
Data Min Knowl Disc
DOI 10.1007/s10618-012-0262-1

Scalable influence maximization for independent
cascade model in large-scale social networks

Chi Wang · Wei Chen · Yajun Wang

Received: 2 May 2011 / Accepted: 16 February 2012
© The Author(s) 2012

Abstract Influence maximization, defined by Kempe et al. (SIGKDD 2003), is the
problem of finding a small set of seed nodes in a social network that maximizes the
spread of influence under certain influence cascade models. The scalability of influ-
ence maximization is a key factor for enabling prevalent viral marketing in large-scale
online social networks. Prior solutions, such as the greedy algorithm of Kempe et al.
(SIGKDD 2003) and its improvements are slow and not scalable, while other heuris-
tic algorithms do not provide consistently good performance on influence spreads. In
this article, we design a new heuristic algorithm that is easily scalable to millions of
nodes and edges in our experiments. Our algorithm has a simple tunable parameter
for users to control the balance between the running time and the influence spread of
the algorithm. Our results from extensive simulations on several real-world and syn-
thetic networks demonstrate that our algorithm is currently the best scalable solution
to the influence maximization problem: (a) our algorithm scales beyond million-sized
graphs where the greedy algorithm becomes infeasible, and (b) in all size ranges, our
algorithm performs consistently well in influence spread—it is always among the best
algorithms, and in most cases it significantly outperforms all other scalable heuristics
to as much as 100–260% increase in influence spread.

Responsible editor: Fei Wang, Hanghang Tong, Philip Yu, Charu Aggarwal.

C. Wang (B)
University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: chiwang1@illinois.edu

W. Chen · Y. Wang
Microsoft Research Asia, Beijing, China
e-mail: weic@microsoft.com

Y. Wang
e-mail: yajunw@microsoft.com

123

C. Wang et al.

Keywords Influence maximization · Social networks · Independent cascade model ·
Viral marketing

1 Introduction

Word-of-mouth or viral marketing differentiates itself from other marketing strategies
because it is based on trust among individuals’ close social circle of families, friends,
and co-workers. Research shows that people trust the information obtained from their
close social circle far more than the information obtained from general advertisement
channels such as TV, newspaper and online advertisements (Nail 2004). Thus many
people believe that word-of-mouth marketing is the most effective marketing strategy
(e.g. Misner 1999).

The increasing popularity of many online social network sites, such as Facebook,
Myspace and Twitter, presents new opportunities for enabling large-scale and prevalent
viral marketing online. Consider the following hypothetical scenario as a motivating
example. A small company develops an online application and wants to market it
through an online social network. It has a limited budget such that it can only select
a small number of initial users in the network to use it (by giving them gifts or pay-
ments). The company wishes that these initial users would love the application and
start influencing their friends on the social network to use it, and their friends would
influence their friends’ friends and so on, and thus through the word-of-mouth effect
a large population in the social network would adopt the application. The problem is
whom to select as the initial users so that they eventually influence the largest number
of people in the network.

The above problem, called influence maximization, is first formulated as a discrete
optimization problem by Kempe et al. (2003) as follows: A social network is modeled
as a graph with nodes representing individuals and edges representing connections or
relationship between two individuals. Influence is propagated in the network according
to a stochastic cascade model, such as the following independent cascade (IC) model1:
Each edge (u, v) in the graph is associated with a propagation probability pp(u, v),
which is the probability that node u independently activates (a.k.a. influences) node v

at step t + 1 if u is activated at step t . Given a social network graph, the IC model, and
a small number k (e.g., set according to the budget for viral marketing), the influence
maximization problem is to find k nodes in the graph (referred to as seeds) such that
under the influence cascade model, the expected number of nodes activated by the k
seeds (referred to as the influence spread) is the largest possible. Kempe et al. prove that
the optimization problem is NP-hard, and present a greedy approximation algorithm
guaranteeing that the influence spread is within (1 − 1/e − ε) of the optimal influence
spread, where e is the base of natural logarithm, and ε depends on the accuracy of
their Monte–Carlo estimate of the influence spread given a seed set.

However, their algorithm has a serious drawback—it is not scalable to large net-
works. A key element of their greedy algorithm is to compute the influence spread

1 Other models are also introduced in Kempe et al. (2003), but in this article we focus on the independent
cascade model.

123

Scalable influence maximization in large-scale

given a seed set, which turns out to be a difficult task (in fact, as we point out in Sect. 2
the computation is #P-hard). Instead of finding an exact algorithm, Monte-Carlo sim-
ulations of the influence cascade model are run for a large number of times in order to
obtain an accurate estimate of the influence spread. Consequently, even with the recent
optimizations (Leskovec et al. 2007; Chen et al. 2009) that could achieve hundreds of
times speedup, it still takes hours on a modern server to select 50 seeds in a moderate
sized graph (15K nodes and 31K edges) while it becomes completely infeasible for
larger graphs (e.g. more than 500K edges). Given that online social networks are typ-
ically of large-scale, we believe that the scalability issue of the greedy algorithm will
be a fatal obstacle preventing it from supporting prevalent viral marketing activities
in large-scale online social networks.

1.1 Our contribution

In this article, we first show that computing influence spread in the independent cascade
model is #P-hard, which closes an open question posed by Kempe et al. (2003). It indi-
cates that the greedy algorithm of Kempe et al. (2003) may have intrinsic difficulties
to be made scalable for large graphs.

We then address the scalability issue by proposing a new heuristic algorithm that
is several orders of magnitude faster than all existing greedy algorithms while match-
ing the influence spread of the greedy algorithms. Our heuristic gains efficiency by
restricting computations on the local influence regions of nodes. Moreover, by tuning
the size of local influence regions, our heuristic is able to achieve tunable tradeoff
between efficiency (in terms of running time) and effectiveness (in terms of influence
spread). Our heuristic can easily scale up to handle networks with millions of nodes
and edges, and at this scale it beats all other existing heuristics of similar scalability
in terms of the influence spread.

The main idea of our heuristic scheme is to use local arborescence2 structures of each
node to approximate the influence propagation. We first compute maximum influence
paths (MIP) between every pair of nodes in the network via Dijkstra’s shortest-path
algorithm, and ignore MIPs with probability smaller than an influence threshold θ ,
effectively restricting influence to a local region. We then union the MIPs starting or
ending at each node into the arborescence structures, which represent the local influ-
ence regions of each node. We only consider influence propagated through these local
arborescences, and we refer to this model as the maximum influence arborescence
(MIA) model.

We show that the influence spread in the MIA model is submodular (i.e. having
a diminishing marginal return property), and thus the simple greedy algorithm that
selects one node in each round with the maximum marginal influence spread can
guarantee an influence spread within (1 − 1/e) of the optimal solution in the MIA
model, while any higher ratio approximation is NP-hard. The greedy algorithm on

2 An arborescence is a tree in a directed graph where all edges are either pointing toward the root
(in-arborescence) or pointing away form the root (out-arborescence).

123

C. Wang et al.

the MIA model is very efficient because (a) computation of the marginal influence
spread on the arborescence structures can be done by efficient recursion; and (b) after
selecting one seed with the largest influence spread, we only need to update local
arborescence structures related to this seed for the selection of the next seed, and we
further design a batch update scheme to speed up the update process.

We conduct extensive experiments on several real-world and synthetic networks of
different scale and features, and under different types of the IC model. We compare
our heuristic with both the greedy algorithm (Kempe et al. 2003; Leskovec et al. 2007;
Chen et al. 2009) and several existing heuristics including the degree discount heu-
ristics of Chen et al. (2009), the shortest-path based heuristics of Kimura and Saito
(2006), and the popular PageRank algorithm (Brin and Page 1998) for ranking web
pages. Our simulation results show that: (a) the greedy algorithm of Kempe et al.
(2003); Leskovec et al. (2007); Chen et al. (2009) and the shortest-path based heuris-
tic (Kimura and Saito 2006) have poor scalability: they take hours or days to select 50
seeds when the graph size reaches a few hundred thousand and become infeasible for
larger sized graphs, while in the same range MIA heuristic can finish in seconds (more
than three orders of magnitude speedup), and it continues to scale up beyond graphs
with millions of edges, (b) comparing with the greedy algorithm and the shortest-path
based heuristic in real graphs in which they are feasible to run, MIA heuristic has
influence spread matching or being very close to that of the other two algorithms, (c)
comparing with the rest heuristics, MIA algorithm is always among the best in influ-
ence spread, and in most cases it significantly outperforms the rest heuristics, with a
margin as much as 100–260% increase in influence spread. Moreover, we show that by
tuning the threshold θ , we can adjust the tradeoff between efficiency and effectiveness
at different balance points on a spectrum.

To summarize, our main contribution is the design and evaluation of a scalable
and tunable heuristic that handles the influence maximization problem for large-scale
social networks. We demonstrate that our heuristic is currently the best one that could
handle large-scale networks with more than a million edges, while even for moderate
sized networks it is a very competitive alternative to much slower algorithms. The bal-
anced efficiency and effectiveness of our heuristic make it suitable as a generic solution
to influence maximization for many large-scale online social networks encountered in
practice.

1.2 Related work

Domingos and Richardson (2001); Richardson and Domingos (2002) are the first to
study influence maximization as an algorithmic problem. Their methods are probabi-
listic, however. Kempe et al. (2003) are the first to formulate the problem as a discrete
optimization problem. Besides what we mentioned above already, they also study a
number of other topics such as generalizations of influence cascade models and mixed
marketing strategies in influence maximization. As pointed out, the main drawback of
their work is the scalability of their greedy algorithms.

Several recent studies aimed at addressing this issue. In Leskovec et al. (2007), the
authors present a “lazy-forward” optimization in selecting new seeds, which greatly
reduces the number of evaluations on the influence spread of nodes and results in

123

Scalable influence maximization in large-scale

as much as 700 times speedup demonstrated by their experimental results. However,
even though the “lazy-forward” optimization is significant, it still takes hours to find
50 most influential nodes in a network with a few tens of thousands of nodes, as shown
in Chen et al. (2009).

Kimura and Saito (2006) propose shortest-path based influence cascade models and
provide efficient algorithms to compute influence spread under these models. The key
differences between their work and ours are (a) instead of using maximum influence
paths, they use simple shortest paths on the graph, which are not related to propagation
probabilities, and (b) they do not utilize local structures such as our arborescences and
thus in every round they need global computations to select the next seed. Therefore,
their algorithms are not as efficient as ours.

This article is the continuation of Chen et al. (2009) in the pursuit of efficient and
scalable influence maximization algorithms. In Chen et al. (2009), we explore two
directions in improving the efficiency: one is to further improve the greedy algorithm
of Kempe et al. (2003), and the other is to design new heuristic algorithms. The first
direction shows improvement but is not significant enough, indicating that this direc-
tion could be difficult to continue. The second direction leads to new degree discount
heuristics that are very efficient and generate reasonably good influence spread. The
major issue is that the degree discount heuristics are derived from the uniform IC model
where propagation probabilities on all edges are the same, which is rarely the case
in reality. Our current work is a major step in overcoming this limitation—our new
heuristic algorithm works for the general IC model while still maintains good balance
between efficiency and effectiveness. We conduct many more experiments than in
Chen et al. (2009) on more and larger scale graphs, and our results show that the MIA
heuristic performs consistently better than the degree discount heuristic in all graphs.

This article is an extended version of our conference paper presented at SIG-
KDD2010 (Chen et al. 2010a). We add more detailed algorithm descriptions and
proofs, give online error bound analysis and algorithms, and report more comprehen-
sive experimental results, including additional datasets and algorithms, new indepen-
dent cascade models and case study. Adding these contents is necessary to consolidate
our methodology. First, the online error bound analysis provides a tighter lower bound
on the optimality of our solution (76–82%) than the theoretical bound 63%, and thus
should increase the confidence in the practical effectiveness of our algorithm. Second,
the two additional datasets make the experiments more comprehensive: one was used
in previous work and should be included for comprehensive comparison; the other is
smaller but more familiar to data mining researchers, and is easier for case study of
the selected seeds. Third, the newly introduced cascade models validate the robustness
of our algorithm in different scenarios, e.g., when the overall influence probability in
the network is higher, and when the influence between most pairs of nodes is highly
asymmetric.

Several studies follow the design principle of the algorithm presented this article,
and develop algorithms under other influence propagation assumptions. Chen et al.
(2010b) study the linear threshold model and design an LDAG algorithm. It uses local
directed acyclic graph (DAG) structures instead of local tree structures as used in our
algorithm MIA. Chen et al. (2011) study an extension of IC model where negative
opinions may emerge and propagate, and propose a MIA-N algorithm to solve it.

123

C. Wang et al.

Another line of research aims to design data mining or machine learning algorithms
to extract influence cascade model parameters from real datasets (Cha et al. 2009; Bak-
shy et al. 2009; Tang et al. 2009; Goyal et al. 2010; Rodriguez et al. 2010; Cui et al.
2011), which can be used to generate influence graphs studied in this article.

Paper organization. Section 2 provides preliminaries on the IC model and the
greedy algorithm, and also points out that computing the exact influence spread given
a seed set is #P-hard. Section 3 presents our MIA model and the algorithm for this
model as well as its extension, the PMIA model. Sections 4 and 5 show our experi-
mental results. We discuss future directions in Sect. 6.

2 IC model and greedy algorithm

We consider a directed graph G = (V, E) with edge labels pp : E → [0, 1]. For every
edge (u, v) ∈ E, pp(u, v) denotes the propagation probability of the edge, which is
the probability that v is activated by u through the edge in the next step after u is
activated.

Given a seed set S ⊆ V , the independent cascade (IC) model works as follows.
Let St ⊆ V be the set of nodes that are activated at step t ≥ 0, with S0 = S. At
step t + 1, every node u ∈ St may activate its out-neighbors v ∈ V \ ∪0≤i≤t Si with
an independent probability of pp(u, v). The process ends at a step t with St = ∅.
Note that each activated node only has one chance to activate its out-neighbors at the
step right after itself is activated, and each node stays as an activated node after it is
activated. The influence spread of S, which is the expected number of activated nodes
given seed set S, is denoted as σI (S).

Given an input k, the influence maximization problem in the IC model is to find
a subset S∗ ⊆ V such that |S∗| = k and σI (S∗) = max{σI (S) | |S| = k, S ⊆ V }.
It is shown in Kempe et al. (2003) that this problem is NP-hard, but a constant-ratio
approximation algorithm is available.

We say that a non-negative real valued function f on subsets of V is submodular
if f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T), for all v ∈ V and all pairs of subsets
S and T with S ⊆ T ⊆ V . Intuitively, this means that f has diminishing marginal
return. Moreover, we say that f is monotone if f (S) ≤ f (T) for all S ⊆ T . For any
submodular and monotone function f with f (∅) = 0, the problem of finding a set
S of size k that maximizes f (S) can be approximated by a simple greedy algorithm
shown as Algorithm 1. The algorithm iteratively selects a new seed u that maximizes
the incremental change of f into the seed set S until k seeds are selected. It is shown
in Nemhauser et al. (1978) that the algorithm guarantees the approximation ratio

Algorithm 1 Greedy(k, f)

1: initialize S = ∅
2: for i = 1 to k do
3: select u = arg maxw∈V \S(f (S ∪ {w}) − f (S))

4: S = S ∪ {u}
5: end for
6: output S

123

Scalable influence maximization in large-scale

f (S)/ f (S∗) ≥ 1 − 1/e, where S is the output of the greedy algorithm and S∗ is the
optimal solution.

In Kempe et al. (2003), it is shown that function σI (·) is submodular and monotone
with σI (∅) = 0. Therefore, algorithm Greedy(k, σI) solves the influence maximiza-
tion problem with an approximation ratio of 1 − 1/e.

One important issue, however, is that there is no efficient way to compute σI (S)

given a set S. Although Kempe et al. (2003) claim that finding an efficient algorithm
for computing σI (S) is open, we point out that the computation is actually #P-hard,
by showing a reduction from the counting problem of s-t connectness in a graph.

Theorem 1 Computing the influence spread σI (S) given a seed set S is #P-hard.

Proof We prove the theorem by a reduction from the counting problem of s-t connect-
ness in a directed graph (Valiant 1979). An instance of s-t connectness is a directed
graph G = (V, E) and two vertices s and t in the graph. The problem is to count the
number of subgraphs of G in which s is connected to t . It is straightforward to see that
this problem is equivalent to computing the probability that s is connected to t when
each edge in G has an independent probability of 1/2 to be connected, and another
1/2 to be disconnected. We reduce this problem to the influence spread computation
problem as follows. Let σI (S, G) denote the influence spread in G given a seed set
S. First, let S = {s}, and let pp(e) = 1/2 for all e ∈ E , and compute I1 = σI (S, G).
Next, we add a new node t ′ and a directed edge from t to t ′ to G, obtaining a new
graph G ′, and let pp(t, t ′) = 1. Then we compute influence spread I2 = σI (S, G ′).
Let p(S, v, G) denote the probability that v is influenced by seed set S in G. It is easy
to see that I2 = σI (S, G) + p(S, t, G) · pp(t, t ′). Therefore, I2 − I1 is the probability
that s is connected to t , and thus we solve the s-t connectness counting problem. It is
shown in Valiant (1979) that s-t connectness is #P-complete, and thus the influence
spread computation problem is #P-hard. ��

The above theorem shows that computing exact influence spread is hard. Moreover,
finding an efficient approximation algorithm for computing the probability of s-t con-
nectivity is a long-standing open problem (Vazirani 2004). Together with the fact that
several improvements (Leskovec et al. 2007; Chen et al. 2009) of the original greedy
algorithm of Kempe et al. (2003) are still not efficient, we believe that we need to look
for alternative ways, such as heuristic algorithms, to tackle the efficiency problem in
influence maximization.

3 MIA model and its algorithm

3.1 Basic MIA model and greedy algorithm

For a path P = 〈u = p1, p2, . . . , pm = v〉, we define the propagation probability of
the path, pp(P), as

pp(P) = �m−1
i=1 pp(pi , pi+1).

123

C. Wang et al.

Intuitively the probability that u activates v through path P is pp(P), because it
needs to activate all nodes along the path. To approximate the actual expected influ-
ence within the social network, we propose to use the maximum influence path (MIP)
to estimate the influence from one node to another. Let P(G, u, v) denote the set of
all paths from u to v in a graph G.

Definition 1 (Maximum influence path) For a graph G, we define the maximum
influence path MIPG(u, v) from u to v in G as

MIPG(u, v) = arg max
P

{pp(P) | P ∈ P(G, u, v)}.

Ties are broken in a predetermined and consistent way, such that MIPG(u, v) is
always unique, and any subpath in MIPG(u, v) from x to y is also the MIPG(x, y). If
P(G, u, v) = ∅, we denote MIPG(u, v) = ∅.

Note that for each edge (u, v) in the graph, if we translate the propagation prob-
ability pp(u, v) to a distance weight − log pp(u, v) on the edge, then MIPG(u, v) is
simply the shortest path from u to v in the weighted graph G. Therefore, the maximum
influence paths and the later maximum influence arborescences directly correspond
to shortest paths and shortest-path arborescences, and thus they permit efficient algo-
rithms such as Dijkstra’s algorithm to compute them.

For a given node v in the graph, we propose to use the maximum influence in-arbo-
rescence (MIIA), which is the union of the maximum influence paths to v,3 to estimate
the influence to v from other nodes in the network. We use an influence threshold θ to
eliminate MIPs that have too small propagation probabilities. Symmetrically, we also
define maximum influence out-arborescence (MIOA) to estimate the influence of v to
other nodes.

Definition 2 (Maximum Influence In(Out)- Arborescence) For an influence
threshold θ , the maximum influence in-arborescence of a node v ∈ V, MIIA(v, θ), is

MIIA(v, θ) = ∪u∈V,pp(MIPG (u,v))≥θMIPG(u, v).

The maximum influence out-arborescence MIOA(v, θ) is:

MIOA(v, θ) = ∪u∈V,pp(MIPG (v,u))≥θMIPG(v, u).

Intuitively, MIIA(v, θ) and MIOA(v, θ) give the local influence regions of v, and
different values of θ control the size of these local influence regions.

Given a set of seeds S in G and the in-arborescence MIIA(v, θ) for some v �∈ S,
we approximate the IC model by assuming that the influence from S to v is only
propagated through edges in MIIA(v, θ). With this approximation, we can calculate
the probability that v is activated given S exactly. Let the activation probability of
any node u in MIIA(v, θ), denoted as ap(u, S, MIIA(v, θ)), be the probability that

3 Since we break ties in maximum influence paths consistently, the union of maximum influence paths to
a node do not have undirected cycles, and thus it is indeed an arborescence.

123

Scalable influence maximization in large-scale

Algorithm 2 ap(u, S, MIIA(v, θ))

1: if u ∈ S then
2: ap(u) = 1
3: else if N in(u) = ∅ then
4: ap(u) = 0
5: else
6: ap(u) = 1 − �w∈Nin(u)(1 − ap(w) · pp(w, u))

7: end if

u is activated when the seed set is S and influence is propagated in MIIA(v, θ). Let
N in(u, MIIA(v, θ)) be the set of in-neighbors of u in MIIA(v, θ). In the above nota-
tions, MIIA(v, θ) and S may be dropped when it is clear from the context. Then
ap(u, S, MIIA(v, θ)) can be computed recursively as given in Algorithm 2.

Line 6 in Algorithm 2 corresponds to the independent cascade assumption: every
neighbor of a node u activates u independently. Thus the probability that u is not
activated is equal to the product of the probability that u is not activated by each of its
neighbors w, whose negation is recursively computed as the joint probability of two
events: w is activated, and u is activated by w. The recursion closes at the leaves of the
arborescence (line 4) and the seed nodes (line 2). Because MIIA(v, θ) is an in-arbores-
cence, there are no multiple paths between any pair of nodes in MIIA(v, θ), and thus
there is no dependency issue in the calculation of the activation probability and the
calculation in Algorithm 2 exactly matches the IC model restricted onto MIIA(v, θ).

In our MIA model we assume that seeds in S influence every individual node v

in G through its MIIA(v, θ). Let σM (S) denote the influence spread of S in our MIA
model, then we have

σM (S) =
∑

v∈V

ap(v, S, MIIA(v, θ)). (3.1)

Even though activating multiple nodes from the same set of seeds in the MIA model
are correlated events, Eq. 3.1 is still correct due to the linearity of the expectation over
the sum of random variables.

We are interested in finding a set of seeds S of size k such that σM (S) is maxi-
mized. It is not surprising that this optimization problem is NP-hard. In fact, the same
reduction from set cover problem in Kempe et al. (2003) together with Theorem 5.3
of Feige (1998) is sufficient to show the following.

Theorem 2 It is NP-hard to compute a set of nodes S of size k such that σM (S) is
maximized. Furthermore, it is NP-hard to approximate within a factor of 1 − 1/e + ε

for any ε > 0.

It is straight forward to verify the following result, which means we have an approx-
imation algorithm.

Theorem 3 Function σM is submodular and monotone and σM (∅) = 0. Therefore,
Greedy(k, σM) of Algorithm 1 achieves 1−1/e approximation ratio for the influence
maximization problem in the basic MIA model.

Note that the recursive computation of ap(u) in Algorithm 2 can be transformed
into an iterative form such that all ap(u)’s with u in MIIA(v, θ) can be computed by

123

C. Wang et al.

one traverse of the arborescence MIIA(v, θ) from leaves to the root. Thus, computing
σM (S) using Eq. 3.1 and Algorithm 2 is polynomial-time. Together with Algorithm 1,
we already have a polynomial-time approximation algorithm. However, we could fur-
ther improve the efficiency of the algorithm, as shown in the next section.

3.2 More efficient greedy algorithm

The only important step in the greedy algorithm is to select the next seed that gives
the largest incremental influence spread. Consider the maximum influence in-arbo-
rescence MIIA(v, θ) of size t and a given seed set S. To select the next seed u,
we need to compute the activation probability ap(v, S ∪ {w}, MIIA(v, θ)) for every
w ∈ MIIA(v, θ), which takes O(t2) time if we simply use Algorithm 2 to com-
pute every ap(v, S ∪ {w}, MIIA(v, θ)). We now show a batch update scheme such
that we could compute ap(v, S ∪ {w}, MIIA(v, θ))’s for all w ∈ MIIA(v, θ) in O(t)
time.

To do so, we utilize the linear relationship between ap(u) and ap(v) in MIIA(v, θ),
as shown by the following lemma, which is not difficult to derive from line 6 of
Algorithm 2.

Lemma 1 (Influence linearity) Consider MIIA(v, θ) and a node u in it. If we treat
the activation probability ap(u) as an independent variable, ap(v) as a dependent
variable, and other ap(w)’s as constants for all w’s not on the path from from u to
v in MIIA(v, θ), then ap(v) = α(v, u) · ap(u) + β(v, u), where α(v, u), β(v, u) are
constants independent of ap(u).

Based on the recursive computation of ap(u, S, MIIA(v, θ)) as shown in line 6
of Algorithm 2, it is straightforward to derive a recursive computation of α(v, u),
as shown in Algorithm 3. To see the intuition behind the equations, we remind that
α(v, u) is the increment of the activation probability of v caused by unit increment
of u’s activation probability. Therefore, the boundary of the recursive computation is
natural: when u = v, unit increment of u’s activation probability results in the same
increment of v’s activation probability; when u’s out-neighbor w is a seed node, the
increment of its activation probability does not induce any change of v’s activation

Algorithm 3 Compute α(v, u) with MIIA(v, θ) and S, after ap(u, S, MIIA(v, θ)) for
all u in MIIA(v, θ) are known.
1: /* the following is computed recursively */
2: if u = v then
3: α(v, u) = 1
4: else
5: set w to be the out-neighbor of u
6: if w ∈ S then
7: α(v, u) = 0 /* u’s influence to v is blocked by seed w */
8: else
9: α(v, u) = α(v, w) · pp(u, w) · �u′∈Nin(w)\{u}(1 − ap(u′) · pp(u′, w))

10: end if
11: end if

123

Scalable influence maximization in large-scale

probability because w is already activated. In other cases, the effect of u on v is deter-
mined by the effect of its out-neighbor w on v and the chance that w is activated by
its in-neighbor u exclusively. The product over w’s in-neighbors except for u in line 9
corresponds to the probability that w is not activated by other in-neighbors. Note that
Algorithm 3 can be transformed into an iterative form such that all α(v, u)’s can be
computed by one traverse of MIIA(v, θ) from the root to the leaves.

Computing the linear coefficients α(v, u) as defined in Lemma 1 is crucial in com-
puting the incremental influence spread of a node u. Let us consider again the maxi-
mum influence in-arborescence MIIA(v, θ) of size t and a given seed set S. For any
w ∈ MIIA(v, θ), if we select w as the next seed, its ap(w) increases from the current
value to 1. Since ap(w) and ap(v) has a linear relationship with the linear coefficient
α(v,w), the incremental influence of w on v is given by α(v,w) · (1−ap(w)). There-
fore, we only need one pass of MIIA(v, θ) to compute ap(w)’s for all w ∈ MIIA(v, θ),
and a second pass of MIIA(v, θ) to compute α(v,w)’s and α(v,w) · (1 − ap(w))’s for
all w ∈ MIIA(v, θ). This reduces the running time of computing incremental influence
spread of all nodes in MIIA(v, θ) from O(t2) to O(t).

Our complete greedy algorithm for the basic MIA model is presented in
Algorithm 4. Lines (2–11) evaluate the incremental influence spread IncInf (u) for
any node u when the current seed set is empty. The evaluation is exactly as we
described above using the linear coefficients α(v, u).

Lines (15–30) update the incremental influences whenever a new seed is selected in
line 14. Suppose u is selected as the new seed in an iteration. The influence of u in the
MIA model only reaches nodes in MIOA(u, θ). Thus the incremental influence spread
IncInf (w) for some w needs to be updated if and only if w is in MIIA(v, θ) for some
v ∈ MIOA(u, θ). This means that the update process is relatively local to u. The update
is done by first subtracting α(v,w) · (1 − ap(w, S, MIIA(v, θ))) before adding u into
the seed set (line 19), and then adding u into the seed set (line 22), recomputing the
ap(w, S, MIIA(v, θ)) and α(v,w) under the new seed set (lines 24–25), and adding
α(v,w) · (1 − ap(w, S, MIIA(v, θ))) into IncInf (w) (line 28).

The algorithm is illustrated graphically in Fig. 1.
Time and space complexity. Let niθ = maxv∈V {|MIIA(v, θ)|} and noθ =

maxv∈V {|MIOA(v, θ)|}. Computing MIIA(v, θ) can be done using efficient imple-
mentations of Dijkstra’s shortest-path algorithm. Assume the maximum running time
to compute MIIA(v, θ) for any v ∈ V is tiθ . When MIIA(v, θ)’s for all node v ∈ V are
available, MIOA(v, θ)’s can be derived from MIIA(v, θ)’s, therefore no extra running
time for MIOA(v, θ)’s is needed. Notice that niθ = O(tiθ).

For every node v ∈ V , our algorithm stores MIIA(v, θ), MIOA(v, θ), and
for every u ∈ MIIA(v, θ), ap(u, S, MIIA(v, θ)) and α(v, u) are stored (note that
ap(u, S, MIIA(v, θ)) can reuse the same entry for different seed set S). We also use a
max-heap to store and update IncInf (v) for all v ∈ V . Therefore, the space complexity
of the algorithm is O(n(niθ + noθ)).

During the initialization of Algorithm 4, it takes O(ntiθ) time to compute
MIIA(v, θ) for all v ∈ V, O(nniθ) time to compute all α(v, u)’s and IncInf (u)’s,
and O(n) time to initialize the max-heap for storing IncInf (u)’s. Therefore, the
total running time for initialization is O(ntiθ). During one iteration of the main loop,
it takes constant time to select the new seed from the max-heap, O(noθ niθ log n)

123

C. Wang et al.

Algorithm 4 MIA(G, k, θ)

1: /* initialization */
2: set S = ∅
3: set IncInf (v) = 0 for each node v ∈ V
4: for each node v ∈ V do
5: compute MIIA(v, θ) and MIOA(v, θ)

6: set ap(u, S, MIIA(v, θ)) = 0, ∀u ∈ MIIA(v, θ) /* since S = ∅ */
7: compute α(v, u),∀u ∈ MIIA(v, θ) (Algorithm 3)
8: for each node u ∈ MIIA(v, θ) do
9: IncInf (u) +=α(v, u) · (1 − ap(u, S, MIIA(v, θ)))

10: end for
11: end for
12: /* main loop */
13: for i = 1 to k do
14: pick u = arg maxv∈V \S{IncInf (v)}
15: /* update incremental influence spreads*/
16: for v ∈ MIOA(u, θ) \ S do
17: /* subtract previous incremental influence */
18: for w ∈ MIIA(v, θ) \ S do
19: IncInf (w) −= α(v, w) · (1 − ap(w, S, MIIA(v, θ)))

20: end for
21: end for
22: S = S ∪ {u}
23: for v ∈ MIOA(u, θ) \ S do
24: compute ap(w, S, MIIA(v, θ)),∀w ∈ MIIA(v, θ) (Algo. 2)
25: compute α(v, w),∀w ∈ MIIA(v, θ) (Algo. 3)
26: /* add new incremental influence */
27: for w ∈ MIIA(v, θ) \ S do
28: IncInf (w) += α(v, w) · (1 − ap(w, S, MIIA(v, θ)))

29: end for
30: end for
31: end for
32: return S

time to update IncInf (w)’s on the max-heap, and O(noθ niθ) time to compute
ap(w, S, MIIA(v, θ, S))’s and α(v,w)’s after selecting the new seed. Thus, one
iteration of the main loop takes O(noθ niθ log n) time. Together, the total running
time of the algorithm is O(ntiθ + knoθ niθ log n)). Note that without applying the
improvement of utilizing the linear relationship, the time complexity would be
O(ntiθ + knoθniθ (niθ + log n)).

Therefore, the algorithm performs the fastest when niθ , noθ , and tiθ are significantly
smaller than n, that is, when the arborescences are small. This typically occurs for a
reasonable range of θ values, when the graph is sparse and the propagation probabili-
ties on edges are small, which is usually the case for social networks. Our experiments
in Sects. 4 and 5 will demonstrate the efficiency of our algorithm.

3.3 Prefix excluding MIA model

In the basic MIA model, we only consider the maximum influence path from u to
v for influence propagation. Consider the scenario of two seeds s1 and s2 such that
MIPG(s2, v) ⊂ MIPG(s1, v). The probability that v is activated in the basic MIA

123

Scalable influence maximization in large-scale

(a) (b) (c)

Fig. 1 Illustration of MIA algorithm. a In the beginning MIIAs are computed (the figure shows one MIIA
rooted at v) and the accumulated influence score of every node is recorded. b The node with the largest
influence score is selected as a seed. c Once a seed u is selected, all the MIIAs rooted at a node in u’s
MIOA should be updated. The figure shows one such MIIA rooted at v, and the influence score of all the
other nodes {x1, x2, x3, x4, x5, v} in this MIIA should be discounted. Dotted edges are the edges not used
in corresponding computation

model is only determined by s2 and is not affected by s1, or we can say that the
influence of s1 to v is blocked by s2 in the middle.

To achieve a better approximation to the IC model, we prefer a MIA model in
which the influence of a seed is not blocked by other seeds. A natural way to extend
the basic MIA model is considering maximum influence paths avoiding other seeds.
Let S = {s1, s2, . . . , sm} and Si = S\{si }. We define G(Si) be the subgraph of G
induced by V \Si . Then, for each seed si and node v ∈ V \S, we use the maximum
influence path MIPG(Si)(si , v) to estimate the influence from si to v. In other words, we
consider maximum influence paths avoiding other seeds in calculating the influence
spread.

The generic Algorithm 1 also works in this model. However, it is not clear how
to implement it efficiently similar to the approach in Algorithm 4. In this section, we
consider a variant of the above extension that allows an efficient greedy algorithm. We
call this extension the prefix excluding MIA (PMIA) model.

Intuitively, in the PMIA model, the seeds have an order (as the order by which they
are selected by the greedy algorithm). For any given seed s, its maximum influence
paths to other nodes should avoid all seeds in the prefix before s. The major tech-
nical difference is the definition of the maximum influence in(out)-arborescence for
the PMIA model, especially if we want to design an efficient greedy algorithm in the
framework of Algorithm 4.

Let S = 〈s1, s2, . . . , sm〉 be a sequence of seeds. Define Si = 〈s1, s2, . . . , si−1〉
and S1 = ∅. Let G(S′) be the subgraph of G induced by V \S′ for any sequence S′.
We first define ineffective seeds with respect to a node v, which are those seeds whose
influence to v are blocked by some other subsequent seeds in sequence S.

Definition 3 (Ineffective seeds) For a given node v ∈ V \S, we define the set of
ineffective seeds for v as:

I S(v, S) = {si ∈ S | ∃ j > i, s.t., s j ∈ MIPG(Si)(si , v)}.

123

C. Wang et al.

Now consider the maximum influence in-arborescence (MIIA) of a node v in the
PMIA model. First, for the maximum influence path from a seed si to v, it should be
defined as MIPG(Si)(si , v) to avoid seeds in its prefix. Second, for the case where the
MIP from seed si to v is blocked by a subsequent seed s j , we need to give a special
treatment in order to use the influence linearity of Lemma 1 for an efficient computa-
tion of incremental influence spread. Consider a node u �∈ S located on the MIP from
si to s j . If u is selected as a seed later, then its MIP to v should avoid all seeds in
S, and thus to compute its incremental influence spread correctly using the linearity
property, we need to compute the MIP from u to v in the graph G(S). Moreover, we
need to remove the ineffective seed si and its MIP to v because otherwise si would
have two different paths to v, violating the arborescence definition.

For out-arborescence from v �∈ S, we need to consider all MIPs from v that avoid
all seeds in S. This is because we only need to compute the out-arborescence of a node
v when v is just selected as the next seed. In this case, the paths in the above computed
out-arborescence of v match the paths in the corresponding in-arborescences used
to compute the incremental influence of v (since those paths avoid all seeds already
in S). Therefore, we have the following formal definitions.

Definition 4 (MIIA(MIOA) for the PMIA Model) The maximum influence in-arbo-
rescence of v in the PMIA model for v �∈ S is:

PMIIA(v, θ, S) =
(∪{MIPG(Si)(si , v) | si ∈ S\I S(v, S),

pp(MIPG(Si)(si , v)) ≥ θ})
∪(∪{MIPG(S)(u, v) | u ∈ V \S,

pp(MIPG(S)(u, v)) ≥ θ}).

The maximum influence out-arborescence of v in the PMIA model for v �∈ S is:

PMIOA(v, θ, S) = ∪{MIPG(S)(v, u) | u ∈ V \S,

pp(MIPG(S)(v, u)) ≥ θ}.

Given the above definition, we can have activation probabilities ap(u, S, PMIIA
(v, θ, S)) computed by Algorithm 2. Then, similar to Eq. 3.1, we can define σP (S) as
the influence spread given a seed sequence S, which is computed using the following
equation:

σP (S) =
∑

v∈V

ap(v, S, PMIIA(v, θ, S)). (3.2)

Notice that different sequences S of the same set of seeds may generate different
values of σP (S). Therefore, the submodularity defined on set functions previously
does not apply to σP . Fortunately, we can define sequence submodularity in a similar
way, which also leads to the greedy algorithm with an approximation ratio of 1 − 1/e.

123

Scalable influence maximization in large-scale

Sequence submodularity. We now define sequence submodularity, which is
implicitly used by Streeter and Golovin in Streeter and Golovin (2007). Let S be the set
of all sequences of V , including the empty sequence ∅. Let ⊕ be the binary operator that
concatenates two sequences into one. We say that a non-negative function f defined
on S is sequence submodular if f (S1 ⊕ S2 ⊕{t})− f (S1 ⊕ S2) ≤ f (S1 ⊕{t})− f (S1)

for all sequences S1, S2 ∈ S. Moreover, f is prefix monotone if f (S1) ≤ f (S2 ⊕ S1)

for all S1, S2 ∈ S. An important result that matches the one for set submodular func-
tions is that if f is sequence submodular and prefix monotone and f (∅) = 0, then
the greedy algorithm of Algorithm 1 (with set union ∪ replaced by sequence concat-
enation ⊕) finds a sequence S within 1 − 1/e of the optimal S∗. Since the original
proof in Streeter and Golovin (2007) is presented in a different context, we rephrase
the proof below.

Theorem 4 (Theorem 3 in Streeter and Golovin (2007)) Let f be a sequence sub-
modular, prefix monotone function with f (∅) = 0. Define S0 = ∅ and for 1 ≤ i ≤ k, let
si = arg maxs∈V { f (Si−1⊕{s}} and Si = Si−1⊕{si }. Let S∗ = arg maxS′ { f (S′) | S′ ∈
S and |S′| = k}. We have

f (Sk) ≥ (1 − 1/e) · f (S∗).

Proof Let Δi = f (S∗)− f (Si). By prefix monotonicity, we have f (S∗) ≤ f (Si ⊕S∗).
Let S∗ = 〈s∗

1 , . . . , s∗
k 〉, and S∗

i = 〈s∗
1 , . . . , s∗

i 〉. By submodularity, for 1 ≤ i ≤ k, we
have

f (Si ⊕ S∗) = f (Si ⊕ S∗
k−1 ⊕ 〈s∗

k 〉)
≤ f (Si ⊕ S∗

k−1) + f (Si ⊕ 〈s∗
k 〉) − f (Si)

≤ f (Si ⊕ S∗
k−1) + f (Si+1) − f (Si),

where the last inequality is due to the definition of Si+1. Repeating the above derivation
for k times, we have

f (S∗) ≤ f (Si ⊕ S∗) ≤ f (Si) + k · (f (Si+1) − f (Si))

= f (Si) + k · (Δi − Δi+1).

Therefore, Δi ≤ k · (Δi − Δi+1) and Δi+1 ≤ (1 − 1
k)Δi . Hence

f (S∗) − f (Sk) = Δk ≤ (1 − 1

k
)kΔ0 ≤ f (S∗)/e.

��
It is not difficult to verify the following result on σP , which means that the greedy

algorithm works as an approximation algorithm.

Theorem 5 Function σP is sequence submodular and prefix monotone and σP (∅) =
0. Therefore, Greedy(k, σP) of Algorithm 1 (with set union ∪ replaced by sequence

123

C. Wang et al.

concatenation ⊕) achieves 1−1/e approximation ratio for the influence maximization
problem in the PMIA model.

Algorithm in the PMIA model. We now present the necessary changes needed
to adapt Algorithm 4 to the PMIA model. The major issue is the computation of
PMIIA(v, θ, S) and PMIOA(v, θ, S). The computation of PMIOA(v, θ, S) is rela-
tively simple, since we only need to remove S from the graph. Therefore, we can use
Dijkstra’s algorithm on graph G(S) to compute PMIOA(v, θ, S).

To efficiently compute PMIIA(v, θ, S), we maintain the set of ineffective seeds
I S(v, S) for each node v ∈ V \ S. Given I S(v, S), PMIIA(v, θ, S) can be calculated
as follows. We start Dijkstra’s algorithm from v traversing inward edges. Whenever
the algorithm hits a seed node s, it stops this branch and does not go further onto the
in-neighbors of s. After this variant of Dijkstra’s algorithm completes, we remove all
nodes I S(v, S) from the computed in-arborescence.

When a new seed u is selected, we have to update I S(v, S) for all nodes v in
PMIOA(u, θ, S). This can be done by checking the set of effective seeds (those in
S \ I S(v, S)) that are blocked by u in PMIIA(v, θ, S). For completeness, we present
Algorithm 5 for the efficient greedy algorithm in the PMIA model. Algorithm 5 essen-
tially follows Algorithm 4, with all MIIA’s and MIOA’s being replaced by PMIIA’s
and PMIOA’s, and these PMIIA’s and PMIOA’s being recomputed whenever the seed
set changes (lines 16 and 26).

3.4 Online bounds from sequence submodularity

We have proved the approximation guarantee of (1−1/e). This approximation bound
is offline, which can be stated before running the actual algorithm. When we have
selected a set of nodes as seeds, we can estimate a tighter bound for that solution
thanks to the sequence submodularity. This online bound is irrelevant with the algo-
rithm to use, but relevant with the solution.

Theorem 6 Let f be a sequence submodular, prefix monotone function with f (∅) =
0. Let S be an arbitrary set of k nodes and S∗ be the optimal set of k nodes, i.e.,
S∗ = arg max|S|=k f (S) = 〈s∗

1 , . . . , s∗
k 〉. For any node v not in S, define dv = f (S ⊕

〈v〉) − f (S). Sort all the nodes v not in S in the decreasing order of dv , so that
dv1 ≥ dv2 ≥ · · ·. We have the online bound

f (S∗) ≤ f (S) +
k∑

i=1

dvi .

Proof Let S∗
i = 〈s∗

1 , . . . , s∗
i 〉. By prefix monotonicity, we have f (S∗) ≤ f (S ⊕ S∗).

By sequence submodularity, for 1 ≤ i ≤ k, we have

f (S ⊕ S∗
i) = f (S ⊕ S∗

i−1 ⊕ 〈s∗
i 〉)

≤ f (S ⊕ S∗
i−1) + f (S ⊕ 〈s∗

i 〉) − f (S)

Sum the above equations with i from 1 to k, we have

123

Scalable influence maximization in large-scale

Algorithm 5 PMIA(G, k, θ)

1: /* initialization */
2: set S = ∅
3: set IncInf (v) = 0 for each node v ∈ V
4: for each node v ∈ V do
5: compute PMIIA(v, θ, S)

6: set ap(u, S, PMIIA(v, θ, S)) = 0,∀u ∈ PMIIA(v, θ, S) /* since S = ∅ */
7: compute α(v, u),∀u ∈ PMIIA(v, θ, S) (Algorithm 3)
8: for each node u ∈ PMIIA(v, θ, S) do
9: IncInf (u) +=α(v, u) · (1 − ap(u, S, PMIIA(v, θ, S)))

10: end for
11: end for
12: /* main loop */
13: for i = 1 to k do
14: pick u = arg maxv∈V \S{IncInf (v)}
15: /* update incremental influence spreads*/
16: compute PMIOA(u, θ, S)

17: for v ∈ PMIOA(u, θ, S) do
18: /* subtract previous incremental influence */
19: for w ∈ PMIIA(v, θ, S) \ S do
20: IncInf (w) −= α(v, w) · (1 − ap(w, S, PMIIA(v, θ, S)))

21: end for
22: end for
23: S = S ∪ {u}
24: /* the following PMIOA(u, θ, S \ {u}) is the same as computed in line 16 */
25: for v ∈ PMIOA(u, θ, S \ {u}) \ {u} do
26: compute PMIIA(v, θ, S)

27: compute ap(w, S, PMIIA(v, θ, S)), ∀w ∈ PMIIA(v, θ, S) (Algo. 2)
28: compute α(v, w),∀w ∈ PMIIA(v, θ, S) (Algo. 3)
29: /* add new incremental influence */
30: for w ∈ PMIIA(v, θ, S) \ S do
31: IncInf (w) += α(v, w) · (1 − ap(w, S, PMIIA(v, θ, S)))

32: end for
33: end for
34: end for
35: return S

f (S∗) ≤ f (S ⊕ S∗) ≤ f (S) +
k∑

i=1

(f (S ⊕ 〈s∗
i 〉) − f (S))

≤ f (S) +
k∑

i=1

(dvi).

The last inequality is because v1, v2, . . . , vk are the k nodes with the largest marginal
influence given S. ��
Theorem 6 establishes a way of computing how far any given solution S is from the
optimal solution, no matter it is obtained by which algorithm. We can turn this theorem
into an algorithm, as formalized in Algorithm 6.

In Leskovec et al. (2007), a technique of lazy evaluations is used to improve the
Greedy algorithm: when finding the next seed, we mark the marginal influence dv of
all nodes v as invalid, and go through the nodes in decreasing order of their marginal

123

C. Wang et al.

Algorithm 6 OnlineBound(f, S)

1: for k = 1 to |S| do
2: initialize U = ∅, bk = f (Sk) /* Sk as defined in Theorem 4 */
3: for i = 1 to k do
4: select u = arg maxv∈V \Sk\U (f (Sk ⊕ 〈v〉) − f (Sk))

5: U = U ∪ {u}
6: bk = bk + f (Sk ⊕ 〈u〉) − f (Sk)

7: end for
8: end for
9: output {bk }

Algorithm 7 Lazy_OnlineBound(k, f, S)

1: initialize dv with all 0’s
2: initialize a max-heap Q = {vn} in the decreasing order of dv

3: for k = 1 to |S| do
4: initialize U = ∅, bk = f (Sk), validv = f alse ∀v /* Sk as defined in Theorem 4 */
5: for i = 1 to k do
6: while validv0 = f alse for the top element v0 ∈ Q do
7: v = v0
8: remove v0 from Q
9: compute dv = (f (Sk ⊕ 〈v〉) − f (Sk))

10: set validv = true, and reinsert v into Q
11: end while
12: u = v0
13: remove v0 from Q
14: U = U ∪ {u}
15: bk = bk + f (Sk ⊕ 〈u〉) − f (Sk)

16: end for
17: for u ∈ U do
18: reinsert u into Q
19: end for
20: end for
21: output {bk }

influence dv computed in last round. If dv for the top node v is invalid, we recompute
it, and insert it into the existing order of dv’s, and mark it as valid. Thus all dv’s can be
stored in a priority queue, while some of them are valid and some invalid. We repeat
the computation for the top node v in the priority queue and the insertion, until the top
element has a valid dv . The correctness of this lazy procedure follows directly from
submodularity, and leads to far fewer evaluations of dv’s because we do not need all
dv’s to become valid to obtain the largest dv .

Similar techniques can be used in our online bounds evaluation algorithm. We can
still maintain a max-heap and keep recomputation for the top element and insertion
in each round. Instead of stopping once the top element is valid, we change the stop-
ping criteria as the top k element is valid. For example, this can be achieved as in
Algorithm 7.

123

Scalable influence maximization in large-scale

4 Primary experiment

We conduct experiments with our algorithm as well as a number of other algorithms
on several real-world and synthetic networks. This section contains primary results
illustrating the performance of our algorithm from the following aspects: (a) its sca-
lability comparing to other algorithms; (b) its influence spread comparing to other
algorithms; and (c) the tuning of its control parameter θ .

4.1 Experiment setup

Datasets. We use four real-world networks and a synthetic dataset. The first one,
denoted NetHEPT, is the same as used in Chen et al. (2009). It is an academic collab-
oration network extracted from “High Energy Physics-Theory” section of the e-print
arXiv (http://www.arXiv.org), with nodes representing authors and edges representing
coauthorship relations. The second is a much larger collaboration network, the DBLP
Computer Science Bibliography Database maintained by Michael Ley. The other two
datasets are published network data by Jure Leskovec. One is a Who-trust-whom net-
work of Epinions.com 4, where nodes are members of the site and a directed edge
from u to v means v trust u (and thus u has influence to v). Another is the Amazon
product co-purchasing network 5 dated on March 2, 2003, where nodes are products
and a directed edge from u to v means product v is often purchased with product
u (and thus u has influence to v).6 We refer to these two datasets as Epinions and
Amazon. We choose these networks since they cover a variety of networks with sizes
ranging from 30K edges to 2M edges. Some basic statistics about these networks are
given in Table 1 (Epinions and Amazon networks are treated as undirected graphs in
the statistics). Finally, in the scalability test, we use the DIGG package available on
the web (http://digg.cs.tufts.edu) to randomly generate power-law graphs of different
sizes based on the model of Aiello et al. (2000).

Generating propagation probabilities. Since our algorithm is targeted at the gen-
eral IC model with nonuniform propagation probabilities, we use the following two
models to generate these nonuniform probabilities.

– WC model: This is the weighted cascade model proposed in Kempe et al. (2003).
In this model, pp(u, v) for an edge (u, v) is 1/deg(v), where deg(v) is the in-
degree of v. Thus even if the original graph is undirected, the model will generate
asymmetric and nonuniform propagation probabilities.

– TRIVALENCY model: On every edge (u, v), we uniformly at random select a
probability from the set {0.1, 0.01, 0.001}, which corresponds to high, medium,
and low influences.

4 http://snap.stanford.edu/data/soc-Epinions1.html.
5 http://snap.stanford.edu/data/amazon0302.html.
6 Although the Amazon dataset is for products, we still include it in our experiments to test a variant of
social network. Moreover, it also makes sense to find top seed products that lead to the most co-purchasing
behaviors.

123

http://www.arXiv.org
http://digg.cs.tufts.edu
http://snap.stanford.edu/data/soc-Epinions1.html
http://snap.stanford.edu/data/amazon0302.html

C. Wang et al.

Table 1 Statistics of four tested real-world networks

Dataset NetHEPT DBLP Epinions Amazon

#Node 15K 655K 76K 262K

#Edge 31K 2.0M 509K 1.2M

Average degree 4.12 6.1 13.4 9.4

Maximal degree 64 588 3079 425

#Connected Component 1781 73K 11 1

Largest component size 6794 517K 76K 262K

Average component cize 8.6 9.0 6.9K 262K

Algorithms. We compare our MIA heuristic with both the greedy algorithm and
several heuristics that appear in the literature. The following is a list of algorithms we
evaluate in our experiments.

– PMIA(θ): Our Algorithm 4 for the PMIA model with influence threshold θ . The
value of θ for a particular dataset is selected using the heuristic discussed in the
“tuning of parameter θ” part of Section 4.2.

– Greedy: The original greedy algorithm on the IC model (Kempe et al. 2003) with
the lazy-forward optimization of Leskovec et al. (2007). For each candidate seed
set S, 20000 simulations is run to obtain an accurate estimate of σI (S).

– DegreeDiscountIC: The degree discount heuristic of Chen et al. (2009) devel-
oped for the uniform IC model with a propagation probability of p = 0.01, same
as used in Chen et al. (2009).

– SP1M: The shortest-path based heuristic algorithm of Kimura and Saito (2006),
also enhanced with the lazy-forward optimization of Leskovec et al. (2007).

– PageRank: The popular algorithm used for ranking web pages (Brin and Page
1998). Here the transition probability along edge (u, v) is pp(v, u)/ρu , where ρu

is the sum of propagation probabilities on all incoming edges of u. Note that in the
PageRank algorithm the transition probability of (u, v) indicates u’s “vote” to v’s
ranking, and thus if pp(v, u) is higher, v is more influential to u and thus u should
vote v higher. We use 0.15 as the restart probability for PageRank, and we use the
power method to compute the PageRank values. The stopping criteria is when two
consecutive iterations differ for at most 10−4 in L1 norm.

– Random: As a baseline comparison, simply select k random vertices in the graph.

We ignore other centrality measures, such as distance centrality and betweenness
centrality (Freeman 1979) as heuristics, since we have shown in Chen et al. (2009) that
distance centrality is very slow and has very poor influence spread, while betweenness
centrality would be much slower than distance centrality.

To obtain the influence spread of the heuristic algorithms, for each seed set, we
run the simulation on the networks 20000 times and take the average of the influence
spread, which matches the accuracy of the greedy algorithms. The reported running
time for PMIA includes the time for computing the bounded shortest path to build
the arborescence. The experiments are run on a server with 2.33GHz Quad-Core Intel
Xeon E5410 and 32G memory.

123

Scalable influence maximization in large-scale

Fig. 2 Scalability of different algorithms in synthetic datasets. Each data point is an average of ten runs

4.2 Experiment results

Scalability on the synthetic dataset. To test scalability, we generate a family of
graphs of increasing sizes using the DIGG package (http://digg.cs.tufts.edu), which
applies the random power-law graph model of Aiello et al. (2000) to generate random
graphs. We use graphs of doubling sizes—2K , 4K , 8K , . . ., up to 256K in the number
of nodes, and a power-law exponent of 2.16. The average degree of these graphs is
between 2 and 3 for these graphs, which is lower than the real networks in Table 1. We
use the WC model for the graphs, and run PMIA algorithm with a fixed θ = 1/320,
as well as other algorithms, to find 50 seeds in every graph. The result is shown in
Fig. 2, with normal scale shown in (a) and log-log scale of the same figure shown in
(b) to differentiate these algorithms better.

The result in Fig 2 (a) clearly separate all algorithms into two groups. Algorithms
Greedy and SP1M are not scalable: their running times are in the hour range with
around 400K edge graphs and it becomes infeasible to run them in larger graphs since
we want to take average of 10 runs of every algorithm. Note that we already choose
graphs with low average degree so that they could run faster. Later reports on real
graphs will show that they run even slower on those graphs. Our PMIA along with
the rest heuristics can all scale up quite well. Figure 2 (b) differentiates the algorithms
further. SP1M has the worst slope and is certainly not feasible for large-scale graphs.
Greedy has the similar slope as other algorithms but its intercept is too large, because
its Monte-Carlo simulation based estimation of incremental influence spread for every
node is too slow. Our PMIA has both good slope and intercept, making it easily scalable
to large graphs with millions of edges.

Influence spread and running time for the real-world datasets. We run tests on
the four datasets and the two IC models to obtain influence spread results. The seed
set size k ranges from 1 to 50. For ease of reading, in all influence spread figures
(best viewed in color), the legend ranks the algorithms top-down in the same order
as the influence spreads of the algorithms when k = 50. Moreover, if two curves
are two close to each other, we group them together and show properly in the leg-
end. All percentage difference reported below on influence spreads are the average of

123

http://digg.cs.tufts.edu

C. Wang et al.

Fig. 3 Influence spread results on the NetHEPT dataset

Fig. 4 Influence spread results on the Epinions dataset

percentage differences from selecting one seed to selecting 50 seeds. Taking average
is reasonable, since some algorithms may behave better when selecting the first few
seeds while other algorithms behave better when selecting more seeds. The running
time results are the time for selecting 50 seeds.

Figures 3, 4, 5 and 6 show the results on influence spreads for the four datasets on
two IC models, while Fig. 7 shows the running time results of the four datasets on the
WC model (results on the TRIVALENCY model are similar and omitted).

For the moderate sized graph NetHEPT where Greedy is still feasible to run, the
influence results in Fig. 3 show that Greedy produces the best influence spread, but
PMIA is very close to Greedy: its influence spread essentially matches that of Greedy
for the WC model and is only 3.8% less than Greedy for the TRIVALENCY model.
Comparing with other heuristics, PMIA performs quite well: it matches the influence
spread of SP1M while outforms the rest heuristics in both models—in the WC model,
PMIA is 3.9% and 11.4% better, while in the TRIVALENCY model, PMIA is 6.5%
and 15.4% better, comparing to DegreeDiscountIC and PageRank respectively.
Random has a much worse influence spread, indicating that a careful seed selection

123

Scalable influence maximization in large-scale

Fig. 5 Influence spread results on the Amazon dataset

Fig. 6 Influence spread results on the DBLP dataset

is indeed important to effective viral marketing results. When looking at the running
time in Fig. 7 for NetHEPT on WC, we clearly see that Greedy is already quite slow
(1.3 hours), while PMIA only takes 1 second, more than three orders of magnitude
better. PMIA is also more than one order of magnitude faster than SP1M, and is com-
parable with PageRank. DegreeDiscountIC is the best in running time, because it
is simple and specially tuned for the uniform IC model.

Figure 4 shows the result on the Epinions dataset, a large network with half a mil-
lion edges. The graph is already too large for Greedy to run, so Greedy is out of the
picture. For the WC model, PMIA still matches the influence spread of SPIM while it
has a large winning margin over DegreeDiscountIC and PageRank—PMIA is 96%
and 115% better than DegreeDiscountIC and PageRank, respectively. This demon-
strates that DegreeDiscountIC and PageRank are rather unstable heuristics while
PMIA is very consistent in influence performance. For the TRIVALENCY model, we
see that all heuristics, including Random reach a high level of influence spread after
only a few seeds, while afterwards the increase in influence spread is slow. This behav-
ior is quite different from the behavior of other test results we have seen so far, but it is
very similar to a result presented in Kempe et al. (2003) for a graph when every edge

123

C. Wang et al.

Fig. 7 Running time of different algorithms in four datasets

has a propagation probability of 0.1. Therefore, we believe that the explanation is also
similar: in this test, after deleting the edges based on their propagation probabilities
and only keeping the edges that will propagate influence, the resulting graph is likely
to have a relatively large strongly connected component, and thus even random node
selection would likely to hit this component after a few attempts, drastically increasing
the influence spread. However, afterwards, additional seeds could only reach a small
portion of still unaffected nodes, so further improvement in influence spread is small.
But even in this case PMIA is still the best, outperforming the rest heuristics. For
running time, we see that PMIA only takes 10 s but SP1M now takes 2.1 h, more than
700 times slower than PMIA.

Next, for the one-million-edge graph Amazon, Fig. 5 shows that in the WC model
PMIA again outperforms PageRank and DegreeDiscountIC with a large margin
(99% and 266%, respectively), and in the TRIVALENCY model, it even outperforms
SP1M significantly (14.1%, 23.9%, and 41.7% better than SP1M, PageRank, De-
greeDiscountIC, respectively). Two unique features for this dataset are: (a) the influ-
ence spread is rather small, e.g., in TRIVALENCY, 50 seeds only generate a spread
of around 80 nodes, and (b) the increase in influence spread is almost linear. The
two features have the same reason—influence is very local and cannot propagate very
far. It is probably because Amazon is a product co-purchasing network, not a social
network. For running time, we now see that SP1M takes 30 h, reaching its feasibility
limit, while PMIA still only takes 10 s, showing its superb scalability over SP1M.

Finally, for the two million edge DBLP dataset, Fig. 6 shows that this time Page-
Rank and DegreeDiscountIC match PMIA and are slightly better than PMIA for
the WC model. Among all test cases (including additional ones in Sect. 5), there are
only a couple of cases where other scalable heuristics have matching influence spread
as PMIA. This means that PMIA performs consistently well among the best scalable
heuristics while others such as PageRank and DegreeDiscountIC are not stable—

123

Scalable influence maximization in large-scale

Fig. 8 Running time and
average arborescence size of
PMIA vs. the threshold 1/θ in
the WC model, for NetHEPT
dataset

there exist a few cases that they perform well but in most other cases they perform not
as well and sometimes they perform poorly comparing to PMIA. For running time,
even at two million edge range, PMIA only takes 3 min to run. Therefore, PMIA has
very good scalability and can handle million-sized or even larger graphs well.

Overall, we see that PMIA can scale beyond millions of edges, while Greedy and
SP1M become too slow for half million edges or above. In all size ranges, PMIA con-
sistently performs among the best algorithms (including Greedy and SP1M), while
in most cases it significantly outperforms the rest scalable heuristics to as much as
100–260% increase in influence spread.

Tuning of parameter θ . We investigate the effect of the tuning parameter θ on
the running time and the influence spread of our algorithm. Figure 8 shows that the
running time increases when the θ value decreases, as expected. More interestingly,
the running time is almost linear to 1/θ . This can be roughly explained as follows.
First, by the running time analysis of Sect. 3.2, we can see that when n and k are fixed
and θ is varied, the dominant term is a quadratic term noθ niθ , which means the running
time is proportional to the square of the average arborescence size. Figure 8 further
shows that the average arborescence size is about O(

√
1/θ). Therefore altogether the

running time is close to a linear relationship with 1/θ .
Figure 9 shows the change of influence spread with respect to the running time of our

algorithm for the NetHEPT dataset in the WC model. Since the relationship between
running time and 1/θ is linear, it does not matter much if we use running time or 1/θ as
x-axis. The result indicates that as running time increases (θ decreases), the influence
spread also increases, meaning that we obtain better quality results. Comparing other
algorithms also shown in the figure, we see that on one side, we can tune 1/θ to a
larger value so that our influence spread can match the one provided by SP1M with at
least 10 times speedup, while on the other side we can tune 1/θ to a small value to get
close to the running time of PageRank with matching influence spread. Therefore,
we can use one algorithm to achieve different efficiency-effectiveness tradeoff needs
by properly tuning the parameters.

One noticeable result is the knee in the curve of our algorithm. It means that the
increase in influence spread is no longer significant after we lower θ to a certain level.
This is because as shown in Fig. 8, arborescence size increases in square root of 1/θ

123

C. Wang et al.

Fig. 9 Maximal influence spread by 50 seeds w.r.t. running time, for the NetHEPT dataset in the WC model

(and thus in square root of running time), while influence spread may change much
slower after the arborescence grows beyond a certain size. The knee point suggests a
good tuning point for the algorithm. If we select θ such that the influence-time tradeoff
is close to the knee point, we could obtain the best gain from both influence spread
and running time. Correlating with Fig. 8, we found that the corresponding knee point
is close to the point where the change of arborescence size slows down (the dot with
1/θ = 320). We observe similar situations in other dataset that we did not report
here. Thus, this suggests the following way of tuning parameter θ . Given a new graph,
randomly sample a small portion of nodes in the graph to compute the average arbo-
rescence sizes with varying 1/θ , and find a point where the change of arborescence
size slows down, and use the θ value at that point for the PMIA algorithm. The θ values
selected in our experiments are based on this method.

5 Additional experiment results

In this section, we report additional results of our experiments on additional datasets,
new propagation probability setting for the IC model, additional heuristic algorithms,
online bounds of the optimal influence, and qualitative study of the effectiveness of
influence maximization.

Additional datasets. Two additional datasets are tested. The first one is from the
full paper list of the “Physics” section of e-print arXive, doted as NetPHY, which
contains 37,154 nodes and 231,584 edges, the same one used in Chen et al. (2009).
The second dataset is obtained from the authors of Tang et al. (2009), which is another
collaboration network extracted from the data mining research area in the ArnetMiner
archive (http://www.arnetminer.org) with 679 nodes and 1687 edges, and is denoted
as DM. Some basic statistics about these networks are given in Table 2.

123

http://www.arnetminer.org

Scalable influence maximization in large-scale

Table 2 Statistics of NetPHY
and DM

Dataset NetPHY DM

#Node 37K 679

#Edge 174K 1687

Average degree 12.5 4.97

Maximal degree 286 63

#Connected component 3883 1

Largest component size 19873 679

Average component size 9.57 679

Generating propagation probabilities. We use one more model to generate prop-
agation probabilities, as described below. We also use a different set of values for the
TRIVALENCY model.

– TAP model: This is a model developed recently in Tang et al. (2009), in which the
authors develop a topical affinity propagation (TAP) algorithm to compute prop-
agation probabilities of every edge based on structural and topical information
available to the graph. The resulting propagation probabilities are also nonuni-
form. For the DM dataset, we use the propagation probabilities computed from
the topical information available to the dataset. For the NetHEPT dataset, we use
uniform topic distribution among nodes for TAP to compute propagation proba-
bilities, since specific topical information is not available. The NetPHY dataset is
too large for the TAP algorithm in a single machine, so we do not use it for this
dataset.

– TRIVALENCY model: use probability values 0.2, 0.04, 0.008 instead of 0.1, 0.01
and 0.001 in Sect. 4.

Algorithms. We include the following additional algorithms for comparison.

– Degree: The simple heuristic that selects the k nodes with the largest out-degrees
in the graph.

– WeightedDegree: The weighted degree of a node is the sum of propagation prob-
abilities on all its outgoing edges. This heuristic selects the k nodes with the largest
weighted degrees.

– SPM: The shortest-path based algorithm of Kimura and Saito (2006), also en-
hanced with the lazy-forward optimization of Leskovec et al. (2007). In this ver-
sion, only the shortest paths from S to a node v are counted for influence. Note
that SP1M is an enhanced version of SPM, in which both the shortest paths and
paths one hop longer than the shortest paths from S to a node v are counted for
influence.

Results on influence spread. Figures 10–14 show the results on influence spreads,
where we also include results for algorithms we tested in Sect. 4. The results are mainly
self-explanatory, and consistent with the finding we concluded in Sect. 4.2. Overall
PMIA performs consistently well over all datasets and all propagation models, match-
ing or very close to the performance of Greedy and SPM/SP1M while outperforming
the rest heuristics, including the new ones we tested here. A special attention is on

123

C. Wang et al.

Fig. 10 Influence spread for
different algorithms in the WC
model, for the NetHEPT dataset

Fig. 11 Influence spread for
different algorithms in the WC
model, for the NetPHY dataset

Fig. 12 Influence spread for
different algorithms in the TAP
model, for the NetHEPT dataset

Fig. 13, which shows that Greedy performs visibly worse than PMIA. The reason is
Greedy is too slow and we have to reduce the number of simulations for influence
spread estimation from 20,000 to 200, causing it to lose accuracy on estimation (see
the running time section for a reason why it is slow). This is also an indication that we

123

Scalable influence maximization in large-scale

Fig. 13 Influence spread for
different algorithms in the
TRIVANLENCY model with
three probabilities 0.2, 0.04,
0.008, for the NetHEPT dataset

Fig. 14 Influence spread for
different algorithms in the TAP
model, for the DM dataset

cannot easily speed up Greedy by reducing the number of simulations. Another point
worth explanation is that WeightedDegree performs quite well, closing to PMIA, in
the two TAP model related tests (Figs. 12, 14). The reason is because WeightedDe-
gree only considers influence propagated within one-step neighbors while the TAP
model is likely to generate influence model in which most influences are indeed only
propagated within one step. However, WeightedDegree performs not as well in other
tests, showing that it has no consistent performance as PMIA.

Running time. Figure 15 shows the running time of different algorithms when
selecting 50 seeds for 3 different tests: NetPHY using the WC model, NetHEPT using
the TAP model, and NetHEPT using the TRIVANLENCY model (with probabilities
0.2, 0.04, and 0.008). The result is again consistent with what we have seen in Sect.
4. Two specific points we would like to explain are as follows. First, Greedy is much
slower in the TRIVALENCY model. This is because in this model after selecting a
seed, the marginal influence spread for the next seed candidate decreases dramatically,
causing a lot of re-evaluations of marginal influence spread for selecting the next seed
and making the lazy forward optimization of Leskovec et al. (2007) much less effective

123

C. Wang et al.

Fig. 15 Running time of different algorithms in 3 tests

than in other cases. Second, the running time of PMIA in the third test (NetHEPT on
TRIVALENCY) is very fast (67ms). The reason that it is much faster than the other
cases is because it uses a larger θ value of 1/20, which generate smaller arborescenc-
es with depth at most 1. In this case, its running time is always close to that of the
WeightedDegree, with the overhead only in the maintenance of the arboresence data
structures and repeated updates due to seed selection. Thus we see that tuning θ could
achieve much better running time. On the other hand, our PMIA is still better than
WeightedDegree in influence spread (see Fig. 13), because it considers overlapping
influences among seeds while WeightedDegree does not.

Online Bounds. We implement Algorithm 7 in Section 3.4 to generate online
bounds for PMIA algorithm. The online approximation bound is from 76% to 82%
when the number of seeds vary from 30 to 50, which is tighter than the offline bound
1 − 1/e ≈ 63%.

Case Study. To have an intuition of the influence maximization results, we show
an example on the collaboration network in data mining area, i.e., the DM dataset.
Table 3 presents the discovered seed nodes using three different models to set the
propagation probabilities. We see that different models lead to different results. In this
article, we do not study the problem of model selection. It remains an open problem
to decide which model fits the reality. We just give a simple insight based on the influ-
ence maximization results here. For each set of seed nodes, we calculate the density
measure in network science, dividing the sum of coauthored papers by the number of
different pairs between seeds, i.e. 10×9

2 = 45 in our case. The larger the density is,
the more redundancy the seed nodes have in the network. To maximize the influence
spread, it is desirable to minimize the density. We see that TAP leads to a seed set
with the minimal density. It can be observed that Philip S. Yu and Jian Pei are not
selected as a top-10 seed in TAP model due to the large overlap of the nodes influenced
by them and by other seeds. One explanation is that in Uniform IC and WC model,

123

Scalable influence maximization in large-scale

Table 3 Discovered seed nodes in influence maximization by the greedy algorithm with different influence
setting

No. Uniform WC TAP

1 Philip S. Yu Philip S. Yu Jiawei Han

2 Jiawei Han Jiawei Han Qiang Yang

3 Christos Faloutsos Wei Wang Christos Faloutsos

4 Qiang Yang Christos Faloutsos Heikki Mannila

5 Heikki Mannila Heikki Mannila Vipin Kumar

6 Wei Wang C. Lee Giles C. Lee Giles

7 Jian Pei Shusaku Tsumoto Saso Dzeroski

8 Vipin Kumar Jian Pei Graham J. Williams

9 Bing Liu Bing Liu Myra Spiliopoulou

10 C. Lee Giles Joost N. Kok Eamonn J. Keogh

Density 0.4222 0.2444 0.1778

Uniform: influence=unique probability (0.01); WC: influence=inverse of in-degree; TAP influence = result
of TAP

influence from neighbors to a node is independent, while in TAP, the correlation of
influence between neighbors is reflected in the probability setting: one node has only
a few strong influencers; and if a and b both influence c but a also influences b, a will
tend to have larger influence on c. Whether one model is more desirable than another
depends on the specific applications.

6 Future work

One possible future research is to further explore the advantages of our MIA heuristic.
For example, we believe that MIA heuristic fits into the parallel computation frame-
work better than the greedy algorithm and shortest-path based SP1M heuristic. This
is because our computation are restricted on local arborescences around nodes, and
thus the graph can be easily partitioned for parallel computation, with sharing data
only needed for arborescences at the boundary. On the contrary, the greedy algorithm
and the SP1M heuristic need simulations and computations among the whole graph,
so graph partition is difficult, and parallel computation is only possible for different
computation tasks that require sharing of the entire graph. Another future direction is
to look for hybrid approaches that combine the advantages of different algorithms to
further improve the efficiency and effectiveness of influence maximization.

Beyond influence maximization, one interesting direction that requires further re-
search is the data mining of social influence from real online social network datasets.
A few studies have started to address this issue for blogspace (Gruhl et al. 2004),
academic collaboration network (Tang et al. 2009), and online social media (Goyal
et al. 2010). In fact, we used a dataset from Tang et al. (2009) with propagation prob-
abilities computed by their algorithm. We plan to study social influence mining in
other social media and design appropriate algorithms for these social media. Social

123

C. Wang et al.

influence mining and influence maximization together will form the key components
that enable prevalent viral marketing in online social networks.

References

Aiello W, Chung FRK, Lu L (2000) A random graph model for massive graphs. In: STOC ’00
Bakshy E, Karrer B, Adamic LA (2009) Social influence and the diffusion of user-created content.

In: EC ’09: Proc. 10th ACM Conf. Electronic Commerce
Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw

30(1-7):107–117
Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the

flickr social network. In: WWW ’09
Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: KDD ’09
Chen W, Wang C, Wang Y (2010a) Scalable influence maximization for prevalent viral marketing in large-

scale social networks. In: KDD ’10
Chen W, Yuan Y, Zhang L (2010b) Scalable influence maximization in social networks under the linear

threshold model. In: ICDM ’10
Chen W, Collins A, Cummings R, Ke T, Liu Z, Rincon D, Sun X, Wang Y, Wei W, Yuan Y (2011) Influence

maximization in social networks when negative opinions may emerge and propagate. In: SDM ’11
Cui P, Wang F, Liu S, Ou M, Yang S, Sun L (2011) Who should share what?: item-level social influence

prediction for users and posts ranking. In: SIGIR ’11
Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD ’01
Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45(4):634–652
Freeman L (1979) Centrality in social networks: conceptual clarification. Soc Netw 1:215–239
Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In:

WSDM ’10
Gruhl D, Guha RV, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace.

In: WWW ’04
Kempe D, Kleinberg JM, Tardos É (2003) Maximizing the spread of influence through a social network.

In: KDD ’03
Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: PKDD ’06
Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance NS (2007) Cost-effective outbreak

detection in networks. In: KDD ’07
Misner IR (1999) The world’s best known marketing secret: Building your business with word-of-mouth

marketing, 2nd edn. Bard Press, Austin
Nail J (2004) The consumer advertising backlash. Forrester Research and Intelliseek Market Research

Report
Nemhauser G, Wolsey L, Fisher M (1978) An analysis of the approximations for maximizing submodular

set functions. Math Program 14:265–294
Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD ’02
Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: KDD ’10
Streeter M, Golovin D (2007) An online algorithm for maximizing submodular functions. Technical Report

CMU-CS-07-171, Carnegie Mellon University, Pittsburgh
Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD ’09
Valiant LG (1979) The complexity of enumeration and reliability problems. SIAM J Comput 8(3):410–421
Vazirani VV (2004) Approximation algorithms. Springer, Berlin

123

	Scalable influence maximization for independent cascade model in large-scale social networks
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 IC model and greedy algorithm
	3 MIA model and its algorithm
	3.1 Basic MIA model and greedy algorithm
	3.2 More efficient greedy algorithm
	3.3 Prefix excluding MIA model
	3.4 Online bounds from sequence submodularity

	4 Primary experiment
	4.1 Experiment setup
	4.2 Experiment results

	5 Additional experiment results
	6 Future work
	References

