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Abstract

Influence maximization, defined by Kempe, Kleinberg, and
Tardos (2003), is the problem of finding a small set of seed
nodes in a social network that maximizes the spread of influ-
ence under certain influence cascade models. In this paper,
we propose an extension to the independent cascade model
that incorporates the emergence and propagation of negative
opinions. The new model has an explicit parameter called
quality factor to model the natural behavior of people turn-
ing negative to a product due to product defects. Our model
incorporates negativity bias (negative opinions usually dom-
inate over positive opinions) commonly acknowledged in
the social psychology literature. The model maintains some
nice properties such as submodularity, which allows a greedy
approximation algorithm for maximizing positive influence
within a ratio of 1 — 1/e. We define a quality sensitivity ra-
tio (gs-ratio) of influence graphs and show a tight bound of
©(4/n/k) on the gs-ratio, where n is the number of nodes
in the network and k is the number of seeds selected, which
indicates that seed selection is sensitive to the quality factor
for general graphs. We design an efficient algorithm to com-
pute influence in tree structures, which is nontrivial due to
the negativity bias in the model. We use this algorithm as the
core to build a heuristic algorithm for influence maximiza-
tion for general graphs. Through simulations, we show that
our heuristic algorithm has matching influence with a stan-
dard greedy approximation algorithm while being orders of
magnitude faster.
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1 Introduction

Viral marketing, a strategy of conducting product promo-
tions through social influences among individuals’ cycles of
friends, families, or co-workers, is believed to be a very
effective marketing strategy, mainly because it is based on
trusted relationships. With the increasing popularity of on-
line social networks such as Facebook, Myspace, and Twit-
ter, the power of viral marketing has more potential than ever
before. Therefore, understanding of the effective ways of uti-
lizing viral marketing is crucial.

Motivated by this background, the research community
has recently studied the algorithmic aspects of maximizing
influence in social networks for viral marketing ([11, 12,
13, 17, 20, 6, 5, 27, 7]). All these works are based on
the two basic influence cascade models, namely independent
cascade model and linear threshold model, originally defined
by Kempe et al. in [11], and their extensions. The essence
of the model is that, for a social network modeled as a
graph, starting from a small initial set of vertices in the graph
(called seeds), a stochastic process specifies how influence is
propagated from these seeds to their neighbors and neighbors
of neighbors, and so on, until the process ends and a portion
of the network is activated. The influence maximization
problem is thus to find an optimal seed set of size at most
k such that the expected number of vertices activated from
this seed set, referred to as its influence spread, is the largest.

However, all of the above works ignore one important
aspect of influence propagation that we often experience
in the real world. That is, not only positive opinions on
products and services that we receive may propagate through
the network, negative opinions are also propagating, and
are often more contagious and stronger in affecting people’s
decisions. For example, if you heard from one of your co-
workers that she found a cockroach in her meal yesterday in
a nearby restaurant, very likely you will avoid this restaurant
for a while. Furthermore, you are likely to tell your other
friends and co-workers about this, discouraging them to
patronize the restaurant even though you did not have this
bad experience yourself. In constrast, if you heard good
words about the restaurant, you are more likely to visit the
restaurant, but probably you will only spread the good words



about it after you have a good meal there yourself.

The impact of negative opinions and its asymmetry with
positive opinions have long been studied in the social psy-
chology literature (e.g. [22, 26, 1, 25]). In these studies, re-
searchers show that negative impact is usually stronger and
much more dominant than positive impact in shaping peo-
ple’s decisions. Marketing literature also addresses negative
influence explicitly: people who spread negative opinions
are called detractors while people spreading positive opin-
ions are called promoters (see e.g. [23]). Therefore, when
studying influence maximization, it should be important to
incorporate the emergence and propagation of negative opin-
ions into the influence cascade model and study its impact
together with positive influence. This is exactly the goal of
our paper.

In this paper, we first propose a new influence cascade
model, the independent cascade model with negative opin-
ions (IC-N), which extends the independent cascade (IC)
model of [11], and explicitly incorporates the emergence and
propagation of negative opinions into the influence cascade
process. The IC-N model is associated with a new param-
eter ¢ called the quality factor. Informally the IC-N model
works as follows. Initially, a set of nodes in the network
is selected as seeds and are activated (e.g. provided with
free trials of the product/service). With probability ¢ each
seed turns positive (experiencing good quality of the prod-
uct/service) and with probability 1 — ¢ turns negative (en-
countered defects). At each time step, a positively activated
node in the previous step tries to positively activate each
of its non-active neighbors, and if successful (with a suc-
cess probability) the neighbor is activated (bought the prod-
uct/service), but it only turns positive with probability ¢ and
with probability 1 — ¢ it turns negative. Meanwhile a nega-
tively activated node in the previous step also tries to nega-
tively activate its non-active neighbors, and if successful the
neighbors become negative (accepted negative opinions and
avoiding the product/service). If several nodes try to activate
the same node in one step, the order of activation trials is
random (See Section 2 for the formal model definition).

The IC-N model captures several phenomena that match
our daily experience as well as research results in social psy-
chology. In particular, the product defects are usually the
originator of negative opinions, and negative opinions usu-
ally dominate positive opinions in decision making and prop-
agation, which is called negativity bias in social psychology
literature (See Section 2.1 for the conceptual justification of
the model.)

For influence maximization, we focus on maximizing
the expect number of positive nodes in the network after the
cascade, which we refer to as positive influence spread, since
it is directly related to the revenue generated by the viral
marketing effort.

In this paper, we present the following results concern-

ing influence maximization in the IC-N model. First, we
study if a universally good quality factor ¢* exists such that
the optimal seeds selected under ¢* is good enough even if
the actual quality factor is not ¢*. To do so, we define a met-
ric called quality sensitivity ratio (gs-ratio) for an influence
graph such that a large value of gs-ratio implies that seed se-
lection is sensitive to g. We show that for general graphs,
gs-ratio is ©(y/n/k), where n is the number of nodes in the
graph and k is the number of seeds to be selected. The re-
sult implies that influence maximization algorithms for gen-
eral graphs need to explicitly incorporate the quality factor,
unless one can show specifically that certain graphs of in-
terest have low gs-ratios. Moreover, our proof reveals the
seed selection criteria under different quality factors: under
a high quality factor we should select seeds with large over-
all reaches, while under a low quality factor we should select
seeds with large immediate neighborhoods. This insight is
helpful in understanding and guiding seed selection in gen-
eral graphs when considering the quality factor.

Second, we study the influence spread mechanism for
the IC-N model. We show that positive influence spread in
the IC-N model satisfies a diminishing return property called
submodularity, which immediately results in a 1 — 1/e-
approximation algorithm given the black box access to the
influence spread function [11]. On the other hand, comput-
ing the exact influence spread given a seed set is shown to
be #P-hard for general graphs even without negative opin-
ions [5]. It is therefore desirable to know under what cir-
cumstances computing the influence spread is no longer in-
tractable with the presence of negative opinions. In Sec-
tion 4, we show that when the graph is a directed tree, we can
compute exact positive influence spread in the IC-N model
with a dynamic programming method. The algorithm is
much more involved than the straightforward recursive al-
gorithm for the IC model in [5], because the negativity bias
feature of the IC-N model makes it necessary to differentiate
negative activations from positive activations in the analysis.

Next, we address the practical concern of scaling up the
approximation algorithm for finding the seeds. The greedy
algorithm with simulation-based influence estimation [11] is
slow and not scalable, as already shown in [5, 7]. Instead, we
follow the successful approach of [5, 7] to design a heuristic
algorithm MIA-N, in which we use local tree structures
surrounding a node to represent its local influence and use
the above influence computation in trees to achieve fast
influence computation and seed selection (Section 5). We
conduct experiments using several real-world and synthetic
networks and show that (Section 6): (a) quality factor ¢
affects positive influence spread in a superlinear way, (b)
our MIA-N algorithm generates influence spread very close
to the influence spread of the greedy algorithm, and (c)
our MIA-N algorithm is orders of magnitude faster than
the greedy algorithm and can be scaled to large graphs of



million nodes and vertices. Therefore, our MIA-N algorithm
is a good candidate for influence maximization with negative
opinions in large-scale real networks.

Finally, we study several further model extensions to IC-
N (Section 7). Our results indicate that when adding more
parameters to the model, some nice properties such as sub-
modularity no longer holds. This indicates that IC-N model
provides a good balance between model expressiveness in
covering realistic scenarios and model tractability for effi-
cient algorithms, while if we need to go beyond the IC-N
model, some new approach may be required to tackle the in-
fluence maximization problem.

As a summary, our paper is the first to incorporate nega-
tive opinions emerged due to imperfect product qualities into
the influence cascade model and provide detailed studies of
influence maximization in this context. Our contributions
include (a) proposing the IC-N model that incorporates the
emergence and propagation of negative opinions, and show-
ing that it maintains nice properties such as submodularity;
(b) studying the quality sensitivity of influence graphs and
showing that influence maximization in general graphs may
be sensitive to the quality factor; (c) designing an efficient
algorithm for computing influence spread in tree structures;
(d) designing an efficient heuristic for influence maximiza-
tion that has influence spread matching the best greedy algo-
rithm while having running time orders of magnitude faster.

Due to space constraints, additional results and some
proofs are included in our full technical report [4].

1.1 Related work Domingos and Richardson [9, 24] are
the first to study influence maximization as an algorithmic
problem. Their methods are probabilistic, however. Kempe,
Kleinberg, and Tardos [11] are the first to formulate the
problem as a discrete optimization problem. They show that
the problem is NP-hard, propose a greedy approximation
algorithm, and study generalizations of independent cascade
and linear threshold models.

A number of studies [13, 17, 19, 6, 5, 27, 7] aim at im-
proving the efficiency of the greedy algorithm or providing
alternative heuristics, while some other work [3] proves that
certain formulation of the problem is hard to approximate.
Our MIA-N heuristic has a similar structure as the heuristic
of [5], but the latter is only for the original IC model without
negative opinions, and thus the algorithm is much simpler.
Lappas et al. [14] study k-effectors problem, which contains
influence maximization (without negative opinions) as a spe-
cial case. They also use a tree structure to make the computa-
tion tractable, and then approximate the original graph with
a tree structure. The difference, besides not considering the
negative opinion, is that they use one tree structure but our
MIA-N algorithm uses multiple local tree structures, one per
node to simulate local influence propagations.

Bharathi et al. studies competitive influence diffusion

in [2], using an extension of the IC model. The model is
for influence diffusion of two or more competing products,
and thus it does not have the key futures of our model, such
as negative influence emergence due to product defects and
negativity bias.

Propagations of negative opinions have been studied ex-
tensively in marketing and social science literature, but its
algorithmic perspective is rarely touched in the computer sci-
ence literature. To the best of our knowledge, the only related
paper that discusses diffusion of negative opinions is [18].
However, negative opinions in their model are exogenous,
and there is no explanation on where negative opinions come
from. Moreover, they use the same propagation model for
both positive and negative opinions, which ignores negativ-
ity bias that have been commonly acknowledged in the social
psychology literature. Therefore, their model is closer to the
competitive influence diffusion model rather than negative
opinion diffusion model. Finally, they use a heat diffusion
process, and their focus is not on negative opinion diffusion.

2 Independent Cascade Model with Negative Opinions

We first introduce the independent cascade model with neg-
ative opinions (IC-N), and then provide conceptual justifica-
tions and some useful properties of the model.

We model a social network as a directed graph G =
(V, E), where V is the set of nodes representing individuals
and F is the set of directed edges representing relationships
among individuals. Each edge of the graph G is associated
with a propagation probability, which is formalized by
functionp : E — [0, 1]. We refer to the triple (V, E, p) as an
influence graph, and also use G to represent it. For a node
v e V,let N**(v) and N°“!(v) denote v’s in-neighbors and
out-neighbors respectively.

The dynamic of the IC-N model is as follows. Each node
has three states, neutral, positive, and negative. Discrete time
steps ¢ = 0,1,2,... are used to model dynamic changes
in the network. We say that a node v is activated at time
t if it is positive or negative at time ¢ and neutral at time
t —1@Gft > 0). The model has a parameter ¢ called
quality factor, which indicates the probability that a node
stays positive after it is activated by a positive in-neighbor.
Initially at time ¢ = 0, all nodes in a pre-determined seed
set S C V are activated, and for each node v € S, with
probability g v becomes positive and with probability 1 — ¢
v becomes negative. At a time ¢ > 0, for any neutral node
v, let Ay(v) € N™(v) be the set of in-neighbors of v that
were activated at time ¢ — 1. Every node u € A;(v) tries to
activate v with an independent probability of p(u, v). If one
of them is successful, v is activated at step t. Moreover, if v
is activated by a negative node u, then v becomes negative;
if v is activated by a positive node u, then with probability ¢
v becomes positive while with probability 1 — g v becomes
negative. To determine which node activates v, we randomly



permute all nodes in A;(v), and let each node in A;(v) try to
activate v following the permutation order until we find the
first node u that successfully activates v. Once v is activated
and fixed its state (positive or negative), it does not change
its state any more. The activation process stops when there
is no new activated node in a time step. Note that if ¢ = 1,
nodes can only be positively activated, and IC-N is reduced
to the original independent cascade (IC) model of [11].

The positive influence spread of a seed set S in influence
graph G with quality factor ¢ is the expected number of
positive nodes activated in the graph, and is denoted as
0(S,q). Given an influence graph G = (V,E,p), a
target seed set size k, and a quality factor g, the influence
maximization problem is to find a seed set S* of cardinality
k such that S* has the largest positive influence spread in G,
ie. S* € argmaxgcy, s=k0G (S, ).

2.1 Conceptual justification of the model The IC-N
model reflects several phenomena of negative influence that
match our daily experiences as well as the studies in so-
cial psychology. First, negative opinions are originated from
imperfect product/service qualities. In the model, when a
node v is activated by a positive node u, it means that v is
positively influenced by u and subsequently buys the prod-
uct/service. However, due to defects of the product/service
(e.g. the cockroach in the meal), v may dislike the prod-
uct/service and generate negative opinion about it. The qual-
ity factor q reflects the quality of the product, and thus is
the property of the product, not the network. Therefore, it is
reasonable to use the same ¢ across the network. Typically,
before a product is put onto the market, the company will
have quality control by testing and/or focus group studies,
and thus it is reasonable to assume that an estimate of ¢ is
available.

Second, negative and positive influence are asymmetric,
and negative influence is more dominant, which is reflected
in the IC-N model from two aspects. The first aspect is that,
when a node v is negatively activated, it becomes negative
with probability one and will stay negative even if it later
sees other neighbors turning positive. This reflects the nega-
tivity bias and dominance phenomenon studied in social psy-
chology (e.g. [25]) — when combining positive and negative
opinions, negative opinions are likely to dominate. The sec-
ond aspect is that, when v is negatively activated and turns
negative, v will also negatively influence its neighbors, even
though v does not personally experience the product/service.
This is the manifestation of negativity dominance in the do-
main of contagion, as summarized in [25]: “negative events
may have more penetrance or contagiousness than positive
events” (e.g. you are likely to spread the bad words about the
restaurant even if do not see the cockroach yourself). Note
that because of the above negativity bias in the IC-N model,
the model is not equivalent as a simpler model in which node

activations are first propagated using the IC model and then
each node independently decides to be positive or negative
based on quality factor q.

Third, we use positive influence spread as our objective
since it is directly related to the expected revenue the seller
would gain from the viral marketing effort.

We believe our model is a reasonable first-order ap-
proximation of the emergence and propagation of negative
influence and negativity bias phenomenon. Of course, we
may further adjust or extend the model, but we also need
to keep model parsimony — the balance between model ex-
pressiveness and model simplicity and tractability. In Sec-
tion 7 we discuss several model extensions and alternatives.
Ultimately, statistical analyses on real datasets are needed to
validate the model, but this is beyond the scope of this paper
and is our future work item.

2.2 Properties of the model We now discuss several key
properties of o (.S, g) to be used in the later sections. Given
an influence graph G = (V| E, p), seed set S and quality
factor ¢, let paps(v,S,q) denote the “positive activation
probability”, the probability that node v is positive after
the influence cascade from S ends. By the linearity of
expectation, it is clear that 0 (.5, ¢) = >, oy Pap (v, S, q).
Let dg(S,v) denote the graph distance from S to v in G,
which is the length of the shortest path from any node in
S to v. If there is no path from any node in S to v in G,
then dg(S,v) = +o0. As a convention, ¢*™°° = 0 for all
0 < g < 1 (even when ¢ = 1). Let ag(S,4) denote the
number of nodes that are ¢ steps away from set S in G, i.e.,
ag(S,i) = [{v | dg(S,v) = i}|. The following lemma
shows a basic property of the IC-N model that leads to many
later results.

LEMMA 2.1. For influence graph G = (V, E,p), suppose
that p(e) = 1 for all e € E. Then we have forallv € V,

papg (v, S, q) = ge S

and

n—1
0c(S,9) =Y ac(S,i)gt.
1=0

For any influence graph G = (V| E, p), after we deter-
mine all random events on all edges based on their propaga-
tion probabilities, we obtain a subgraph G’ = (V' E',p’),
where V! = V, F' C E,and p’(e) = 1foralle € E'.
G' is obtained with probability Prg(G’) = [[.cp ple) -
1o em\ g (1 —p(e')). Let Q¢ denote the set of all such sub-
graphs G’. We say that an edge e is activated if e is selected
in the random subgraph G’.

An alternative view of the IC-N model is that we first
select edges to obtain G’, and then influence is propagated
on G’. In the graph G’, when multiple neighbors of a node



v try to activate v at the same step, we do not need to follow
the random permutation order on these neighbors because
the first neighbor selected will always activate v. Therefore,
in this case we only need to select one of the neighbors of
v uniformly at random among all its neighbors activated at
the previous step, and the result is the same. We refer to this
alternative view as edge activation view. Many subsequent
results including the following lemma use this alternative
view of the IC-N model.

LEMMA 2.2. Given an influence graph G = (V,E,p), a
seed set S C V' and a quality factor q, we have

06(S,9) = Egeagloe (S, q)]

~ Y Pre(@oe(S.0)
G'eQqa
n—1
= Z Prg(G’)ZaG/(S,i)qu.
G'eQqa i=0

COROLLARY 2.1. For any influence graph G = (V, E, p),
when fixing a seed set S, function o¢(S, q) on q is monoton-
ically increasing and continuous.

A set function f on vertices of graph G = (V, E,p)
is a function f : 2V — R. Set function f is monotone
if f(S) < f(T) for all S C T, and it is submodular if

fF(Su{u})—f(S) > f(TU{u}) f(T) forall S C T and
ueV\T.

THEOREM 2.1. For any influence graph G = (V, E,p),
when fixing a quality factor q, set function og(S,q) on S
is monotone, submodular, and o (0, q) = 0.

Proof. Notice that

Z PI‘G(G/) Z qu/(S,v)-i-l.

G'e€Qc veV

Define Q,(S) = g%’ (3v)+1 Tt is sufficient to show that
Q,(S) is monotone and submodular. Clearly, @,(S) is
monotone because adding extra elements to the seed set .S
can only decrease the quantity dg/ (.S, v). It remains to show
that the function is also submodular.

Let S CT CVandu € V\T. Clearly, dg/ (S,v) >
de(T,v). If de(u,v) > de(S,v), we have Q,(S U
{up) = Qu(S) = Qu(T U{u}) — Qu(T) = 0. 1If
dG’(u,v) < dg (T,U), we have QU(S U {u}) ( )
Qu(T U {u}) — Qu(S) > Qu(T U {u}) — Qu(T) as Qu()
is monotonically increasing. The only remaining case is
de (T, v) < dg(u,v) < dg(S,v). In such case, Q,(S U
{u}) = Q(S) > 0 = Q,(T U{u}) — Qu(T). Therefore,
Q@ (+) is monotone and submodular. O

With Theorem 2.1, we can apply the result in [21]
to obtain a greedy approximation algorithm that achieves

Algorithm 1 Greedy(k, f)
. initialize S = ()
: fori=1to k do

1

2

3 select u = arg max,,cv\s(f(S U{w}) —
4 S=SU{u}
5

6

f(9))

. end for
: output S

1 — 1/e approximation ratio for the influence maximization
problem. Algorithm 1 shows the greedy algorithm with a
generic monotone and submodular set function f, which
would be replaced by o (S, q) in our case for any fixed
q. The algorithm iteratively selects a new seed wu that
maximizes the incremental change of f into the seed set .S
until k seeds are selected.

The greedy algorithm relies on an efficient computation
of 0¢(S,q) given set S. However, as pointed out in [5],
even when ¢ = 1 computing o5(S,q) is #P-hard. Thus
following [11] we use Monte-Carlo simulations of the I1C-
N model to estimate o (S, ¢). In this case we can achieve
an approximation ratio of 1 — 1/e — €, where € is small if we
use a large number of simulations to estimate o (S, q).

The theoretical running time of the greedy algorithm
is O(knmR), where k, n, m, and R are the number of
seeds, number of nodes, number of edges, and number of
simulations, respectively. In the actual implementation used
for our experiments, we apply optimization techniques such
as the lazy-foward method proposed in [17] to speed up the
running time.

3 Quality Sensitivity in Influence Maximization

Since obtaining quality factor ¢ and incorporating it into
influence maximization complicates the matter, one may
wish to find a constant ¢* that is “universally good enough”
for a network, in the sense that the optimal seeds found under
q¢* in the network is reasonably effective regardless of the
true value of ¢. In the rest of this section, we formalize
the goal of finding such gx via the notion of sensitivity, and
show that in general graphs “universally good” ¢* may not
exist. This suggests that the problem of maximizing positive
influence spread in general graphs requires the knowledge
of ¢, unless one can show explicitly that certain graphs have
low sensitivities to the quality factor.

Let 8¢ 1. (q) = argmaxgcy, s1=,0G (S, q) denote the
set of all possible optimal seed sets of size k under a
given ¢, and let o ;(q) denote the maximum positive
influence spread with %k seeds under g, i.e., oak(q) =
maxgcv,|sj=k 0G (5, q). The subscripts G and k may be
dropped whenever they are clear from the context.

Fix a small constant ¢ € (0, 1). For a given seed set S of
size k, we define the quality sensitivity ratio (gs-ratio) of S



for graph G with k seeds to be the maximum ratio between
the optimal influence spread under ¢ and the influence spread
of S under ¢, when g ranges from c to 1, that is,

g *G)k; (9)
WorlS) = B oS 0

Intuitively, the gs-ratio of seed set S indicates how well S is
as a representive under different ¢: if its qs-ratio is close
to 1, then S could be used across different ¢ values (i.e.
S is insensitive to ¢), but if its gs-ratio is large, S is not a
good seed set under some ¢’s (i.e. S is sensitive to g). The
reason we need a small constant ¢ to bound g away from 0
is because very poor quality is unlikely to happen in practice
and mathematically it is a singular point.

Given a quality factor ¢, we define the quality sensitivity
ratio of q to be the minimum gs-ratio among all the optimal
seed sets under ¢, that is,
min

ST, S).
SGSg,k(q)q G,k( )

asrq () =
The reason we take the minimum over all optimal seed
sets is to (optimistically) consider the best case where some
algorithm may find the optimal seed set with the best gs-
ratio. Finally, the quality sensitivity ratio of the influence
graph G under target seed set size k is the minimum gs-ratio
among all g values, that is,

3.1 qsrg ), = min
' qa€le,

I qer,k(Q)'

The metric gsr¢ , indicates that, if we want to use one ¢
value and one optimal seed set S* under ¢ to work for
other possible g values, the best an algorithm can do is to
select a ¢* that achieves min gsr(q) and an S* that achieves
minges«(q+) ¢s7(S), but in this case there could be some
other ¢’ such that the ratio between the optimal influence
spread under ¢’ and the influence spread achieved by S*
under ¢’ is gsrg -

We now give tight upper bounds on both gsr(g) and
gsr. Let n = |V| be the number of nodes in the graph.
We shall show that for any graph and any k, the following
inequalities hold ¢sr¢ x(¢) < n/k and gsrax < /Z. On
the other hand, we may indeed be able to construct a family
of graphs so that ¢srq x(q) = Q(n/k) and gsr = Q(\/F).
These results suggest that there exists a family of influence
graphs so that an inappropriate assumption over the value
of ¢ will result in the worst possible outcome in terms of
multiplicative errors, which could be as large as Q(1/n).

LEMMA 3.1. For any graph G, any integer k, and any q €
[c, 1], we have gsr(q) < n/k. Furthermore, for any constant
kand q € [c, 1], there exists a family of influence graphs such
that gsre 1 (q) = QUn/k). In particular, when the integer k
and q € [c, 1] are given, there exists an N and a sequence of

Figure 1: An example of graph to reach large gsrq i, rate. In
this example, the value & = 1 and the graph only consists of
two components {C}, C3}. The component C} is a star with
v/n nodes (left diagram); the component C? is a line with
n — +/n nodes (right diagram).

graphs G = {Gn,GN11,GN12, ...} with |V(G;)| = @ such
that for any G, € G, we have qsrg,, k(q) = Qn/k).

LEMMA 3.2. For any influence graph G and target seed set
size k, qsre . < \/or-

The proof of Lemma 3.1 is relatively easy while the
proof of Lemma 3.2 is more involved, and it uses the
monotonicity and continuity of function o¢(.S,¢) on ¢ as
shown by Corollary 2.1.

LEMMA 3.3. There exists a family of influence graphs G =

{G} such that gsrg, ;. = Q(\/n/k) for n being sufficiently
large.

Proof. Our family of graphs consists of 2k disjoint compo-
nents {C1, C3, ..., Ci, C%,C%, ..., C2}, in which C} (i € [k])
are stars of size n; = \/% with edge directions pointing
away from the center of the star, and C? (i € [k]) are one-
way directed lines of size ny = 7 — n1. Propagation proba-
bilities on all edges are 1. Figure 1 represents an example of
the graph when k = 1.

Now the computation of gsrg, is immediate: when
q = 1, the set Sa . consists of a unique element S;, which
is the set of all roots of lines; when ¢ < 1, the set 82‘;’ &
consists of a unique element Ss, which is the set of all centers
of the stars (for large enough n). Therefore, gsrg (1) =

UJGG(Ygl(?q)) = i\/% since U?;,k(‘]) = ¢*n1k and
06 (S1,9) = gk/(1 — q) for ¢ < 1 and a sufficiently large
n. And for ¢ < 1, we have gsrg 1(q) = ng/ny = \/% —1.

Summing up above, we obtain the desired result gsr¢; ; =

Q(/n/k). O

Remark Notice that the components C} and C? actually
suggest two different topologies, in which finding the seed
set critically depends on the actual value of ¢q. Lines and
stars are extreme examples that yield largest gsr. In fact,
when lines are substituted by degree bounded trees (e.g.,

MaXgee,1]



tree with width logn), the gsr value will still be bad (e.g.,
st = Q(,/F)) when the tree width is log n). The moral
of the lemma is that when the graph contains two different
kind of structures, where one structure has fast neighborhood
growth initially but small overall reach and the other struc-
ture has slow neighborhood growth but large overall reach,
the optimal choice of the seed set may critically depend on
the product’s quality. With high quality factor, we prefer to
choose structures with a large reachable set, but with a low
quality factor, we prefer to choose structures that have large
immediate neighborhood, since when influence are propa-
gated in multiple hops, it is likely that someone in the chain
will dislike the product if the quality factor is low.

Summing up above, we have the following theorem.

THEOREM 3.1. For any influence graph G and target seed
set size k, we have qsrq ;. < \/ o, and for any q € [e, 1],
gsr(q) < %. Moreover, there exist families of graphs such
that the above upper bound is tight up to a constant factor.

Since the gs-ratio for general graphs could be quite large
as shown by the above theorem, it is worthwhile to invest
in algorithms that explicitly incorporate quality factor ¢. In
practice, q could be estimated by quality testing and focus
group studies, and thus it is reasonable to assume that an
estimate on ¢ is available for influence maximization.

4 Computing Influence in Arborescences

As pointed out in [5], computing influence spread in a
general influence graph in the IC model is #P-hard. In
this section, we show an efficient algorithm to compute
influence spread in tree structures. This algorithm will be
used in Section 5 to derive an efficient heuristic for influence
maximization.

An in- (or out-) arborescence is a directed tree where
all edges point into (or away from) the root. Consider
an arborescence A = (V, E,p) with p as the propagation
probability function on edges. Fix a seed set S C V and a
quality factor q. We study the algorithm that computes the
positive influence spread o4 (S, ¢) in A. Since A4, ¢, and S
are fixed in this section, we will omit them in our notations.

For any u € V, let pap(u) denote the positive activation
probability of u, which is the probability that u is positive
after the influence cascade ends in A. It is clear that
0a(S,q) =3 ,cv pap(u), so we focus on the computation
of pap(u).

If A is an out-arborescence, the computation is straight-
forward and is summarized by the following lemma.

LEMMA 4.1. For an out-arborescence A and a node u in
A. Let path(u) denote the path from seed s in S to u in A
that has the minimum length among all such paths (0 if no
such path exists). Let E(path(u)) denote the edge set of the

path and |path(w)| is the length of the path. Then we have
pap(w) = [Leepipatnuy) P(€) - @7 if path(u) # 0,
and otherwise pap(u) = 0.

With the above lemma, it is easy to see that we can com-
pute the positive influence spread o 4 (.5, ¢) in one traversal
of the out-arborescence. On the contrary, computing the pos-
itive influence spread in an in-arborescence is more involved.
For the rest of this section, let A be an in-arborescence, and
we focus on computing pap(u) in A.

Let ap(u) denote the activation probability of u, which
is the probability that u is activated (positive or negative)
after the influence cascade ends in A. As described already
in [5], computing ap(u) (or equivalently pap(u) when ¢ =
1) is easily done using the following recursive formula
ap(u) = 1 = [[,enm@ (@ — ap(w)p(w, u)), with the
boundary condition ap(s) = 1 forall s € S, and ap(u) =0
for all non-seed leaves u. However, once negative opinions
may emerge in the network (¢ < 1), the situation changes
significantly for computing pap(u).

Suppose now that some of u’s in-neighbors are positive
and some are negative. Because of the negativity bias in the
IC-N model, in particular negative neighbors will only make
u negative while positive neighbors may make v positive or
negative, the influence result on v depends on the order of the
activation attempts of w’s neighbors. This order is affected
by two factors: (a) the time steps at which neighbors of «
are activated, and (b) the random permutation among the
neighbors who are activated at the same time step. A direct
recursive formulation of pap(u) requires a summation of all
possible combinations of u’s neighbors activation steps and
all possible random permutations, which is exponential to the
size of the graph and the number of seeds. In the following,
we use the dynamic programming method to give an efficient
algorithm to compute pap(u). The computation is divided
into two steps.

Computing ap(u,t). Let ap(u,t) denote the probability
that u is activated at step ¢, for any integer ¢ > 0. Thus we

have ap(u) = >, ap(u,t). The following lemma shows
a recursive formula for ap(u, t).

LEMMA 4.2. Foranyu € V and any integert > 0, we have

“4.2)
ap(u,t) =
) t=0Au€s,
0 tIO/\Ugsa
0 t>0Aucs,
t—2 .
Mwewinqlt = 2izo ap(w, )p(w, u)] t>0Au¢gS.

- HweNW(u)[l - Zf;é ap(w, i)p(w, u)]

Proof. The cases of t = 0 or u € S are trivial. Consider
the case t > 0 and u & S. For an in-neighbor w € N (u),



ap(w,i)p(w, ) is the probability that w is activated at step
i and edge (w,w) is also activated, which means u will be
activated in step ¢ 4 1 if u is not already activated. Since
the events of w being activated at a step 7 for different
i’s are mutually exclusive, 1 — Zz;g ap(w,i)p(w,u) is
the probability that w is not activated by w at step t — 1
or earlier. Thus J[, c ([l — Zz;g ap(w, i)p(w,u)] is
the probability that u is not activated (by any of its in-
neighbors) at step t—1 or earlier. Note that as the convention,
Zi;lo ap(w,i)p(w,u) = 0 so the above is still true for
t = 1. Similarly, [T, cnm [l — Zf;é ap(w, )p(w, u)]
is the probability that u is not activated (by any of its in-
neighbors) at step ¢ or earlier. Therefore, their difference is
exactly the probability that u is activated at step ¢, which is
ap(u,t). O
The recursive computation given in Formula (4.2) can
be easily carried out by using the dynamic programming
method and traversing the arborescence from the leaves to
the root. Let h be the height of the arborescence A, k = |5
be the number of seeds, n = |V| be the number of nodes
in A, and ¢ be the number of possible steps that the root of
A could be activated in A. It is straightforward to see that
¢ < min(k, h). Therefore, computing all ap(u,t)’s for all
u € V and all possible t’s using Formula (4.2) and dynamic
programming takes O(¢n) = O(min(k, h)n) time.

Computing pap(u,t). Let pap(u,t) denote the probability
that u is activated and turns positive at step ¢, for any integer
t > 0. The following lemma shows that pap(u,t) can be
easily derived from ap(u, t).

LEMMA 4.3. Foranyu € V and any integert > 0, we have

4.3) pap(u,t) = ap(u,t) - VR

With Formula (4.3), we obtain the positive activation
probability pap(u) = >, pap(u,t), and the influence
spread 04(S) = > ,cy pap(u). Therefore, we obtain the
following result.

THEOREM 4.1. Formulae (4.2),(4.3) together provide an ef-
ficient computation of influence spread in an in-arborescence
A, with time complexity O(¢n) = O(min(k, h)n), where ¢,
k, h, and n are the number of possible steps in which the root
of A could be activated, the number of seeds, the height of
A, and the number of nodes in A, respectively.

5 MIA Algorithm for IC-N

The greedy algorithm (Algorithm 1) is slow because it lacks
of an efficient way of computing the positive influence
spread given a seed set. In this section, we develop a heuris-
tic algorithm that uses arborescences to approximate local
influence regions of the node, and uses the algorithm of Sec-
tion 4 to compute influence spread efficiently in arbores-
cences. The key points are that influence from a node is

typically restricted to the local neighborhood region of the
node, and that the computation of influence spread could be
performed efficiently by the algorithm in Section 4.

For a path P = (u = p1,pa,...,pm = v), we define
the positive propagation probability of the path, ppp(P), as

ppp(P) = 07" p(pi, pig1) - ¢

Intuitively the probability that u activates v through path
P and makes v positive is ppp(P), because it needs to
activate all nodes along the path and all nodes along the path
turn positive. To approximate the actual expected influence
within the social network, we propose to use the maximum
influence path (MIP) to estimate the influence from one
node to another. Let P(G,u,v) denote the set of all paths
from w to v in influence graph G.

DEFINITION 1. (MAXIMUM INFLUENCE PATH) For inﬂu—
ence graph G, we define the maximum influence path
MIP(u,v) fromu to v in G as

MIP(u,v) = argmgx{ppp(P) | P € P(G,u,v)}.

Ties are broken in a predetermined and consistent way,
such that MIP(u,v) is always unique, and any subpath
in MIP(u,v) from x to y is also the MIP(z,y). If
P(G,u,v) = 0, we denote MIP(u,v) = {.

Note that for each edge (u,v) in the graph, if we
add a distance weight — log(p(u,v)q) on the edge, then
MIP(u,v) is simply the shortest path from w to v in the
weighted graph G. Therefore, the maximum influence paths
and the later maximum influence arborescences directly
correspond to shortest paths and shortest-path arborescences,
and thus they permit efficient algorithms such as Dijkstra
algorithm to compute them.

For a given node v in the graph, we propose to use
the maximum influence in-arborescence (MIIA), which is the
union of the maximum influence paths to v, to estimate the
influence to v from other nodes in the network. We use an
influence threshold 6 to eliminate MIPs that have too small
propagation probabilities. Symmetrically, we also define
maximum influence out-arborescence (MIOA) to estimate the
influence of v to other nodes.

DEFINITION 2. (MAXIMUM INFLUENCE IN(OUT)-ARBO-
RESCENCE) For an influence threshold 0, the maximum
influence in-arborescence of a node v € V, MIIA(v,q,0),
is

MI]A(”; q, 0) = UuEV,ppp(MIP(u,v))Z@M]P(u7 U)'

TSince we break ties in maximum influence paths consistently, the union
of maximum influence paths to a node does not have undirected cycles, and
thus it is indeed an arborescence.



The maximum influence out-arborescence MIOA(v, q,0) is:
MIOA(Ua q, 0) = UuEV,ppp(MIP(v,u))ZOMIP(U7 u)

Intuitively, MIIA(v,q,0) and MIOA(v,q,0) give the
local influence regions of v, and different values of 6 controls
the size of these local influence regions. Given a set of
seeds S in G and the in-arborescence MIIA(v, g, ) for some
v € S, we approximate the IC-N model by assuming that the
influence from S to v is only propagated through edges in
MITA(v, q,6). With this approximation, we can calculate
the probability that v is activated given .S exactly, using the
algorithm given in Section 4. We refer to our model of
restricting influence through local arborescences as the MIA
model.

Let u(S, ¢) denote the positive influence spread of S in
our MIA model, in influence graph G with quality factor q.
Let pap(v, S, A, q) be the positive activation probability of
v in in-arborescence A with seed set S and quality factor q.
Then we have

w(S,q) =>_ pap(v, S, MIIA(v, q,0), q).
veV

(5.4)

We are interested in finding a set of seeds S of size
k such that ©(S,q) is maximized. As already pointed out
in [5], results in [11, 10] imply that maximizing p(S, q) is
still hard, even to any approximation factor within 1 —1/e+e¢
for any € > 0.

Nevertheless, we have that p(S,q) for any given
q is still submodular and monotone, because every
pap(v, S, MIIA(v,q,0),q) is submodular and monotone.
Therefore, the greedy Algorithm 1 with influence spread
computed by algorithm in Section 4 achieves 1 — 1/e ap-
proximation ratio for the influence maximization problem in
the MIA model. The important point of the algorithm is that,
when a new seed v is selected, we only need to update the
incremental influence spread of nodes w € MIIA(v,q,0)
where v € MIOA(u, ¢, 0), since other nodes are not affected
by the selection of u. The full pseudocode of the algorithm
mostly deals with how incremental influence spread of every
node is initialized and updated and is omitted due to space
constraint. We denote the full algorithm as MIA-N.

THEOREM 5.1. Algorithm MIA-N finds a seed set S of size
k, the influence spread of which is guaranteed to be within
1 — 1/e of the optimal influence spread in the MIA model.

Running time. We discuss the running time of algo-
rithm MIA-N. Let n = |V| be the number of nodes in
the graph. Let n; = max,cv {|MIIA(v,q,0)|} and n, =
max,cy {|MIOA(v, q,0)|}. Let hypq, denote the maximum
height among all MIIA(v, q,0)’s. Computing MIIA(v, q, )
and MIOA(v,q,0) can be done using efficient implemen-
tations of Dijkstra’s shortest-path algorithm. Assume the

maximum running time to compute MIIA(v,q,0) (resp.
MIOA(v, q,0)) for any v € V is t; (resp. t,). Notice that
n; = O(tz) and ne = O(to).

The initialization part of MIA-N needs to compute
MIIA(v,q,0) and MIOA(v,q,0) for all v € V. We
only need to compute and store all MIOA(v,q,6)’s us-
ing the Dijkstra shortest-path algorithm, since MITA(v, q,6)
can be easily obtained from MIOA(v,q,60)’s. Initializ-
ing incremental influence spread is done by computing
pap(u, {v}, MIIA(u, q,0),q) for all u € MIOA(v,q,0)
with Lemma 4.1, which takes O(|MIOA(v, q, 0)|) time. We
use a max-heap to store incremental influence spread of ev-
ery node, which takes O(n) time. Therefore, initialization
takes O(nt,) totally.

The main part of MIA-N has k iterations, each of
which selects a new seed u and then updates the incre-
mental influence spread for every w € MIIA(v,q,0)
where v € MIOA(u,q,6), so total number of updates
in each iteration is O(n,n;). In each update, pap(v, S U
{w}, MIIA(v, q,0),q) with the new seed set S needs to
be computed, which uses the algorithm in Section 4 and
takes O(min(k, hymaz)n;) time. Updating the entry on the
max-heap takes O(logn) time. Hence the running time
for the main loop is O(knn;(min(k, humae)n: + logn)).
Therefore, the total running time of MIA-N is O(nt, +
knen;(min(k, Apmaz)n; + logn)).

Since propagation probability along a path drops expo-
nentially fast in general, for large n and a reasonable range of
0 values, n;, n,, and ¢, are significantly smaller than n, and
thus our algorithm should have good efficiency, as demon-
strated by our experiments.

6 Experiments

We implement both the greedy algorithm and the MIA-N al-
gorithm, and conduct experiments on these two algorithms
using three real-world networks as well as synthetic net-
works. We are interested in comparing both the influence
spread and the running time of the two algorithms. We do not
include other heuristics such as degree or distance centrality
based heuristics or PageRank style algorithms, because none
of them takes into account the quality factor ¢ in the IC-N
model, and thus by our quality sensitivy study they cannot
be applied as a general solution to all social networks.

6.1 Experiment setup

Dataset. We use three real-world networks of increasing
sizes in our experiments. The first dataset, NetHEPT, is an
academic collaboration network extracted from the “High
Energy Physics - Theory” section (form 1991 to 2003)
of the e-print arXiv (http://www.arXiv.org). The nodes
in NetHEPT are authors and an edge between w and v
means u and v coauthored a paper (we allow multiple edges
between a pair of nodes). The second dataset, WikiVote, is



Table 1: Statistics of the three real-world networks.

1000 -+
900 -

| Dataset | NetHEPT | WikiVote | Epinions
number of nodes 15K 7K 76K
number of edges 31K 101K 509K
average degree 4.12 26.64 13.4
maximal degree 64 1065 3079
number of
connected com- 1781 24 11
ponents
largest —compo- | ¢50, 7066 76K
nent size
average - compo- | g 55 29646 | 69K
nent size ' ' ’

Note: Directed graphs are treated as undirected graphs in
these statistics.

a voting history network from Wikipedia [16], where nodes
represent Wikipedia users, and a directed edge from u to v
means v voted on u (for promoting u to adminship). The
third dataset, Epinions, is a Who-trust-whom network of
Epinions.com [15], where nodes are members of the site and
a directed edge from u to v means v trusting u (and thus u
has influence to v). Note that for WikiVote and Epinions, we
reverse the edge directions from the original graphs, since we
are studying influence and we interpret v voting w or trusting
u as u having an influence on v. Basic statistics about these
networks are given in Table 1. We also use synthetic power-
law degree graphs generated by the DIGG package [8] to test
the scalability of our algorithm with different sized graphs of
the same feature.

For propagation probability on edges, we use the

weighted cascade model proposed in [11]. In this model,
p(u,v) for an edge (u,v) is 1/d(v), where d(v) is the in-
degree of v.
Algorithms. We evaluate both MIA-N and the Greedy
algorithm. For the greedy algorithm, we use the lazy-
forward optimization of [17] to speed up the computation.
For each candidate seed set S, 20000 simulations are run
to obtain an accurate estimate of the influence spread. For
MIA-N, the 6 parameter is chosen as 1/160 for all of our
tests. A method of choosing € is given in [5], and for IC-N
the method is the same. To obtain the influence spread of the
MIA-N algorithm, for each seed set, we run the simulation
on the networks 20000 times and take the average of the
influence spread, which matches the accuracy of the greedy
algorithm.

The experiments are run on a server with 2.33GHz
Quad-Core Intel Xeon E5410 and 32G memory running on
Microsoft Windows Server 2003.

6.2 Experiment results
Quality factor on influence spread. We first run the greedy
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Figure 2: Influence Spread vs. the quality factor for the
NetHEPT network.
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Figure 3: Positive influence spread for NetHEPT.

algorithm on NetHEPT to select up to 50 seeds, with the
quality factor ¢ taking values from 0.5 to 1. Figure 2
shows the result of this test. Clearly, when ¢ increases, the
positive influence spread increases in a superlinear trend.
For example, when ¢ doubles from 0.5 to 1, the influence
spread increases about 7.2 times (averaging from £ = 1
to & = 50). The reason is due to negativity bias — if
the product quality drops, the negative influence would be
more dominant, and the loss in positive influence spread is
more than the simple proportion of those people directly
experiencing the slip of product quality. Therefore, the
result suggests that maintaining a high product quality is very
important in achieving a high influence spread.

Positive influence spread and running time on real-world
datasets. Figures 3 and 4 show the influence spread results
for the three networks. For ease of reading, the legend
of each figure lists the algorithms in the same order as
their corresponding influence spread with 50 seeds. All
figures show that the performance of MIA-N consistently
matches the performance of the greedy algorithm in all
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Figure 5: Running time results. (a) running time for three
real-world networks; (b) scalability test on synthetic power-
law graphs. All use ¢ = 0.9.

three networks, and for different quality factors (tested for
NetHEPT for ¢ = 0.7 and ¢ = 0.9). Figure 4(a) also shows
the influence spread of randomly selecting seeds, which is
significantly worse than the greedy algorithm and MIA-N.
This is consistent with previous reported results, and we
omit reporting results of random seed selection for other
datasets. On the other hand, Figure 5(a) shows that in all
cases, our MIA-N algorithm is orders of magnitude faster
than the greedy algorithm (the speedup is 307,112,33,285
times, respectively).

Scalability of MIA-N. We further test the scalability of
MIA-N algorithm by using a family of synthetic power-law
graphs generated by the DIGG package [8]. We generate
graphs with doubling number of nodes, from 2K, 4K, up
to 256 K, using power-law exponent of 2.16. Each size has
10 different random graphs and our running time result is
the average among the runs on these 10 graphs. We run
both the greedy algorithm and MIA-N to select 50 seeds
for each graph. The result in Figure 5(b) clearly shows
that our MIA-N scales almost linearly with the size of the
graph, and scales much better than the greedy algorithm (e.g.
MIA-N only takes 11 minutes to finish in a graph of 256 K
nodes and 353K edges while the greedy algorithm takes
more than 2 hours to finish a graph four times smaller). The
greedy algorithm has a much steeper curve mainly because it

requires a large number of simulations to estimate influence
spread accurately. Reducing the number of simulations in
the greedy algorithm will significantly reduce its accuracy,
as already reported in similar earlier work [5, 7], and we omit
the report here.

Quality sensitivity. In general it may be intractable to
compute the quality sensitivity of an influence graph. For
the tested graphs we obtain the gs-ratios in some restricted
cases and also use MIA-N to test their sensitivity. Our
results (see [4] for more details) indicate that these influence
graphs are not sensitive to the quality factor. However,
this does not mean that MIA-N is not useful. On the
contrary, without MIA-N, we cannot efficiently check if a
large influence graph is quality sensitive. Since obtaining qs-
ratio directly seems to be intractable, we propose that MIA-N
is an efficient tool to check the quality sensitivity of a given
influence graph. If the result from MIA-N indicates that the
graph is not quality sensitive, then we do not need to obtain
the quality factor of the product; otherwise we do need to
obtain a good estimate of the quality factor and use MIA-N
with the quality factor estimate to achieve a better influence
maximization result.

7 Further Model Extensions

We further extend the IC-N model and study different op-
timization objectives. In particular, we have considered the
following four model extensions: (a) allowing each node to
have a different quality factor to model the situation where
different individuals have different tendency of turning neg-
ative to a product; (b) allowing negative influence to prop-
agate through an edge with higher probabilities to further
strengthen negativity bias; (c) allowing different propagation
delays along different edges to model the nonuniform inter-
action frequency between individuals; and (d) using other
objectives such as maximizing the difference or the ratio be-
tween positive and negative influence spread.

For each of the alternatives, we investigate whether the
important properties of monotonicity and submodularity still
hold for the objective function. Our results show that, except
for some extreme cases, none of these models could main-
tain these properties. Therefore, we see that introducing the
quality factor g seems to reach a boundary, from which in-
troducing further parameters will both complicate the model
and make it much less tractable. If we do need to introduce
more parameters to make the model more realistic, new tech-
niques are needed to tackle the influence maximization prob-
lem for these models. Our results thus suggest that the IC-N
model provides a good balance between the expressiveness
of the model in covering realistic scenarios and the tractabil-
ity of the model in allowing efficient algorithms. We include
a number of results on these models in [4].

All of the above topics are interesting ones for future
research. We hope that our study could motivate more work



on the algorithmic aspects of social influence propagations
that include both positive and negative opinions.
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