1§ color. The ran-
dom walk interpretation can also be extended for signed orésy
if the ¢-step random walk from to j passes an even number of
negative edges, thei's color at stept is the same ag’s color at
step0; while if it passes an odd number of negative edges, tlsen
color at step is the opposite of’s color at ste.

Table 1: Notations and terminologies

G = (V,E,A), | Gisasigned digraph, with signed adjacency ma-
G=(V,E,A) trix A andG is the unsigned version @F, with
adjacency matrixA
AT (resp. A7) is the non-negative adjacend
At A- (resp. A7) g ] Y

matrix representing positive (resp. negative)
edges ofG, with A = AT — A= and A =
At + A-.

Vector forms. All vectors aréV’|-dimensional
column vectors by defaulf; is all one vectoryr is
the stationary distribution of an ergodic digray
G, xo (resp. x¢) is the white color distribution
at the beginning (resp. at stép x is the steady)
state white color distribution;z. (resp. xz,) is
the steady state white color distribution for even
(resp. odd) steps.
d, d¥, and d— are weighted out-degree ve¢
tors of G, whered = A1, d+ = ATt1, and
d~ = A~1; D = diag[d] is the diagonal de
gree matrix filled with entries of.
P = D~ TAis the signed transition matrix of
G andP = D~ A s the transition probability|
matrix of G.

Given a vector, a node sefZ C V, vz is the
projection ofv on Z. Given a partitionS, S of
V, ¥g is signed such thats (i) = v(i) if i € S,
andog (i) = —v(7) if ¢ ¢ S. Given a partition
Sz,S7 of Z, 17,5, is taking the projection of
v on Z first, then negating the signs for entries fin
Sz.

I is the identity matrix. Ig = diag[1g] is the
signed identity matrix.B is the projection of a|
matrix BtoZ C V.

1, m, xo, xt, x,
Te, To

>

vz,0s,0z,5,

I,Is,Bz

Given a signed digrapty = (V, E, A), letG" = (V,E*, A™)
andG~ = (V, E~, A™) denote the unsigned subgraphs consisting
of all positive edgess™ and all negative edgek —, respectively,
whereA™ and A~ are the corresponding non-negative adjacency
matrices. Thus we havd = AT — A~. Similar to unsigned di-
graphs( is aperiodicif the greatest common divisor of the lengths
of all cycles inG is 1, and@ is ergodicif it is strongly connected
and aperiodic. Asink componentf a signed digraph is a strongly
connected component that has no outgoing edges to any notdes o
side the component. When studying the long-term dynamitiseof
voter model, we assume that all signed strongly connectegboe
nents are ergodic. We first study the case of ergodic grapis, a
then extend it to the more general case of weakly connectdis-or
connected graphs with ergodic sink components. Table liggsv
notations and terminologies used in the paper.

3. ANALYSIS OF VOTER MODEL DY-
NAMICS ON SIGNED DIGRAPHS

In this section, we study the short-term and long-term dyinam
of the voter model on signed digraphs. In particular, we angihe
following two questions.

(i) Short-term dynamics: Given an initial distribution of black
and white nodes, what is the distribution of black and whades

at stept > 0?

(ii) Convergence of voter model: Given an initial distribution of
black and white nodes, would the distribution converge® |fxhat

is the steady state distribution of black and white nodes?

3.1 Short-term dynamics

To study voter model dynamics on signed digraphs, we first de-
fine thesigned transition matrixas follows.

Definition 1 (Signed transition matrix). Given a signed digraph
G = (V,E, A), we define thesigned transition matrixof G as
P = DA, whereD = diag[d;] is the diagonal matrix and
di = ) ey |Aij| is the weighted out-degree of node

Next proposition characterizes the dynamics of the votedeho
at each step using theégned transition matrix

Proposition 1. LetG = (V, E, A) be a signed digraph and denote
the initial white color distribution vector aso, i.e., zo(¢) repre-
sents the probability that nodeis white initially. Then, the white
color distribution at steg, denoted by:; can be computed as

t—1

T = PtIEO + (Z Pi)gi,
=0

@)

whereg™ = D' A1, i.e. g~ (i) is the weighted fraction of out-
going negative edges of node

PrROOF. (Sketch) Based on the signed digraph voter model de-
fined in Section 2z, can be iteratively computed as

L A . AG . )
(i) = Y- el + Y P -mal). @
JeEV JEV
The matrix form of eq.(2) yields Eq.(1). a

3.2 Convergence of signed transition matrix

Eq.(1) infers that the long-term dynamic, i.e., the vecter
whent goes to infinity, depends critically on the limit ¢#* and
S°iZ4 P'. We show below that the limiting behaviors of the two
matrix sequences are fundamentally determined by thetstaic



balance of signed digrapfi, which connects to the social balance
theory well studied in the social science literature (cB]]1 We
now define three types of signed digraphs based on their dmlan
structures.

Definition 2 (Structural balance of signed digraphs). LetG =
(V, E, A) be a signed digraph.

1. Balanced digraph G is balancedf there exists a partition
S, S of nodes inV, such that all edges withiis and S are
positive and all edges acrossand S are negative.

2. Anti-balanced digraph. G is anti-balancedf there exists a
partition S, S of nodes i/, such that all edges withifi and
S are negative and all edges acraSsand S are positive.

3. Strictly unbalanced digraph. G is strictly unbalancedf G
is neither balanced nor anti-balanced.

The balanced digraphs defined above correspond to the edlanc
graphs originally defined in social balance theory. It iskndhat
a balanced graph can be equivalently defined by the condhian
all circles inG without considering edge directions contain an even
number of negative edges [13]. On the other hand, the comtept
anti-balanced digraphs seems not appearing in the sodahdz
theory. Note that balanced digraphs and anti-balancedjligr
are not mutually exclusive. For example, a four node cirdida w
one pair of non-adjacent edges being positive and the othier p
being negative is both balanced and anti-balanced. Howéwer
studying long-term dynamics, we only need the above caizgor
tion for aperiodic digraphs, for which we show below thataled
digraphs and anti-balanced digraphs are mutually ex@usiv

Proposition 2. An aperiodic digraphGG cannot be both balanced
and anti-balanced.

With the above proposition, we know that balanced graphs, an
balanced graphs, and strictly unbalanced graphs indeed &or
classification of aperiodic digraphs, where anti-balangeabhs
and strictly unbalanced graphs together correspond tolambed
graphs in the social balance theory. We identify anti-badan
graphs as a special category because it has a unique longiyer
namic behavior different from other graph&n example of anti-
balanced graphs is a graph with only negative edges. In ggner
anti-balanced graphs could be viewed as an extreme in whicty m
hostility exist among individuals, e.g., networks formegddidders
in auctions [5, 33].

The next lemma characterizes the limiting behavioPbfof er-
godic signed digraphs with all three balance structuresceia
signed digraplG = (V, E, A), letG = (V, E, A) corresponds to
its unsigned version4;; = |A;;| for alli,5 € V). WhenG is
ergodic, a random walk o6’ has a unique stationary distribution,
denoted as. Thatis,7” = =” P, whereP = D~' A is the tran-
sition probability matrix forG;. Henceforth, we always usg, S
to denote the corresponding partition for either balanceglgs or
anti-balanced graphs.

Lemma 1. Given an ergodic signed digrapfi = (V, E, A), let
G = (V, E, A) be theunsigneddigraph. WherG is balanced or
strictly unbalanced,P* converges, and whe@' is anti-balanced,
the odd and even subsequence®btonverge to two opposite ma-
trices, i.e.,

lim; oo Pt = 1575
limtaoo Pt = O
lim; 0o P? = 1575

limy oo P21 =

BalancedG:
Strictly unbalanced-:
Anti-balanced’:

I AT
—].571'57

The above lemma clearly shows different convergence betsavi
of P* for three types of graphs. In particuld?! of anti-balanced
graphs exhibits a bounded oscillating behavior in long term

Now, we consider a weakly connected signed digraph=
(V, E, A) with one ergodic sink componefitz with node setZ,
which only has incoming edges from the rest of the signecagigr
G x with node setX = V' \ Z. Then, the signed transition matrix
P has the following block form.

®)

where Px and Pz are the block matrices for componeidts, and
Gz, and Py represents the one-way connections frém to Gz.
Then, thet-step transition matri¥’* can be expressed as

o | PO PY
P = '—O—Tﬁéz)'7 (4)

whereP{) = Pk, P = P, andP" = Y!2} Pi Py PL
WhenG 7 is balanced or anti-balanced, we usg, Sz to denote
the partition of Z defining its balance or anti-balance structure.
Then, we denote column vectors

u, = (Ix — Px) ' Pylzs,,

andu, = (Ix + Px) 'Pylzs,.

©)
(6)

The reason thatx — Px is invertible is becauskm; .. Py = 0,
which is in turn because there is a path from any node G x

to nodes inZ (since Z is the single sink), and thus informally a
random walk fromi eventually reaches and then staysdp. The
same reason applies I + Px.

Let 7~ denote the stationary distribution of nodesGtx, and
7rz,5, 1S signed, with#tz s,(i) = mz(i) for i € Sz, and
7z,5,(1) = —mz(i), otherwise. Lemma 2 discloses the conver-
gence ofP* given various balance structures@f.

Lemma 2. Given the formulation in Eq.(4), we have

! ~T
BalancedG z: lim; . Pt = { R }

~T
0,125,725

lim; .o, P'=0

! ~T
limy— oo P = |:- Q 1= —ugﬂézi“_sz_ ':|
0 . lZ’SZﬂ—Z,Sz

Strictly unbalanced~:

Anti-balanced’ z:

! AT

hmpwpw*:ﬁqhﬂ%5?¥—ﬂ
0, -1z5,7zs,

Weakly connected digraphs with multiple ergodic sinks @&- di

connected digraphs can be similarly analyzed.

3.3 Long-term dynamics

Based on the structural balance classification and the conve

gence of signed transition matrix discussed above, we ane no

ready to analyze the long-term dynamics of the voter model on
signed digraphs. Formally, we are interested in charaitbeyic,

with t — oo, i.e.,

t—1 )

T = tlin;oxt = tlin;o(Ptxo + (Z P"g7).

i=0

@)

If the even and odd subsequencesptonverge separately, we
denotere = lim¢_— oo T2t, Lo = limy oo XT2t+41.

In the following theorem, we first discuss the long-term dyna
ics of voter model on ergodic signed digraphs.



Theorem 1. LetG = (V, E, A) be an ergodic signed digraph, we
have

BalancedG:  z = 1sif(zo— 1)+ 11  (8)
Strictly unbalanceds: r=31 9)
Anti-balanced:  z. = 1s7d (zo — 31) + 11 (10)

2o = —1s7%(zo — 11) + 11 (12)

Theorem 1 has several implications. First of all, for slyicin-
balanced digraphs, each node has equal steady state pitghethbi
being black or white, and it is not determined by the initieitd-

provide probability characterizations in Theorem 3. Oguits can

be readily extended to the case with more than one ergodic sin
components and disconnected digraphs. When the netwoyk onl
contains positive directed edges, the voter model dynaoginshe
interpreted using digraph random walk theory [27-30].

4. INFLUENCE MAXIMIZATION

With the detailed analysis on voter model dynamics for signe
digraphs, we are now ready to solve the influence maximizatio
problem. Intuitively, we want to address the following qu@s. If
only at mos# nodes could be selected initially and be turned white

bution zo. Secondly, anti-balanced digraphs has the same steadyWhile all other nodes are black, how should we choose seeesnod

state distribution as the corresponding balanced grapleven
steps, and for odd steps, the distribution oscillates topposite
(o = 1— ).

For a balanced ergodic digraghwith partition S, S, it is easy
to check that it has the following two equilibrium states: one
state all nodes irs’ are white while all nodes i$ are black; and
in the other state all nodes ifi are black while all nodes i%
are white. We call these two states thelarized states Using
random walk interpretation, we show in the following theuarthat
with probability 1, the voter model dynamic converges to one of
the above two equilibrium states.

Theorem 2. Given an ergodic signed digraghi = (V, E, A),if G

is balanced with partitiors, S, the voter model dynamic converges
to one of the polarized states with probabilityand the probability
of nodes inS being white ist§ (zo— 3 1)+3. Similarly, if G is anti-
balanced, with probabilityl the voter model dynamic oscillates
between the two polarized states eventually, and the pitityatf
nodes inS being white at even stepsds; (zo — 1) + 3.

Theorem 3 introduces the long-term dynamics of the weakly
connected signed digraphs. We consider weakly conne&gteith
a single sink ergodic compone@tz, and use the same notations as
in Section 3.2.

Theorem 3. LetG = (V, E, A) be a weakly connected signed di-
graph with a single sink compone@t; and a non-sink component
Gx. The long term white color distribution vectaris expressed
in two parts:

T

. T T T
z' = lim z; = [rxy,zz]

t—oo

wherex z is the limit of z;z on Gz with initial distribution zoz
and is given as in Theorem 1, and veciory is given below with
respect to the balance structure Gf;:

BalancedG z: Xy = %1}( =+ ubﬁgsz (l’oz — %12)

Strictly unbalanced z: rxy = 3lx
Anti-balanced’ z, event:

Anti-balanced~ z, oddt:

TXY,e = %1)( — uufrE#sZ (zoz — %12)
Txvo = 3lx +uuf s, (xoz — 31z),
whereu;, andu, are defined in Eq.(5) and Eq.(6).

Theorem 3 characterizes the long-term dynamics when the un-
derlying graph is a weakly connected signed digraph witheme
godic sink component. We can see that the results for badeame
anti-balanced sink components are more complicated tfaerth
godic digraph case, since how non-sink components are ctathe
to the sink subtly affects the final outcome of the steadyedtat
havior. In steady state, while the sink component is stithire of
the two polarized states as stated in Theorem 2, the noresimk
ponents exhibit more complicated color distribution, fdrieh we

S0 as to maximize the expected number of white nodes in shaort t
and in long term, respectively?

4.1 Influence maximization problem

We consider two types of short-term influence objectiveg on
is the instant influence which counts the total number of influ-
enced nodes at a step> 0; the other is theaverage influence
which takes the average number of influenced nodes withifirste
t steps. These two objectives have different implicatiortsagpli-
cations. For example, political campaigns try to convinogeks
who may change their minds back and forth, but only the vbters
opinions on the voting day are counted, which matchesristant
influence On the other hand, a credit card company would like to
have customers keep using its credit card service as mucbsas p
sible, which is better interpreted by thgerage influenceWhent
is sufficiently large, it becomes the long-term objectived éong-
term average influence coincides with long-term instant@rfte
when the dynamic converges.

Formally, we define thehort-term instant influencgé (z) and
theshort-term average influenck (o) as follows:

i fi(wo)‘

fe(zo) == 1T:ct(mo) and f (zo) := 1 (12)
Moreover, we definéong term influence as
o 2o filwo)
f(zo) = tlggo ~ir1 (13)

Note that when the dynamic converges (e.g. ergodic balaoced
ergodic strictly unbalanced graphg)xo) = lim¢—oo ft(x0). FOr
ergodic anti-balanced graphs (or sink components), itdergsally
the average of even- and odd-step limit influence.

Given a sefV C V, Letew be the vector in whiclew (j) =
1if j € Wandew(j) = 0if j ¢ W, which represents the
initial seed distribution with only nodes i as white seeds. Let
e; be the shorthand af;,. Unlike unsigned graphs, if initially
no white seeds are selected on a signed digf@phe., zo = 0,
the instant influencg:(0) at stept is in general non-zero, which
is referred to as thground influenceof the graphG at¢. The
influence contribution of a seed gét does not count such ground
influence, as shown in definition 3.

Definition 3 (Influence contribution). Theinstant influence con-
tribution of a seed sell’ to thet-th step instant influence objective,
denoted by, (W), is the difference between the instant influence
at stept with only nodes iV selected as seeds and the ground
influence at step: ¢.(W) = f.(ew) — f¢(0). Theaverage in-
fluence contributiore, (1) and long-term influence contribution
c(W) are defined in the same wag;(W) = fi(ew) — f:(0) and
(W) = f(ew) — £(0).

We are now ready to formally define the influence maximization
problem.



Definition 4 (Influence maximization). Theinfluence maximiza-
tion problem for short-term instant influence is finding a seed set
W of at mostk seeds that maximizé%’s instance influence con-
tribution at stept, i.e., finding W;* arg max|w|<x ct(W).
Similarly, the problem for average influence and long-temm i
fluence is findingW;" = argmaxy <, (W) and W* =

arg max|y <y ¢(W), respectively.

We now provide some properties of influence contribution,
which lead to the optimal seed selection rule. By Eq.(1), axeh

ct(W) = felew) — f:(0) = 1Txt(ew) - 1T:ct(0) = 1" Pley .
(14)

Let c¢:(z) be the shorthand of:({i}), and letc: = [c:(7)] de-

note the vector of influence contribution of individual ned&hen

et = [er()]F = 1T P'. Whent — oo, the long term influence
contributions of individual nodes are obtained as a vector

ZE:O &1 _ 1" ZZ:O p
t+1 t+1

T .
¢’ = lim

t—oo

(15)

t—oo

When P! converges, we simply havé = 17 Jim P'. (16)

Lemma 3 below discloses the important property that the-nflu
ence contribution is a linear set function.

Lemma 3. Given a white seed sé¥, c.(W)
(W) =3 cw (i), ande(W) = 37,y c(i).

Given a vectow, letn™ (v) denote the number of positive entries

in v. By applying Lemma 3, we have the optimal seed selection rule
for instant influence maximization as follows.
Optimal seed selection rule for instant influence maximiza-
tion. Given a signed digraph and a limited buddet selecting
topmin{k, n* (c:)} seeds with the highest(i)’s, i € V, leads to
the maximized instant influence at step 0.

Note that the influence contributions of some nodes may be neg
ative and these nodes should not be selected as white seeds, a
thus the optimal solution may have less thHaseeds. The rules
for average influence maximization and long-term influenegim
mization are patterned in the same way. Therefore, thealdask
now becomes the computation of the influence contributidéms-o
dividual nodes. Below, we will introduce our SVIM algorithifior
Signed Voter model Influence Maximization.

= ZieW et (i),

4.2 Short-term influence maximization

By applying Definition 3 and Lemma 3, we develop SVIM-S al-
gorithm to solve the short-term instant and average infleenax-
imization problem, as shown in Algorithm 1.

Algorithm 1 Short-term influence maximization SVIM-S

1: INPUT: Signed transition matri¥’, short-term period, bud-
getk;
: OUTPUT: White seed selv.
a=1c=1
fori=1:tdo
el = ¢f P;(for instant influence maximization.)
¢t = & + ¢4, (for average influence maximization.)
: W =topmin{k,n"(c;)} (resp.min{k, n" (¢;)}) nodes with
the highest:(4) (resp.c:(4)) values, for instant (resp. average)
influence maximization.

Noghkwd

SVIM-S algorithm requires vector-matrix multiplications, each
of which takes|E| times entry-wise multiplication operations.
Hence the total time complexity of SVIM-S 8(¢ - |E|).

4.3 Long-term influence maximization

We now study the long-term influence contributioand intro-
duce the corresponding influence maximization algorithniNgV
L. We will see that the computation of influence contribution
and seed selection schemes depends on the structural dalatic
connectedness of the graph. While seed selection for tedagic
godic digraphs still has intuitive explanations, the cotagian for
weakly connected and disconnected digraphs is more indalwe
less intuitive.

4.3.1 Case of ergodic signed digraphs

When the signed digrapy = (V, E, A) is ergodic, Lemma 4
below characterizes the long-term influence contributafeodes,
with respect to various balance structures.
Lemma 4. Consider an ergodic signed digraght = (V, E, A).
If G is balancegdwith bipartition S and S, the influence contribu-
tion vectorc = (|S| — |S|)#s. If G is anti-balancedbr strictly
unbalancedc = 0.

Based on Lemma 4, Algorithm 2 summarizes how to compute
the long-term influence contributianon ergodic signed digraphs.

Algorithm 2 ¢ = ergodic(G)
- INPUT: Signed transition matri¥.
: OUTPUT: Long term influence contribution vector
. Detect the structure of ergodic signed digraph
if G is balanced, with bipartitios ands_' then
Compute stationary distributianof P;
c= (IS - 1S)#s;
else
c=0;

Lemma 4 suggests that for ergodic balanced digraphs, wédshou
pick the larger component, e.@, if |S| > |S|, and select the top
min{k, |S|} nodes fromS with the largest stationary distributions
as white seeds. Selecting these nodes will make the pratyadfil
the larger component being white the largest.

4.3.2 Case of weakly connected signed digraphs
We first consider a weakly connected sigrigéavhich has a sin-

gle ergodic sink component z with only incoming edges from the
remaining nodest = V' \ Z.

Lemma 5. Consider a weakly connected digragh= (V, E, A)
with a single ergodic sink compone@t;. If Gz is balancedwith
partition Sz and Sz, the long term influence contribution vector
T = [ck,cL], wherecx = Ox andcz = (15w + |Sz| —

N RONME

C =
|Sz)#2,s,. If G is anti-balancedr strictly unbalancede = 0.
Lemma 5 indicates that influence contribution of the baldnce
ergodic sink component is more complicated than that of #ie b
anced ergodic digraph. This is because the sink componieatsf
the colors of the non-sink component in a complicated wayddp
ing on how non-sink and sink components are connected. There
fore, the optimal seed selection depends on the calculafitine
influence contributions of each sink node, and is not astinéuas
that for the ergodic digraph case.
More sink components. When there exisin > 1 ergodic sink
components, i.e(iz1,Gz2, -+ ,Gzm, the rest of the grapty is
considered as a single componéht. Then the signed transition
matrix P and P* can be written as




where PYY) = '8 P{ Py; P}/, Hence, each sink ergodic
componentPz; along with Px independently follows Lemma 5.
Algorithm 3 below summarizes how to compute the node infleenc
contributions of weakly connected signed digraphs. Nog ity
our assumption, we consider all sink components to be ezgodi

Algorithm 3 ¢ = weakly(G)

1: INPUT: Signed transition matri¥.

2: OUTPUT: Influence contribution vectar.

3. Detect the structure of the weakly connected signed pligra
G, and find itsm > 1 signed ergodic sink components
Gzi,- ,Gzm,

4: fori=1:mdo

5. if Gz is balanced with partitioz;, Sz; then

6: Compute stationary distributiaty; of Py;;

7

8

9

Up; = (_IX — PX)ilPYiiZ_i,Szi;
Czi = (1)T(uz,i + [Szi| — |SZi|)ﬁ—£i~,SZi;

te=1[0x;¢z15 ¢ 5Czm]

4.3.3 General case and SVIM-L algorithm

Given the above systematic analysis, we are now in a pogition
summarize and introduce our SVIM-L algorithm which solvies t
long-term voter model influence maximization problem fongel
aperiodic signed digraphs.

In general, a signed digraph consists> 1 disconnected com-
ponents, within each of which the node influence contribufa-
lows Lemma 5. The long-term signed voter model influence maxi
mization (SVIM-L) algorithm is constructed in Algorithm 4.

Algorithm 4 Long-term influence maximization SVIM-L

1: INPUT: Signed transition matri¥’, budgetk.

2: OUTPUT: White seed selV.

3: Detect the structure of a general aperiodic signed digtap
and find then > 1 disconnected components;, - - - , G
fori=1:mdo

ca, = weakly(G;);
c=lcay; i Cam)s
W = topmin{k, n" (c)} nodes with the highes{i) values.

Noak

Complexity analysis. We considerG = (V, E, A) to be weakly
connected, since disconnected graph case can be treatggzbimd
dently for each connected component for the time complexity
SVIM-L algorithm consists of two parts. The first part extsathe
connectivity and balance structure of the graph, which @addne
using depth-first search with complexi€)(| E|). The second part
uses Algorithm 3 to compute influence contributions of bedsh
ergodic sink components. The dominant computations aréen t
stationary distributionr z;'s and(Ix — Px) ™", which can be done
by solving a linear equation system and matrix invers@{hz; |*)
andO(n’%), respectively, wherex = |X|. Letb be the number
of balanced sink components @, nz be the number of nodes in
the largest balanced sink component. Thus SVIM-L can be done
O(bn%, +n%) time. Alternatively, we can use iterative method for
computing bothrz;'s and1% (Ix — Px)™*, if the largest conver-
gence time¢ of PL,’s andP% is small. (Note that the convergence
time of ergodic digraphs could be exponentially large inegah)

In this case, each iteration step involves vector-matrixtiplica-
tion and can be done i@(mg) time, wherem g is the number
of edges of the induced subgraphs consisting of all nodes in
the balanced sink components akd Note thatmp andtc are
only related to subgrap&' s, which could be significantly smaller
thanG, and thusD (tcmg) could be much smaller than the time of

naive iterations on the entire graph. Overall SVIM-L can beel
in O(|E| 4+ min(bn% + nk,tcmsz)) time.

5. EVALUATION

In this section, we first use both synthetic datasets andoeédl
network datasets to demonstrate the efficacy of our short-éed
long-term seed selection schemes by comparing the penfaesa
with four baseline heuristics. Then, we evaluate how mueh th
short-term and long-term influence can be improved by takieg
edge signs into consideration.

5.1 Performance comparison with baseline
heuristics

For different scenarios, we compare our SVIM-L and SVIM-S
algorithms withfour heuristics, i.e., (1) selecting seed nodes with
the highest weighted outgoing degrees (denoted'y- d~ in the
figures), (2) highest weighted outgoing positive degreesdgted
by d™), (3) highest differences between weighted outgoing ppesit
and negative degrees (denoteddy— d™), and (4) randomly se-
lecting seed nodes (denoted by “Rand”), where in our evialust
we run random seed selecti®f00 times, and compare the average
number of white nodes between our algorithm and other hasgis
Our evaluation results demonstrate that our seed selestizame
can increase up t62% long-term influence, anti45% short-term
influence over other heuristics.

5.1.1 Synthetic datasets

In this part, we generate synthetic datasets with diffesénoic-
tures to validate our theoretical results.

Dataset generation model. We generate six types of signed di-
graphs, including balanced ergodic digraphs, anti-b@dm®cgodic
digraphs, strictly unbalanced ergodic digraphs, weaklyneated
signed digraphs, disconnected signed digraphs with ergmuiin-
ponents, and disconnected signed digraph with weakly ciede
components (WCCs). All edges have unit weighthe following
are graph configuration details.

We first create an unsigned ergodic digraplwith 9500 nodes,
which has two ergodic componerts, andG g, with [3000, 6500]
nodes and3000, 6500] x 8 random directed edges, respectively.
Moreover, there ar8000 x 8 random directed edges acraSs,
andGg. Ergodicity is checked through a simple connectivity and
aperiodicity check. Givet, abalanced digraplis obtained by as-
signing all edges withiiti 4 andG' s with positive signs, and those
across them with negative signs. Then,aanti-balanced digraph
is generated by negating all edge signs of the balancedierdnd
graph. To generate strictly unbalanced digraphwe randomly
assign edge signs to all edgesGhand make sure that there does
not exist a balanced or anti-balanced bipartition.

Moreover, we generated disconnected signed digrapand
a weakly connected signed digraph for our study.
first generate5 ergodic unsigned digraphsiy,---, G5 with
[500, 200, 800, 300, 2700] nodes and500, 200, 800, 300, 2700] x
8 edges, respectively. Then, we grotgs = (G2,G3) and
Gsis = (G4,G5) to form two ergodic balanced digraphs, and
generate a strictly unbalanced ergodic digraph by randomly
assigning signs to edges @,. Three disconnected components
G1, Ga3, Gas together form a disconnected signed digraph. To
form aweakly connected signed digraplve place in totaB000
random direct edges froi@; to the balanced ergodic components
G23 andG s, where the nodes in subgraph only have outgoing
edges td723 andG4s. Moreover, we combine the above generated
balanced ergodic digraph and the weakly connected sigiyedpati

We



together forming a largedisconnected signed digraph, with the
weakly connected signed digraph as a companent

Fig. 1-Fig. 6 present the evaluation results for one set of di
graphs, where we observe that all digraphs we randomly gester
exhibit consistent results. Our tests are conducted usiatigldl on
a standard PC server.
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Long-term influence maximization. In the evaluations, we set the
influence budget ak = 500, and compare the average numbers of
white nodes over steps between our algorithm and otherdimsri
Fig. 1 shows that in the balanced ergodic digraph, SVIM-loalg
rithm achieves the highest long-term influence over otherise

outperforms all other heuristics with up 1% more long term in-
fluence, which occurs far> 4. In general, we see that for weakly
connected and disconnected digraphs, SVIM-L has largeningn
margins over all other heuristics than the case of balangpatie
digraphs (Fig. 4-6 vs. Fig.1). We attribute this to our aater
computation of influence contribution in the more involveeakly
connected and disconnected digraph cases. Moreover,dassb,
the dynamics converge very fast, i.e., in only a few steps;lwim-
dicates that the convergence time of voter model on thestoran
graphs are very small.

Table 2: Statistics of Epinions datasets

# of nodes 131580

# of edges 840799

# of positive edges 717129

# of negative edges 123670

# of nodes in largest SCC 41441

# of edges in largest SCC 693507

# of positive edges in largest SCQ 614314
# of negative edges in largest SCC 79193
# of strongly connected componenits 88361

5.1.2 Real datasets

We conduct extensive simulations using real datasets, asich
Epinions and Slashdot datasets, to validate our theoretsalts
and evaluate the performance of our SVIM algorithm.

Epinions Dataset. Epinions.com [14] is a consumer review on-
line social site, where users can write reviews to varicais & and
vote for or against other users. The signed digraph is forwigd
positive or negative directed edge, v) meaning that: trusts or
distrustsv. The statistics are shown in Table 2. \We compare our
short-term SVIM-S algorithm wittiour heuristics, i.e.d™ + d~,
d",d" —d~ and random seed selectjam the entire Epinions di-
graph as well as the largest strongly connected compon&g).S

Our tests are conducted on both Epinions dataset and itsskarg
strongly connected component (SCC), where the largest SEE i
godic and strictly unbalanced. We first look at the comparisb
instant influence maximizatiora{ stept) among various seed se-

tics. When applying a heuristic seed selection scheme, denoted bylection schemesFig. 7-10 shows the expected maximum instant

H, fI represents the number of white nodes at $tep 1). Simi-
larly, denotef;'™ as the number of white nodes at stép- 1) for
SVIM algorlthm. We considen f; (SVIM, H) = (f&'™ — fi)/fH

as the influence increase of SVIM over the heuristic algorith
H at stept. The maximum influence increase is the maximum
Af:(SVIM, -) among all stepst(> 1) and all heuristics. Hence,
in Fig. 1, we see that our SVIM-L algorithm outperforms atet
heuristics. Especially, a maximum ©t% influence increase is ob-
served fort > 4 with 4.68k and4.1k white nodes for SVIM-L and
random selection scheme, respectively. In the rest of #utian,
we will use the maximum influence increase as a metric to-illus
trate the efficacy of our SVIM algorithmFig. 2 shows the clear
oscillating behavior on the anti-balanced ergodic digraptd the
average influence is the same for all algorithms. In fact, ise a
designed an algorithm to maximize the oscillation in thisezdut
due to space constraint we omit it in this paper. The insewvsho
that our algorithm (denoted as “Max. Osc.”) indeed provitles
largest oscillation. Fig. 3 shows the results in strictlyalanced
graph case, where the long-term influences of all algoritbams
verge t04750 = |V|/2, which matches Theorem IFig. 4 and
Fig. 5 show that SVIM-L algorithm performs the best, and itgre
ates5.6% — 72% long-term influence increases after the sixth step
over other heuristics in the weakly connected signed dged
the disconnected signed digraph. Fig. 6 shows that in a mave g
eral signed digraph, which consists of a weakly connectgaesi
component and a balanced ergodic component, SVIM-L alyarit

influence at each step by different methods. Note that shreat-
tial seeds selected by SVIM-S algorithm hingetotthe values on
the curve of our selection scheme are associated with eiifferpti-
mal initial seed sets. On the other hand, the seed selectiatker
heuristics are independent tpthus the corresponding curves rep-
resent the same initial seed safge choose the budget 460 and
6000 in our evaluations, i.e., selecting at maximu®0 or 6000
initial white seeds. From Fig. 7-10, SVIM-S algorithm cansi
tently performs better, and in some cases, e.g., Fig. 9nieigees
16% — 145% more influence than other heuristics at step

Next we compare the seed selection schemes for maximizéng th
average influencwithin the first¢ steps. Fig. 11-14 show the ex-
pected maximum average influence within the fiteps by differ-
ent methods. Again, the values on the curve of SVIM-S alborit
are associated with different initial seed sdiig. 11-14 show that
with different budgets, i.e500 and6000 seeds, SVIM-S algorithm
performs better than all other heuristics, where in Fig. 18axi-
mum of64% more influence is achieved at= 8. Moreover, in all
these figures, we observe that our seed selection schentis iasu
the highest long-term influence over other heuristics.

Moreover, from Fig. 7-14, we observe thattdacreases, the in-
fluences (i.e., the expected number of white nodes), for S8IM
and all heuristics except for random seed selection sched
crease for small’s, and then decrease and converge to the sta-
tionary state. In contrast, from Fig. 1-6, the influence éases
monotonically witht. This happens because Epinions dataset (as
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well as many real network datasets) has large portion (aroun
80%) of nodes in the non-sink components, where to maximize
the long-term influence, only nodes in sink components shbal
selected, which governs the long-term influence dynamiahef
whole graph, namely, sink nodes have higher long-term inflae
contributions. However, for short-term influence maxiniaa,
nodes with higher chances to influence more nodes in a few step
generally have large number of incoming links, which aresabl
influence a large number of nodes in either sink or non-simhkpm
nents in a short period of time. Hence, in signed digraphis \aige
non-sink component, given a sufficiently large budget, therts
term influence can definitely outnumber the long-term infagen
Our evaluations confirm this explanation. This interestibgerva-
tion also leads to a problem that given a budgetow to find the
optimal time step that generates the largest influence among all
possiblet’s. We leaves this problem as our future work.

We also evaluate our SVIM-S algorithm on the entire slash-
dot dataset [24, 37] and its largest strongly connected ooemt,
where the results are delegated to our technical reportd@é]to
the limited space. In the simulations, similar results dtaimed as
that with Epinions dataset, where our SVIM-S algorithm perfs
the best among all methods tested, especially in the eabg st

Moreover, the convergence times for both real-world daseeme
fast, in a few tens of steps, indicating good connectivity &ast
mixing property of real-world networks. In summary, our lexza
tion results on both synthetic and real-world networksdatk our
theoretical results and demonstrate that our SVIM algorittior
both short term and long term are indeed the best, and often ha
significant winning margins.

5.2 The impacts of signed information

Unlike Epinions and Slashdot, many online social netwotchs
as Twitter are simply represented by unsigned directedhgrap
where friends and foe relationships are not explicitly espnted
on edges. Without edge signs, two types of information may be
mis-represented or under-represented: (1) one may folisfiohs
for tracking purpose, but this link may be mis-interpretedréend
or trust relationship; and (2) one may not follow his foes |y
to avoid being noticed, but his foes may still generate negat-
fluence to him. In this section, we investigate how much imfbee
gain can be obtained by taking the edge signs into considerat
thus illustrate the significance of utilizing both frienddefoe rela-
tionships in influence maximization.

Taking the synthetic networks and Epinions dataset (used in
Sec 5.1) as examples, we apply our SVIM algorithm to compute

in SCC with £ = 500

the optimal initial seed sets in the original signed digsapénd
two types of “sign-missing” scenarios, i.e., the unsignagaphs
with only original positive edges (denoted by “Positive’aghs)
and with all edges labeled by the same signs (denoted by ‘i§ign
nored” graphs). Then, we examine the performances of tthoee t
initial seed sets in original signhed digraphs.

Fig. 15-18 show the evaluation results, where the seed bets o
tained by considering edge signs perform consistentlyebétian
those using unsigned graphs. In synthetic networks, wereotde
5% — 16% more influence in balanced digraph for> 6 (See
Fig. 15), and11.7% — 58% more influence in weakly connected
digraph fort > 6 (See Fig. 16) Moreover, in Epinions dataset
from Fig. 17-18, there is no impact on the long-term influgnce
since the underlying graphs are strictly unbalanced. Hewéwv
short term, the results demonstrate that taking edge soson-
sideration always performs better, which generates atmmani of
38% and21% more influence for the entire dataset (See Fig. 17)
and the largest SCC (See Fig. 18), respectively. Both maxisnu
occur at sted. These results clearly demonstrate the necessity of
utilizing sign information in influence maximization.

6. CONCLUSION

In this paper, we propose and study voter model dynamics on
signed digraphs, and apply it to solve the influence maxitiiza
problem. We provide a rigorous mathematical analysis to-com
pletely characterize the short-term and long-term dyngmémd
provide efficient algorithms to solve both short-term antbkeerm
influence maximization problems. Simulation results orhixyn-
thetic and real-world graphgdemonstrate that our influence maxi-
mization (SVIM) algorithms consistently outperform otheguris-
tic algorithms.

There exist several open problems and future directionse On
open problem is the convergence time of voter model dynaarics
signed digraphs. For balanced and anti-balanced ergagliaptis,
our results show that their convergence times are the sartteeas
corresponding unsigned digraphs. For strictly unbalaresgddic
digraphs and more general weakly connected signed digréphs
problem is quite open. A future direction is to study influerif-
fusion in signed networks under other models, such as ther vot
model with a background color, the independent cascade Imode
and the linear threshold model.
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