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Abstract

In this paper, we apply the partition approach proposed in [6] to study weak failure detectors for set
agreement problem for the shared-memory model. In a system with n+1 processes, for any 2 ≤ k ≤ n,
we first propose a partitioned failure detector ΠΩk that solves k-set agreement with shared read/write
registers and is strictly weaker than Ωk, which was conjectured to be the weakest failure detector for k-set
agreement in the shared-memory model [16]. We then propose a series of partitioned failure detectors
that can solve n-set agreement, yet they are strictly weaker than Υ [8], the weakest failure detector
ever found before our work to circumvent any asynchronous impossible problems in the shared-memory
model. Our results not only lower the upper bound on the failure detectors for set agreement, but also
further demonstrate the power of the partition approach. They strongly reinforce the statement we made
in [6] that the partition approach opens a new dimension for weakening failure detectors related to set
agreement, and it is an effective test to check whether a failure detector is the weakest one or not for
set agreement. So far, no candidates for the weakest failure detectors of set agreement pass our partition
test.
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1 Introduction

Failure detector abstractions are first proposed by Chandra and Toueg in [3] to circumvent the impossibility
result of consensus [7], and have since become a powerful technique to encapsulate system conditions
needed to solve many distributed computing problems. Among them the problem of k-set agreement has
received many attention from the research community. Informally, in k-set agreement each process proposes
some value and eventually all correct processes (those that do not crash) decide on at most k different
values [4]. It has been shown that k-set agreement cannot be solved in asynchronous systems when k or
more processes may crash [1, 10, 17]. In recent years, a number of studies have focused on failure detectors
for solving k-set agreement problem [18, 15, 9, 13, 14, 8, 6]. These studies form the collective effort in the
pursuit of the weakest failure detector for k-set agreement, a goal yet to be reached. A particular candidate
Ωk was conjectured to be the weakest failure detector for k-set agreement [16].

Consider distributed shared-memory model with n + 1 processes. In a very recent paper [8], Guerraoui
et.al define a new class of failure detectors Υ and show that among a wide range of failure detectors defined
as eventually stable failure detectors, Υ is the weakest one needed to solve any impossible problem in
shared-memory distributed systems, and Υ solves the n-set agreement problem. The Υ failure detector
disproves the conjecture on Ωk for the case of k = n. For a general k, a generalized Υk is proposed to solve
k-set agreement, but only when at most k processes may crash, so it does not disprove the conjecture on Ωk

for wait-free k-set agreement.
The eventually stable failure detectors encompass most failure detectors known to solve distributed

decision tasks in the shared-memory model prior to [8], as the authors claimed. Therefore, as the title of
their paper says, indeed Υ is the weakest failure detector ever found that solves any impossible problem in
distributed computing.

However, parallel to the work of [8], we introduce in [6] the partition approach to failure detectors,
and propose two new classes of failure detectors Πk and ΠS

k (1 ≤ k ≤ n) that we call partitioned failure
detectors. We show that they are strong enough to solve k-set agreement in the message-passing model, but
are strictly weaker than other failure detectors for k-set agreement known at the time (not including Υ).

In the partition approach, failure detectors partition the processes into multiple components and only
processes in one of the component (called a live component) are required to satisfy all safety and liveness
properties, while processes in other components only need to satisfy safety properties. Since those processes
in non-live components may generate quite arbitrary failure detector outputs, intuitively the partitioned
failure detectors are a new breed that does not fall into the eventually stable failure detectors covered by
[8]. In this paper we verify this intuition and show that by using the partition approach we are able to find
a series of new failure detectors even weaker than Υ but are still strong enough to solve n-set agreement.
We also apply the partition approach to show that Ωk is not the weakest failure detector for wait-free k-set
agreement for any k ≥ 2.

Our results are developed in several stages. First, by a simple modification to Πk, we obtain a new
class of failure detector ΠΩk. We show that ΠΩk is strong enough to solve k-set agreement with shared
read/write registers but it is not comparable with Υ, for all k = 2, 3, . . . , n. One direct consequence is that
ΠΩk is strictly weaker than Ωk (because Ωk is stronger than Υ), which disproves the conjecture that Ωk is the
weakest failure detector for wait-free k-set agreement in the shared-memory model for any k ≥ 2. Moreover,
ΠΩk is the first failure detector class that solves k-set agreement (for generic k) but is incomparable with Υ
(a result in [6] implies that Πk and ΠS

k are stronger than Ωn, which is strictly stronger than Υ). For example,
even though failure detector ΠΩ2 solves 2-set agreement, it is not stronger than Υ.

Second, we mix some of the properties of ΠΩk and Υ and define another class of partitioned failure
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Figure 1: Relationship diagram for failure detectors (n ≥ 3). If A → B, then A can be transformed into B. If there
is no directed path from A to B, then A cannot be transformed into B (Footnote 1 contains the only exceptions).

detectors ΠΩΥk, and we show that for any k ≥ 1, ΠΩΥk can still solve n-set agreement but it is strictly
weaker than both ΠΩk and Υ. Moreover, as k increases, the strength of ΠΩΥk is strictly weakened. Hence,
we find a family of n different failure detector classes strictly weaker than Υ, which is the weakest one ever
found before our work.

Finally, to demonstrate the power of partition approach, we apply the approach directly to Υ, and define
a partitioned version of it denoted as ΠΥ. We again show that ΠΥ is strong enough to solve n-set agreement
but is strictly weaker than Υ. Moreover, ΠΥ is incomparable with ΠΩΥk for any k ≤ n − 3 (or k = 2
and n is odd) but is strictly stronger than ΠΩΥn−1. This demonstrates that there are more than one way to
weaken Υ using the partition approach.

Figure 1 characterizes the exact relationship among all failure detectors we proposed in this paper and the
previously defined ones Ωk and Υ. Note that every nonexistent directed path in the figure corresponds to an
impossible transformation from the source class to the destination class, with only a couple of exceptions.1

Since Υ is already very weak, one can imagine that it would be very delicate to define and prove that so
many failure detector classes are incomparable to or strictly weaker than Υ. Indeed, the definitions of failure
detectors are subtle, and the proofs of the impossible transformations are the most delicate and technically
involved.

Our results not only show a number of new failure detectors that are strictly weaker than Υ, but more
importantly, they further demonstrate the power of the partition approach. They strongly reinforce the
statement we made in [6] that the partition approach opens a new dimension for weakening various failure
detectors related to set agreement, and it is an effective test to check whether a failure detector could be the
weakest one solving set agreement or not. Using the approach, we have successfully shown that (1) Ωk ×Σ
is not the weakest failure detector for k-set agreement in the message-passing model for any k ≥ 2 (in [6]),
(2) Ωk is not the weakest failure detector for k-set agreement in the shared-memory model for any k ≥ 2,
and (3) Υ is not the weakest failure detector for n-set agreement in the shared-memory model. So far, no
failure detectors that were considered as the candidates for the weakest failure detectors for set agreement
have passed our partition test. Therefore, we believe that it is important to use the partition approach as an
effective research tool in our pursuit to the ultimate weakest failure detectors for set agreement.

The rest of the paper is organized as follows. Section 2 provides the model. Section 3 defines ΠΩk and
show how it solves k-set agreement. Section 4 and 5 define ΠΩΥk and ΠΥ and shows how they solves
n-set agreement, respectively. Section 6 provides a central place to show the relationship among all failure
detectors as captured by Figure 1. We conclude the paper in Section 7. Most algorithms and their proofs are
included in the main text, while the appendix includes several more technically-involved proofs.

1The exceptions are the following two problems that are still open: (a) whether ΠΩk can be transformed into ΠΩΥk−1 for any
k ≥ 2; and (b) whether ΠΥ can be transformed into ΠΩΥn−2 when n is even.
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2 Model

We consider asynchronous shared memory distributed systems augmented with failure detectors. Our model
is the same as the model in [8], which is based on the models of [11, 12, 2]. We provide the necessary details
of the model below.

We consider a system with n + 1 processes P = {p1, p2, . . . , pn+1} where n ≥ 1. Let T be the set
of global time values, which are non-negative integers. Processes do not have access to the global time. A
failure pattern F is a function from T to 2P , such that F (t) is the set of processes that have failed by time t.
Failed processes do not recover, i.e., F (t) ⊆ F (t+1) for all t ∈ T . Let correct(F ) denote the set of correct
processes, those that do not crash in F . A process is faulty if it is not correct. A failure detector history H is
a function from P ×T to an output range R, such that H(p, t) is the output of the failure detector module of
process p ∈ P at time t ∈ T . A failure detector D is a function from each failure pattern to a set of failure
detector histories, representing the possible failure detector outputs under failure pattern F .

Processes communicate with each other by writing to and reading from shared atomic registers. A
deterministic algorithm A using a failure detector D is a collection of n + 1 deterministic automata, one for
each process. Processes executes by taking steps. In each step, a process p: (a) reads from a shared register
to obtain a value, or writes a value to a shared register, or queries its failure detector module, based on its
current local state; and (b) transitions its current state to a new state, based on its current state, the value
returned from the read or from the failure detector module, and the algorithm automaton on p. Each step is
completed at one time point t, but the process may crash in the middle of taking its step. A run of algorithm
A with failure detector D under a failure pattern F is an infinite sequence of steps such that every correct
process takes an infinite number of steps and no faulty process takes any step after it crashes.

We say that a failure detector class C1 is weaker than a failure detector class C2, if there is a transforma-
tion algorithm T such that using any failure detector D2 ∈ C2, algorithm T implements a failure detector
D1 ∈ C1. By implementing D2 we mean that for any run of algorithm T with failure detector D2 under a
failure pattern F , T generates the outputs of D1 as a distributed variable D1-output such that there exists
failure detector history H ∈ D1(F ) and H(p, t) = D1-output(p, t) for all p ∈ P and all t ∈ T , where
D1-output(p, t) is the value of the variable D1-output on p at time t. If C1 is weaker than C2, we denote it
as C1 � C2 and also refer to it as C2 can be transformed into C1. if C1 � C2 and C2 6� C1, we say that C1

is strictly weaker than C2 and denote it as C1 ≺ C2. If C1 � C2 and C2 � C1, we say that C1 and C2 are
equivalent and denote it as C1 ≡ C2.

In k-set agreement with 1 ≤ k ≤ n, each process proposes a value, and makes an irrevocable decision
on one value. It needs to satisfy the following three properties: (1) Validity: If a process decides v, then
v has been proposed by some process. (2) Uniform k-Agreement: There are at most k different decision
values. (3) Termination: Eventually all correct processes decide.

Two related failure detector classes are Ωk and Υ. Failure detectors in Ωk output a subset of P of size at
most k, and there is a time after which all processes always output the same nonempty set, which contains at
least one correct processes. Failure detectors in Υ also output a subset of P , and there is a time after which
all processes always output the same nonempty set, which is not exactly the set of correct processes.

3 Failure Detector ΠΩk

Our first step is to modify the statically partitioned failure detector class Πk defined in [6] for the message-
passing model so that it solves k-set agreement in the shared-memory model but is incomparable with Υ.
The modification is a simple one by replacing the quorum output of Πk with a component ID cid.
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3.1 Specification of ΠΩk

The output of ΠΩk for process p is a tuple (isLeader, lbound, cid), where isLeader is a boolean value indi-
cating whether this process is a leader or not, lbound is a non-negative integer indicating the upper bound on
the number of possible leaders in p’s partitioned component, and cid is a component ID drawn from an ID
set I or is a special value ⊥ 6∈ I . The cid output indicates the component the process belongs to and could
be ⊥ for an initial period before the failure detector decides on a partition.2

For a failure detector output x, we use x.v to denote the field v of x, where v could be isLeader, lbound,
or cid in the case of ΠΩk. We say that a process p is an eventual leader (under a failure pattern F and a
failure detector history H) if p is correct and there is a time after which the isLeader output on p is always
True.

A partition of P is π = {P1, . . . , Ps}, where s ≥ 1 and Pi’s are non-empty subsets of P such that they
do not intersect with one another and their union is P . For a process p, we use π[p] to denote the partitioned
component that contains p. For a component Pj ⊆ P (under a failure pattern F and a failure detector
history H), we define lbound(Pj) = max{H(p, t).lbound | t ∈ T , p ∈ Pj \ F (t)},3 and Leaders(Pj) =
{p ∈ Pj ∩ correct(F ) | ∃t,∀t′ > t,H(p, t′).isLeader = True}. The value lbound(Pj) is the maximum
lbound value among processes in component Pj , while Leaders(Pj) is the set of eventual leaders in Pj .

A failure detector D is in the class ΠΩk if for any failure pattern F and any failure detector history
H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of P , such that the following properties hold. First,
the cid output needs to satisfy these properties:

(ΠC1) The cid outputs on all correct processes eventually always output non-⊥ values. Formally, ∃t0 ∈
T ,∀p ∈ correct(F ),∀t ≥ t0,H(p, t).cid 6= ⊥.

(ΠC2) The non-⊥ cid outputs distinguish different components. Formally, ∀t1, t2 ∈ T ,∀p1 6∈
F (t1),∀p2 6∈ F (t2), (H(p1, t1).cid 6= ⊥ ∧ H(p2, t2).cid 6= ⊥) ⇒ ((H(p1, t1).cid =
H(p2, t2).cid) ⇔ (π[p1] = π[p2])).

Next, the isLeader and lbound outputs satisfy the following set of safety and liveness properties. The
safety property is:

(ΠΩ1) The sum of the maximum lbound outputs in all partitioned components does not exceed k. Formally,∑s
j=1 lbound(Pj) ≤ k.

The liveness part specifies that there exists one partitioned component Pj such that:

(ΠΩ2) Eventually lbound outputs by all processes in Pj are the same. Formally, ∃t0 ∈ T ,∀t1, t2 ≥
t0,∀p1 ∈ Pj \ F (t1),∀p2 ∈ Pj \ F (t2),H(p1, t1).lbound = H(p2, t2).lbound.

(ΠΩ3) Eventually the isLeader outputs on any correct process in Pj do not change. Formally, ∃t0 ∈
T ,∀t > t0,∀p ∈ Pj \ F (t),H(p, t).isLeader = H(p, t0).isLeader.

(ΠΩ4) There is at least one eventual leader. Formally, |Leaders(Pj)| ≥ 1.
(ΠΩ5) The number of eventual leaders is eventually bounded by the lbound outputs. Formally, ∃t0 ∈

T ,∀t ≥ t0, |Leaders(Pj)| ≤ H(p, t).lbound.

2To make ΠΩk weaker than Πk, we need to generalize the set I with a relation ≡ as we did in splittable partitioned failure
detectors Π

S
k in [6]. To keep the presentation focused on the main results, we omit this generalization.

3As a convention, max ∅ = 0.
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We call a component that satisfies the liveness properties (ΠΩ2–5) a live component, and other compo-
nents non-live components. Suppose for a live component Pj the lbound values eventually converge to `j .
Intuitively, in live component Pj the failure detector behaves just like Ω`j

,4 the one known to solve `j-set
agreement. The safety property (ΠΩ1) guarantees that the number of decisions from all components do not
exceed k.

In general, the partition approach, proposed first in [6], is to partition the processes and require the safety
properties to hold on all components while the liveness properties to hold only on at least one component.
Failure detector class ΠΩk can be viewed as applying static partitioning to Ωk.5

The strength of ΠΩk is fully characterized by Figure 1. We defer to Section 6 as a central place to study
and compare the strength of all proposed failure detectors and avoid repetitions. We summarize the strength
of ΠΩk comparing with Ωk and Υ in the following theorem.

Theorem 1 The followings hold regarding the strength of ΠΩk. (1) ΠΩ1 ≡ Ω1. (2) ΠΩk ≺ Ωj for all
k ≥ 2, j ≥ 1, and k ≥ j. (3) ΠΩk 6� Ωj and Ωj 6� ΠΩk for all k ≥ 2 and k < j ≤ n. (4) ΠΩk ≺ ΠΩk−1

for all k ≥ 2. (5) ΠΩk 6� Υ and Υ 6� ΠΩk, for all k ≥ 2.

The key result is that ΠΩk is incomparable with Υ for all k ≥ 2. Therefore, ΠΩk is a new class of
failure detectors that is strictly weaker than Ωk, but is strong enough to solve k-set agreement in shared-
memory systems with arbitrary failure patterns. Together with Πk and ΠS

k proposed in [6], these are the
only classes known (to our best knowledge) to solve k-set agreement with arbitrary failure patterns and are
strictly weaker than Ωk.6 Moreover, our results demonstrate that, even though Υ is very weak, we can still
find a failure detector ΠΩ2 to solve 2-set agreement, but ΠΩ2 is not stronger than Υ.

3.2 Solving k-set agreement with ΠΩk

The algorithm using ΠΩk to solve k-set agreement is based on an extension of the k–converge algorithm
presented in [18]. The original k–converge algorithm forces every participant to use the same value of
“k”. With ΠΩk failure detectors, we need processes in each component to try to converge on some deci-
sions, the number of which is bounded by the lbound output of the failure detector. Therefore we extend
the k–converge algorithm by moving “k” into the parameter of the routine and rename the routine to
converge(). We adjust the specification of converge() as follows.

Routine converge() takes in three parameters: ` is the upper bound on the number of values can be
committed (this parameter corresponds to the “k” in k–converge), p is the process identifier, and v is the
input value of the process. It outputs a pair (c, v ′), where c is a boolean and v′ is one of the input value. When
p outputs (c, v′), we say that p picks v′, and if c = True, we say that p commits to v ′. The routine satisfies
the following properties: (1) C-Termination: Every correct process picks some value. (2) C-Validity: If a
process p picks value v, then some process q invoked converge() with parameter v. (3) C-Agreement: If
a process p commits to a value, then at most `max values are picked, where `max is the maximum ` that
processes pass into converge(). (4) Convergence: If all processes use the same value in the ` parameter
(` > 0), and if there are no more than ` distinct input values, then every process that picks a value commits.

The first two properties are the same as in [18], while the last two properties are adjusted to accommodate
different input values of `. Although the interface and the specification are changed, the algorithm is exactly

4In [5] we show that a variation of failure detectors that output isLeader and lbound, named Ω
′′

k , is equivalent to Ωk failure
detectors.

5To be more exact, it is a static partitioning of Ω
′′

k defined first in [5].
6The Υ

k failure detector proposed in [8] only solves k-set agreement in systems with at most k failures.
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Shared variables:
Register D, initially ⊥
converge() instances: converge[ ][ ]

Output of failure detector ΠΩk on process pi:
isLeaderi, lboundi, cidi

Code for process pi:
1 v ← the input value of pi

2 repeat
3 cid← cidi

4 until cid 6= ⊥
5 r← 0
6 repeat
7 c← False
8 if isLeaderi = True then
9 r ← r + 1
10 (v, c)← converge[cid][r](lboundi, i, v)
11 if c = True then
12 D ← v; return (D)
13 until D 6= ⊥
14 return (D)

Figure 2: k-set agreement algorithm using ΠΩk

the same as in [18], and the proof only needs some minor adjustment. We put the algorithm and the proof
in the appendix for convenience.

Based on the converge() routine, we provide an algorithm to solve k-set agreement using ΠΩk in
Figure 2. The algorithm is straightforward. We use cid output of failure detectors to isolate each component
and make sure only processes in the same component could run the same instance of converge() routine.
Within a component, only those processes with isLeader output being True can run converge() instances.
Each converge() instance only uses the output of the previous converge() instance as the input, which is
important to guarantee the safety of the algorithm. In any converge() instance if some process p commits
to a value v, then p writes v to a shared variable D and decides on v, and eventually all correct processes
will see a non-⊥ D value and decide. The following theorem summarizes the correctness of the algorithm.

Theorem 2 Algorithm in Figure 2 solves k-set agreement using failure detectors in ΠΩk, for any k ≥ 1.

Proof. It’s obvious that k-set Validity holds.
For Uniform k-Agreement, we only need to consider decisions made in line 12, since decisions made

in line 14 do not generate new decision values. Consider every component Pi. If some process decides in
line 12, we consider the earliest such decision, say by a process p ∈ Pi. Process p decides v because it
commits to v in an instance converge[cid][r](). By the C-Agreement property of converge(), at most `max

values can be picked in this converge[cid][r]() instance, where `max is the maximum lbound values in the
input of this instance. Since the algorithm guarantees for any r ′ > r, instances converge[cid][r′]() only
uses the values picked in instance converge[cid][r](), we know that there are at most `max values can be
decided in line 12 by processes in component Pi. By definition, `max ≤ lbound(Pi). Then, by property
(ΠΩ1), there are at most k values that can be decided. So Uniform k-Agreement holds.

For k-set Termination, first by property (ΠC2) all correct processes eventually exit the loop in lines 2–4.
In the live component Pj that satisfies (ΠΩ2–5), eventually there is at least one correct process and at most
` processes in Pj invoking converge(), where ` is the eventually converged lbound output value. Moreover,
all these processes invoke converge() with the same first parameter value `. Thus, the C-Termination and
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Convergence properties guarantee that all correct processes in Pj eventually commit to some value in some
converge() instance. Therefore, eventually D is written. Once D is written, all correct processes eventually
decide. 2

4 Failure Detector ΠΩΥk

After defining ΠΩk, our next step is to find a mixture of ΠΩk and Υ such that the new failure detectors are
weaker than both and are still enough to solve n-set agreement. Since we know that ΠΩk and Υ are not
comparable, it immediately means that the new failure detectors are strictly weaker than both ΠΩk and Υ.
This leads us to the discovery of failure detectors ΠΩΥk.

4.1 Specification of ΠΩΥk

The output of ΠΩΥk for process p is a tuple (S, lbound, cid), where S is a subset of P that informally
matches the output of Υ, and lbound and cid outputs have the same value range and same informal meaning
as the ones in ΠΩk. For a component Pj , let correct(Pj) = correct(F ) ∩ Pj , the set of correct processes in
Pj (under a failure pattern F ).

A failure detector D is in the class ΠΩΥk if for any failure pattern F and any failure detector history
H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of P , such that the following properties hold. The cid
properties and safety properties are the same as ΠΩk, namely (ΠC1), (ΠC2), and (ΠΩ1). The liveness part
specifies that there exists one partitioned component Pj such that (ΠΩ2) of ΠΩk and the following property
hold:

(ΠΥ1) Pj contains at least one correct process, and eventually all correct processes in Pj output the same
S ⊆ Pj such that S is not the set of correct processes in Pj and either S 6= ∅ or the number of
correct processes is bounded by the eventual lbound output. Formally, correct(Pj) 6= ∅ ∧ ∃S0 ⊆
Pj , S0 6= correct(Pj),∃t0, (∀p ∈ correct(Pj),∀t > t0, (H(p, t).S = S0 ∧ (S0 6= ∅ ∨ |correct(Pj)| ≤
H(p, t).lbound))).

We call a component that satisfies the liveness properties (ΠΩ2) and (ΠΥ1) a live component, and other
components non-live components. Intuitively, in the live component Pj , the S output behaves almost the
same as the output of Υ, except that S may eventually stabilize to ∅, in which case the number of correct
processes in Pj must be bounded by the eventual lbound output. This mixture is important in making
ΠΩΥk strictly weaker than Υ. In particular, ΠΩΥ0 is well-defined since lbound outputs could always be 0.
However, in ΠΩΥ0 the above mixture of requirements on S and on lbound is gone, and we will show that
ΠΩΥ0 is equivalent to Υ (the proof is not straightforward though).

The follow theorem summarizes the results on the strength of ΠΩΥk comparing with ΠΩk and Υ, which
is captured in Figure 1 and will be studied in Section 6. The key result is that ΠΩΥk is strictly weaker than
Υ for any k ≥ 1, and as k increases, its strength is strictly weakened. Therefore, we found a new family of
n classes of failure detectors that are all strictly weaker than Υ. It now only shows that Υ is not the weakest
failure detector ever, but also suggests that there are still plenty of room under Υ to fit in non-trivial failure
detectors. The full proof of theorem 3 is left till Section 6.

Theorem 3 The followings hold regarding the strength of ΠΩΥk. (1) ΠΩΥ0 ≡ Υ. (2) ΠΩΥk ≺ ΠΩΥk−1

for all k ≥ 1. (3) ΠΩj 6� ΠΩΥk for all 1 ≤ k ≤ n and 1 ≤ j ≤ n. (4) ΠΩΥk � ΠΩj for all k ≥ j ≥ 1.
(5) ΠΩΥk 6� ΠΩj for all j ≥ k + 2 and k ≥ 1.
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Shared variables:
Registers D, D[ ][ ], initially ⊥
Registers M [1 . . . n + 1], initially ⊥
Binary registers Stable[ ][ ], initially True
converge() instances: converge, converge[ ][ ], converge[ ][ ][ ]

Output of failure detector ΠΩΥk on process pi:
Si, lboundi, cidi

Code for process pi:
1 v ← the input value of pi

2 r← 0
3 repeat
4 cid← cidi

5 until cid 6= ⊥
6 M [i]← cid
7 (v, c)← converge(n, i, v)
8 if c = True then
9 D← v; return (D)
10 m← |{j|M [j] = cid}|
11 repeat
12 r← r + 1
13 k′ ← max(m − 1, lboundi)
14 (v, c)← converge[cid][r](k′, i, v)
15 if c = True then
16 D ← v; return (D)
17 S ← Si

18 if pi 6∈ S then D[cid][r]← v

19 else
20 r′ ← 0
21 repeat
22 r′ ← r′ + 1
23 (v, c)← converge[cid][r][r′](|S| − 1, i, v)
24 if c = True then D[cid][r]← v

25 if S 6= Si then Stable[cid][r]← False
26 until D 6= ⊥ or D[cid][r] 6= ⊥ or ¬Stable[cid][r]
27 if D[cid][r] 6= ∅ then v ← D[cid][r]
28 until D 6= ⊥
29 return (D)

Figure 3: n-set agreement algorithm using ΠΩΥk

4.2 Solving n-set agreement with ΠΩΥk

In Figure 3, we show an n-set agreement algorithm using the ΠΩΥk failure detectors. The algorithm is
based on the n-set agreement algorithm using Υ in [8] with a few important modifications.

The main repeat-until loop (lines 11–28) is almost the same as the algorithm in [8] except two modifi-
cations. First, we use cid output to isolate every component by using different coverge[cid] instances and
different set of D[cid][ ] and Stable[cid][ ] variables. Second, in lines13–14, each process p i needs to deter-
mine an appropriate converge number k ′ for the converge[cid][r] instance for its own component. Let Pi

be the component containing pi and let m = |Pi|. If we follow exactly like in the algorithm of [8], then we
should set k′ = m − 1. However, to use ΠΩΥk, we need to set k′ = max(m − 1, lboundi) (line 13), where
lboundi is the lbound output on pi. This is to cover the case where the S output in the component stabilizes
to ∅ and all processes in Pi are correct. In this case, if k′ keeps to be m − 1, processes will repeat forever
in the loop and no process can commit to a value and decide. However, in this case we know that lbound
eventually converge to a value that is at least m, so we use k ′ = m in this case to guarantee that processes
in Pj can commit to a value and decide.
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The next question is how pi could get m. The new code in lines 3–10 is for this purpose. Process pi

first waits for long enough time to get a non-⊥ cid output. Then pi record its cid in M [i]. Next pi runs
a global converge() instance with n as the converge number. The purpose of this converge() is that, if
some process crashes before running this instance, then correct processes commit to some values and they
can already decide. If no one can decide after this instance, then it must be the case that all processes have
invoked this instance, which means all processes have recorded their cid’s into M [ ]. Thus M [ ] contains the
complete partition information and pi can obtain the size of its component from M [ ] (line 10). Note that,
to guarantee safety, after this converge() instance all processes should only use the output values of the
instance in the later algorithm.

The rest of the algorithm is exactly the same as the one in [8]. Essentially, processes in each component
repeatedly invoke new converge() instances to try to commit a value. In a live component Pj , the S output
eventually stabilizes at a value S0 ⊆ Pj that is not the set of correct processes in Pj . So either processes
in S0 eliminate one value in the inner loop (lines 21–26) since S0 contains some crashed process, or they
choose a value recorded by some correct process outside S0 (line 18). The only exception is S0 = ∅ and all
processes in Pj are correct, but this is covered by line 13, in which lbound ≥ m will be chosen. We refer to
[8] for further details about the algorithm.

The Uniform k-Agreement is satisfied, because (a) if some process decides after the global converge(),
at most n values are left for the rest of the algorithm; and (b) if no process decides after the global
converge(), each component Pi may generate at most max(|Pi| − 1, lbound(Pi)) decisions, and by (ΠΩ1)
there are at most n decisions. So we have

Theorem 4 The algorithm in Figure 3 solves n-set agreement using ΠΩΥk for any k ≥ 0.

Proof. We consider an arbitrary execution of the algorithm. Validity comes directly from our algorithm and
the Validity property of the converge algorithm.

For Uniform n-Agreement, a process either follows other processes’ decision, or makes an original
decision at line 9 or 16. If there is a process commits to a value at line 7, the C-Agreement property ensures
that the number of distinct values carried by the processes in the statements in line 8–29 would not be larger
than n. So Uniform n-Agreement holds. Suppose nobody commits at line 7, thus nobody decides at line
9. Because the processes in different components are isolated by cid’s when executing line 11–29, we can
consider the number of original decisions in each component separately. Suppose processes in component
Pj make nj original decisions. Because the original decisions must pass the converge check at line 14, we
know that nj ≤ k′j where k′j is calculated at line 13. Therefore nj ≤ lbound(Pj) or nj ≤ |Pj | − 1 (because
m is the number of processes whose cid’s already appear in M [ ], m ≤ |Pj |). If nj ≤ |Pj | − 1, because of
component isolation, we know that at least one process’s input value is discarded. Since there are totally n+1
processes in the system, the number of original decisions is no larger than n. So Uniform n-Agreement holds.
If for all j, nj > |Pj | − 1, we have nj ≤ lbound(Pj). According to (ΠΩ1),

∑s
j=1 lbound(Pj) ≤ k ≤ n.

Uniform n-Agreement still holds.
For Termination, we assume nobody decides to reach a contradiction, since our algorithm ensures that

every correct process decide as long as one process decides. First, no correct process would be blocked in
the loop of waiting non-⊥ cid output (lines 3–5), according to (ΠC1). So all correct processes enter the
repeat-until loop in lines 11–28 but never leave it.

We now consider the membership array M . According to the C-Termination property, each of the correct
process in Pj must pick a value at line 7. Since none of them decides at line 9, they must not commit to the
picked value. According to the Convergence property of converge(), there must be at least n + 1 distinct
input values to this converge() instance at line 7. We claim that all n + 1 processes must have invoked this
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converge() by the time the first process get the (False,−) return value from the instance. If not, processes
not invoking the instance could have crashed and never invoke the instance. Then by the Convergence
property, the first process should commit to a value. Therefore, we know that all processes in must have
recorded their non-⊥ cid in array M by the time the first process returns from the converge() at line 7. So
at line 10, the m calculated is the exact size of the process’s component.

Consider a live component Pj . Let t1 be the time after which all processes in Pj \ correct(Pj) have
already crashed, and the lbound and S output of ΠΩΥk become stable for the correct processes. According
to (ΠΩ2), the lbound outputs of all the correct processes are the same. Let it be `j . According to (ΠΥ1), the
S outputs of all the correct processes have the same value S0 and S0 6= correct(Pj). Let t2 be the time after
which all correct processes have announced their cid’s at line 6. This means none of the cells in the shared
array M will be updated after t = max(t1, t2).

After time t, every process in Pj will use the same stable k′ calculated at line 13 to reach agreement.
Before S output stabilizes to S0, no process is stuck in the inner loop (line 21–26) due to the Stable[ ][ ]
variable. After S stabilizes to S0, because S0 ⊆ Pj and S0 6= correct(Pj), either a correct process is in
Pj \S0 or S0 contains a crashed process. So no process will be stuck in the inner loop (line 21–26). Since no
process in Pj decides at line 16, it must be the case that `j < |correct(Pj)| (otherwise after t at most `j ≤ k′

values can be invoked in converge() at line 14 and processes should decide). By property (ΠΥ1), it implies
that S0 6= emptyset. Moreover, we have k′ = m− 1. This means all processes in Pj must be correct, since
otherwise at most m−1 values can be invoked in converge() at line 14. In this case, no process in the inner
loop converge() (line 23) can commit, so they will wait for the values picked by processes in Pj \ S0 at
line 18. Since S0 6= ∅, at most m − 1 values can be picked. Therefore, in the next converge() instance at
line 14, all processes will decide — a contradiction. So Termination also holds. 2

5 Failure Detector ΠΥ

To further demonstrate the power of partition approach, in this section, we directly apply the approach to
failure detector Υ and define a failure detector ΠΥ that is weaker than Υ but is still strong enough to solve
n-set agreement.

5.1 Specification of ΠΥ

The output of ΠΥ for process p is a tuple (S, cid), where S is a subset of P that is supposed to match the Υ
output, cid has the same value range and meaning as in ΠΩk and ΠΩΥk. For the component ID set I , we
further require that I has a total order ≤ among all cid values.

A failure detector D is in the class ΠΥ if for any failure pattern F and any failure detector history
H ∈ D(F ), there exists a partition π = {P1, . . . , Ps} of P , such that the following properties hold. First, cid
output satisfies the same properties (ΠC1) and (ΠC2) as in ΠΩk. Second, one of the following properties
hold:

(ΠC3) There exist two components that both contain correct processes. Formally, ∃Pi, Pj , correct(Pi) 6=
∅ ∧ correct(Pj) 6= ∅.

(ΠΥ2) There exists one component Pj with at least one correct process, such that eventually all correct
processes in Pj output the same nonempty set S ⊆ Pj , and S is not the set of correct processes in
Pj . Formally, ∃Pj , correct(Pj) 6= ∅ ∧ ∃t0 ∈ T ,∃S0 ⊆ Pj , S0 6= ∅ ∧ S0 6= correct(Pj) ∧ (∀p ∈
correct(Pj),∀t > t0,H(p, t).S = S0).
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Note that (ΠΥ2) implies that the component Pj in the property has at least two processes. The inclusion
of (ΠC3) as an alternative to (ΠΥ2) is important to make ΠΥ weaker than Υ. It is easy to see that, if
we would remove (ΠC3), ΠΥ would be equivalent to ΠΩΥ0, which we show to be equivalent to Υ. The
following theorem summarizes the strength of ΠΥ comparing with ΠΩk, ΠΩΥk and Υ.

Theorem 5 The followings hold regarding the strength of ΠΩΥk. (1) ΠΥ ≺ Υ when n ≥ 3, and ΠΥ ≡ Υ
when n ≤ 2. (2) ΠΥ 6� ΠΩk and ΠΩk 6� ΠΥ for all k ≥ 2. (3) ΠΥ 6� ΠΩΥk for all k ≥ 1. (4)
ΠΩΥn−1 � ΠΥ. (5) ΠΩΥk 6� ΠΥ for all 1 ≤ k ≤ n − 3, or k = n − 2 and n is odd.

The full proof of theorem 5 is left till Section 6. The key result is that ΠΥ is strictly weaker than Υ. Thus
by direct application of the partition approach, we also find a new class of failure detectors weaker than Υ.
More interestingly, we find ΠΥ to be incomparable with ΠΩΥk when 1 ≤ k ≤ n− 3 (also when k = 2 and
n is odd), but ΠΥ is strictly stronger than ΠΩΥn−1. It hints that even though Υ is very weak, there are still
multiple ways to weaken it and discover different kind of weaker failure detectors.

5.2 Solving n-set agreement with ΠΥ

The basic idea is for each component Pi to run a Υ-based (|Pi| − 1)-set agreement algorithm, where |Pi|
is obtained in the same way as in the algorithm of Figure 3. If (ΠΥ2) is satisfied on a component Pj ,
then Pj eliminates one value and achieves (|Pj | − 1)-set agreement, which also means that globally one
value is eliminated and n-set agreement is accomplished. Otherwise, (ΠC3) is satisfied, in which case, a
component with a larger cid must eventually see a value from a component with a smaller cid and the former
can immediately decides on the value seen, because the total order of cid’s guarantee that at least one value
is eliminated in the component with the largest cid.

Figure 4 shows the n-set agreement algorithm using ΠΥ.

Theorem 6 The algorithm in Figure 4 solves n-set agreement using ΠΥ.

Proof. We consider an arbitrary execution of the algorithm. Validity comes directly from our algorithm and
the C-Validity property of the converge() routine.

For Uniform n-Agreement, if there is a process that commits to a value at line 7, the C-Agreement
property ensures that the number of distinct values carried by the processes in the statements in line 8–35
would not be larger than n. So Uniform n-Agreement holds in this case.

Suppose no process commits to a value at line 7. In this case, in the rest of algorithm processes all
use values in the array V [ ]. If V [ ] contains at most n distinct values, Uniform k-Agreement already holds.
So suppose that V [ ] contains n + 1 distinct values. In this case, by the same argument as in the proof of
Theorem 4, we know that by the time pi executes line 11, array M [ ] contains only non-⊥ cid values, and
the m computed is the exact size of the component that pi belongs to. We use Pj .cid to denote the non-⊥
cid value in the output of processes in Pj .

We consider the component Pj with the largest Pj .cid, based on the total order ≤ among the cid values.
Because Pj .cid is the largest, any process in any component that decides at line 15 or 27 must decide on
a value not from Pj . Moreover, any process in other components that decides at line 19 can only decide a
value from its own component. Therefore, only processes in Pj can decide a V [ ] value belonging to Pj at
line 19. If none of the process in Pj ever decides at line 19, then at least one value in V [ ] belonging to Pj

is not a decision value, so only n values could be decision values. If some process in Pj decides at line 19,
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Shared variables:
Registers D, D[ ][ ], initially ⊥
Registers M [1 . . . n + 1], initially ⊥
Registers V [1 . . . n + 1], initially ⊥
Binary registers Stable[ ][ ], initially True
converge() instances: converge, converge[ ][ ], converge[ ][ ][ ]

Output of failure detector ΠΥ on process pi:
Si, cidi

Code for process pi:
1 v ← the input value of pi

2 r← 0
3 repeat
4 cid← cidi

5 until cid 6= ⊥
6 M [i]← cid
7 (v, c)← converge(n, i, v)
8 V [i]← v

9 if c = True then
10 D← v; return (D)
11 m← |{j|M [j] = cid}|
12 repeat
13 V ← {V [j] |M [j] ≤ cid ∧M [j] 6= cid ∧ V [j] 6= ⊥}
14 if V 6= ∅ then
15 D ← arbitrary element in V ; return (D)
16 r← r + 1
17 (v, c)← converge[cid][r](m− 1, i, v)
18 if c = True then
19 D ← v; return (D)
20 S ← Si

21 if pi 6∈ S then D[cid][r]← v

22 else
23 r′ ← 0
24 repeat
25 V ← {V [j] |M [j] ≤ cid ∧M [j] 6= cid ∧ V [j] 6= ⊥}
26 if V 6= ∅ then
27 D ← arbitrary element in V ; return (D)
28 r′ ← r′ + 1
29 (v, c)← converge[cid][r][r′](|S| − 1, i, v)
30 if c = True then D[cid][r]← v

31 if S 6= Si then Stable[cid][r]← False
32 until D 6= ⊥ or D[cid][r] 6= ⊥ or ¬Stable[cid][r]
33 if D[cid][r] 6= ⊥ then v ← D[cid][r]
34 until D 6= ⊥
35 return (D)

Figure 4: n-set agreement algorithm using ΠΥ

we know that there will be at most |Pj | − 1 distinct values belonging to Pj that can be decided at line 19 by
C-Agreement of converge(). Therefore, in both cases, Uniform n-Agreement holds.

For Termination, we only need to prove that at least one process will decide and write the register D,
since as long as D is written every correct process eventually decides. We assume for a contradiction that no
process decides. First, (ΠC1) ensures that no correct process be blocked at lines 3–5, waiting for the non-⊥
cid. Second, by the same argument as in the proof of Theorem 4, when a process p enters the repeat-until
loop (lines 12–34), its m value is the size of its component.

According to the definition of ΠΥ, we consider two cases: 1) (ΠC3) holds, and 2) (ΠΥ2) holds.
In case 1), suppose Pi, Pj are two components such that correct(Pi) 6= ∅ and correct(Pj) 6= ∅. Let

p ∈ correct(Pi), q ∈ correct(Pj). Without loss of generality, we assume Pi.cid ≤ Pj .cid. Since both
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p and q does not made decision at line 10, eventually both of them write their values into the V array. So
eventually, q will read p’s value and decides either at line 15 in the outer repeat-until loop, or at line 27 in
the inner repeat-until loop. Termination holds in this case.

In case 2), suppose Pj is the component satisfying (ΠΥ2). If nobody makes any decision at line 10, 15
or 27, then processes in Pj runs the algorithm isolated from other components with their S output exactly
like the processes would run the algorithm using the Υ failure detector. Therefore, Termination also holds
in this case. 2

6 Comparing failure detectors

This section is the central place to show all the results captured in Figure 1 and stated in Theorems 1, 3, and
5. Since Υ is already a very weak failure detector, one can imagine that show that under Υ there are still
such structure in which a series of failure detectors have various strength would be a subtle and delicate task.
Indeed, besides those obvious transformations, other results on possible or impossible transformations are
quite delicate and require subtle techniques to prove them (and a few of them are still open). These proofs
really show the subtle relationship between the failure detectors. Unfortunately, due to the space constraint,
we have to move the full proofs of impossible transformations into appendix. To compensate, we provide
intuitive ideas and proof outlines for those key proofs.

6.1 Possible transformations

For possible transformations, we need to prove all the arrows in Figure 1. Most transformations are obvious
from the failure detector definitions.

Lemma 1 (1) ΠΩk � ΠΩk−1; (2) ΠΩΥk � ΠΩΥk−1; (3) ΠΩk � Ωk; (4) ΠΩΥk � Υ; (5) ΠΥ � Υ.

Proof. The first two parts hold directly by the definition of the failure detectors. The last three parts hold
because we can treat Ωk and Υ as a special case of partitioned failure detectors with only a single component
P . 2

A few of the transformations need extra explanations.

Lemma 2 ΠΩ1 ≡ Ω1.

Proof. In the paper [5], we show that Ωk is equivalent to Ω′′k, so in the following proof, we use Ω′′1 instead
of Ω1. In Ω′′k, the failure detector output is (isLeader, lbound), where isLeader is a boolean and lbound is a
non-negative integer of at most k. It requires that eventually the output on each process stabilizes, and the
lbound on all processes are the same, and there is at least one and at most ` eventual leaders where ` is the
stabilized lbound value.

By Lemma 1, we only need to show Ω′′1 � ΠΩ1. We construct a transformation from ΠΩ1 to Ω′′1 as
follows. Let (isLeader, lbound, cid) be the output of failure detector in ΠΩ1 and (isLeader′, lbound′) be
output of failure detector in Ω′′1 . We set lbound′ to 1 on all processes. For process p, we set isLeader ′ to
be False if p.lbound = 0 and to be isLeader if p.lbound = 1. By the definition of ΠΩ1, there are exact
one component Pj with lbound = 1 ever, so the isLeader′ outputs of processes in all other components are
always False. Component Pj is the only live component and eventually, there are exact one correct process
be the leader in Pj . Therefore, there are exact one correct process which set isLeader ′ = True in the output
eventually. This gives the Ω′′1 failure detector. 2
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Shared variables:
Registers L[ ], the value is a tuple (cid, isLeader, r),

initially (⊥, False, 0)

Output of failure detector ΠΩk on process pi:
(cidi, lboundi, isLeaderi)

Output of failure detector ΠΩΥk on process pi:
(S′

i, cid′i, lbound′i), initially (∅,⊥, 0)

Local variables on process pi:
cid
isLeader
r, round number
C, estimated membership of component containing pi

A, leaders
B, lbound leaders with highest r

Code for process pi:
1 repeat
2 cid← cidi

3 until cid 6= ⊥
4 cid′i ← cid
5 r← 0
6 repeat forever
7 isLeader = isLeaderi

8 lbound′i = lboundi

9 if isLeader = True then
10 r ← r + 1
11 L[i]← (cid, isLeader, r)
12 C ← {j|L[j].cid 6= ⊥ ∧ L[j].cid = cid}
13 A← {j|j ∈ C ∧ L[j].isLeader = True}
14 B ← a subset of A such that |B| ≤ lbound′i and

∀j ∈ B, j′ ∈ A \ B,L[j].r > L[j′].r
∨(L[j].r = L[j′].r ∧ j > j′)

15 S′

i ← {pj |j ∈ C \ B}

Figure 5: Transform ΠΩk into ΠΩΥk

Lemma 3 ΠΩΥk � ΠΩk for all k ≥ 1.

Proof. Figure 5 provides a transformation from ΠΩk to ΠΩΥk. The idea is for each component to come up
with the set of at most lbound leaders, then the S output of ΠΩΥk is the complement of the leader set with
respect to the component, and lbound and cid outputs of ΠΩΥk are copied from ΠΩk. The key is that for a
live component, S output eventually stabilizes to a set that cannot be the set of correct process (because at
least one correct leader process is not in S), and if S is ∅, the lbound must be at least the number of correct
processes in the component.

More specifically, to get the output for S, we introduce an array of shared registers L. Every process p i

waits to read a non-⊥ cid output (lines 1–3 in Figure 5). Then it periodically writes the non-⊥ cid, and the
isLeader output from its ΠΩk detector and an increasing round number r into L[i] (line 11). Every process
pi also periodically scans the array L to compute C , the estimate the membership Pi of its own component,
and find out the “leaders” A in its component (lines 12, 13). Let B to be the lbound processes in A with the
highest 〈r, i〉 values (line 14). Then S = C \ B (line 15).

For correctness, we consider a live component Pj with respect to ΠΩk. It is obvious that B is actually
the Ωl output within the Pj , where l = lbound(Pj). Let Cj be the eventually stabilized value of C computed
in line 12 for all correct processes in Pj . So as long as Cj is larger than B, S is not empty and thus (ΠΥ1)
is satisfied. If Cj is equal to B, let `j be the eventually stabilized lbound output for processes in Pj . Since
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Shared variables:
Registers M [1..n + 1], initially ⊥
Registers N []: the value is a tuple (S, cnt), initially (∅, 0)

Output of failure detector ΠΩΥ0 on process pi: (Si, lboundi, cidi)
Output of failure detector Υ on process pi: S′

i, initially P

Local variables on process pi:
P [], initially ∅
count, initially 1
C,initially ∅

Code for process pi:
1 repeat
2 if M [i] = ⊥ then M [i]← cidi

3 S′

i ← {pi|M [i] = ⊥}
4 until S′

i = ∅
5 cid←M [i]
6 S′

i ← P

7 C ← {M [i]|1 ≤ i ≤ n + 1}
8 for j ∈ C do P [j]← {i|M [i] = j}
9 N [cid]← (Si, count)
10 repeat forever
11 if N [cid].S 6= Si then
12 count← N [cid].cnt + 1
13 N [cid]← (Si, count)
14 choose j ∈ C with minimum N [j].cnt such that
15 (1)N [j].S 6= ∅ and (2)N [j].S ⊆ P [j]
16 if such j exists then S′

i ← N [j].S
17 else S′

i ← P

Figure 6: Transform ΠΩΥ0 into Υ

|B| ≤ `j , and all correct processes in Pj are contained in Cj , we know that the number of correct processes
is at most `j . In this case, S ′ output can be empty and (ΠΥ1) is still satisfied. 2

Lemma 4 ΠΩΥ0 ≡ Υ.

Proof. ΠΩΥ0 � Υ is because a failure detector in Υ can be viewed as a failure detector in ΠΩΥ0 with the
full process set P as the single component and lbound = 0 for all processes.

Then, we present a transformation algorithm from a failure detector D in ΠΩΥ0 into a failure detector
D′ in Υ in Figure 6. Process pi first waits to see valid cid outputs of all processes (line 1 - 4). If some
process pj crashes before it completes writing cidj into M [j], S ′ outputs of all correct processes converge
to the set of such processes (line 3) which contain only crash processes. Otherwise, all correct processes
successfully learn the partition of ΠΩΥ0 and record it in array P [ ] (line 8). Then, pi uses array N [ ] to
compute the S ′ output. N [cid].S represents the latest S output in component P [cid] while N [cid].count
represents the number of times that processes in component P [cid] find S output is not stable. Eventually
S′ output is stable because the live component with respect to ΠΩΥ0 satisfies the conditions in line 15 and
its count eventually stops increasing. Since any stable S output satisfying conditions in line 15 satisfies the
property of Υ, we can get a correct S ′ output by the algorithm.

Formally, there are two cases we consider.
Case 1: No process leaves the first repeat-until loop (lines 1–4). Eventually, every correct process

eventually has the stable cid output (by (ΠC1)) and every non-correct process does not change M [i]. So, S ′

outputs of all correct processes are the same and stable and non-empty eventually. This eventual S ′ output
cannot be the exact set of all correct processes since at least one correct process has cid 6= ⊥ eventually.
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Case 2: if there exists a process leaving the first repeat-until loop. This means M [i] 6= ⊥ for 1 ≤ i ≤
n + 1 at some time. By line 2, we know that once M [i] is set to non-⊥ value, it remains to be non-⊥,
so all correct processes eventually leave the first repeat-until loop, and all correct processes have the same
local variable C and Pj with ∪j∈CPj = P in line 8. Let Pj .cid denote the cid corresponding to component
Pj . Consider a live component Pj in the output of ΠΩΥ0, then Pj contains at least one correct process and
lbound(Pj) = 0 by (ΠΩ1). So, by (ΠΥ1), eventually all correct processes in Pj output the same S ⊆ Pj

such that S is not the set of correct processes in Pj and S 6= ∅. Then, eventually, N [Pj .cid] satisfies all
conditions in line 15 and never changes any more. If for some component Pi, N [Pi.cid].S changes infinite
often, by lines 12–13, N [Pi.cid].cnt will eventually exceed N [Pj .cid].cnt . Therefore, by lines 14–16, S ′

outputs of all correct processes are stable and the same eventually.
Suppose, for a contradiction that the eventual S ′ outputs of all correct processes is the exact set of correct

processes. Suppose S ′ = N [Pi.cid].S for some component Pi. Then any process p /∈ S ′ crashes. Since
N [Pi.cid].S ⊆ Pi by line 15, only component Pi contains correct processes. So, Pi is the live component
according to the output of ΠΩΥ0. Then, the eventual S output of ΠΩΥ0 of all correct processes in Pi is
not the set of correct processes in Pi which is also not the set of correct processes in P . But eventually,
S′ = N [Pi.cid].S = S, the stabilized S output of ΠΩΥ0 in Pi. This is a contradiction. So, we know the
eventual S ′ outputs of all correct processes is not the exact set of correct processes, which completes our
proof. 2

Lemma 5 ΠΩΥn−1 � ΠΥ.

Proof. In Figure 7 we present an algorithm that transforms the output of a ΠΥ failure detector to one of a
ΠΩΥn−1 detector. Process pi first waits for a valid cid output from ΠΥ, and then does an n-converge using
its cid as the value. If it does not commit to a value, it then uses an n-agreement algorithm based on ΠΥ to
pick a cid. The purpose of this code is to guarantee that (a) if the ΠΥ has n + 1 distinct components, then
the generated ΠΩΥn−1 has at most n components, and (b) if the ΠΥ has at most n distinct components,
then the generated ΠΩΥn−1 output has exactly the same components as those in ΠΥ. We will make it clear
why it is so and why we need this property shortly. After announcing the picked cid into shared array N ,
the process starts to provide the ΠΩΥn−1 outputs. It’s obvious that (ΠC1) and (ΠC2) are satisfied, because
the processes will not change their cidout as long as the value is set.

If there are some processes crashed before announcing their picked cid into shared array N , then even-
tually every process’s lboundout is set to 0, and Sout is set to these crashed processes. (lines 9–13). Because
every process set its lboundout to 0, (ΠΩ1) and (ΠΩ2) are satisfied. Let the set of crashed processes not
announcing their picked cid in N be Pf . Since processes in Pf do not assign their cidout yet, for any failure
pattern we can always find a partition π which contains a component Pj such that Pj contains at least one
correct process and Pf ⊂ Pj . So Pj is a live component in the sense of (ΠΥ1).

If all processes announced their picked cid’s in N , every correct process eventually exits the loop at lines
11–13. In this case every process is able to derive a partition scheme that covers all n + 1 processes from
N (line 14). Because the number of distinct cid’s picked by the processes is at most n, there must exist a
component which contains at least 2 processes. So the component C calculated at line 16 contains at least
two processes. Then every process not in C sets its lboundout to its component size and its Sout to ∅, and
processes in C set their lboundout to 0. Because |C| ≥ 2, (ΠΩ1) still holds. Now all components other than
C appears to be live components in the sense of (ΠΩ2) and (ΠΥ1), because all processes set their lboundout

and Sout to their component size and ∅, respectively. If there is a component Pj 6= C that contains a correct
process, then we are set.
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Shared variables:
Registers M [1 . . . n + 1], initially ⊥
Registers N [1 . . . n + 1], initially ⊥
Convergence instance: converge

n-set agreement instance: n–agreement

Output of failure detector ΠΥ on process pi:
(Sin

i , cidin
i )

Output of failure detector ΠΩΥn−1 on process pi:
(Sout

i , cidout
i , lboundout

i ), initially (∅,⊥, 0)

Code for process pi:
1 repeat
2 cid← cidin

i

3 until cid 6= ⊥
4 M [i]← cid
5 (cid, c)← converge(n, i, cid)
6 if c 6= True then
7 cid← n–agreement(cid)
8 N [i]← cid
9 cidout

i ← cid
10 lboundout

i ← 0
11 repeat
12 Sout

i ← {pj |N [j] = ⊥}
13 until Sout

i = ∅
14 π← partition derived from N

15 m← max({|Pj ||Pj ∈ π}) //m ≥ 2
16 C ← a component in π such that |C| = m and C has

the smallest cid among the same size components
17 if pi 6∈ C then
18 lboundout

i ← |π[pi]|
19 Sout

i ← ∅
20 else
21 lboundout

i ← 0
22 if M 6= N then //the input must be isolated singletons
23 i′ ← min({j|pj ∈ C})
24 Sout

i ← {pi′}
25 else
26 repeat forever
27 Sout

i ← Sin
i

Figure 7: Transform ΠΥ into ΠΩΥn−1

Otherwise, C is the only component that contains correct processes. Because every processes in C set
its lboundout to 0, (ΠΩ2) holds. For (ΠΥ1), we need to consider the partition scheme of ΠΥ output. Since
every process announces its cidin in M before announcing its cidout in N , N does not contain ⊥ cells
implies M is also fully filled. So every process is also able to know the partition of the ΠΥ output. There
are two cases: (i) there are at most n components in the ΠΥ partition; (ii) there are n+ 1 components in the
ΠΥ partition.

For case (i), according to the property Convergence of the converge() instance, every process commits
to a value at line 5 (no processes crash here because everyone fills its cell in N ). According to line 11 of
the converge() routine in Figure 8, we know that processes always commit to their own input values. This
means the ΠΩΥn−1 partition follows the ΠΥ partition, making M = N . So every process in C copies S in

to Sout (line 27). Since C is the only component containing correct processes, (ΠΥ2) of ΠΥ must hold, so
Sin on every process in C also satisfies the requirement of (ΠΥ1) of ΠΩΥn−1.

In case (ii), because of a similar argument in case (i), we know M and N are both fully filled, and
M 6= N since there are at most n components in the partition derived from N . Since there are n + 1
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components in the ΠΥ partition, we know that all of them are singletons. So (ΠΥ2) cannot hold and
(ΠC3) must hold. This means there must be at least two correct processes. Since only C contains correct
processes, we know that C contains at least two correct processes. Because every process in C sets its S out

to a singleton set that contains the same process (line 24) in C , the singleton set must not be exact set of
correct processes. So (ΠΥ1) holds.

Therefore, in all cases (ΠC1), (ΠC2), (ΠΩ1), (ΠΩ2), and (ΠΥ1) holds for the processes’ ΠΩΥn−1

output cidout, lboundout, and Sout. 2

6.2 Impossible transformations

Proving the impossible transformations is the critical step to establish the results of this paper. Among all
the impossible transformations captured by the non-existent directed paths in Figure 1, several of them are
critical ones, meaning that their impossibility implies the rest impossible transformations. This is based on
the fact that if we show that C1 6� C2, then for all C3 � C1 and all C4 � C2, we have C3 6� C4. Each of the
following lemmata in this section shows one critical impossible transformation, and together they imply all
the impossible transformations known so far.

Many proofs of these lemmata are technically involved, because Υ is already very weak, and thus show-
ing that so many other failure detectors are still incomparable to or strictly weaker than Υ is delicate. For
these proofs, it is sometimes convenient to view it as an adversary trying to defeat any possible transfor-
mations. The adversary can see the current output generated by a transformation, and it can manipulate the
outputs of the failure detector to be transformed and it can crash processes if needed to prevent the trans-
formation from succeeding. In this section, we provide proof outlines to all lemmata using the language of
adversary designing strategy to beat the transformation algorithms. In the appendix, we include all technical
proofs that match our descriptions in the proof outlines.

Lemma 6 ΠΩ2 cannot be transformed into ΠΥ, i.e., ΠΩ2 6� ΠΥ.

Proof Outline. We know that Ωn can be transformed to Υ easily by taking the complement of the Ωn

output. The reason that this transformation cannot be adapted to ΠΩk is that ΠΩk allows a live component
Pj in which all processes are eventual leaders and lbound stabilizes to |Pj |. If we take the complement of
the leader set in Pj with respect to Pj we get an empty set. The proof explores this basic idea.

In the case of ΠΩ2, suppose for a contradiction that there is a transformation T from ΠΩ2 to ΠΥ. The
adversary constructs a run in which the ΠΩ2 has a partition π = {P1, P2}, where P1 = {p}. It sets lbound of
every process to 1 and p’s isLeader always to True, making P1 a live component of ΠΩ2. It will manipulate
the isLeader outputs for processes in P2 to create a contradiction. It then run T to see how it partitions the
processes for ΠΥ. Let Q1 be the component containing p with respect to ΠΥ. Once the adversary knows
the partition, it crashes all processes not in Q1. Since only one component left for ΠΥ, (ΠΥ2) has to be
true. This implies that Q1 contains at least two processes. From now on, whenever the S output of ΠΥ
in Q1 stabilizes to some subset Si, the adversary suppresses all processes in Q1 \ Si (i.e., prohibit these
processes from taking any steps) for long enough time to force T to stabilize the S output to a different set
Si+1 6= Si, because Si appears to be the exact set of correct processes. Once T changes the S output, the
adversary releases the suppressed processes so that they take some steps, and then it repeats the procedure
for Si+1, and so on. The adversary can keep doing so because Q1 \ Si contains either p or some process
in P2, and thus it can always set isLeader of some process in Q1 \ Si to True without violating the ΠΩ2

requirement. The result is that the adversary forces T into an infinite run in which only one component Q1

for ΠΥ contains correct processes but its S output never stabilizes, a contradiction. 2
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Lemma 6 implies that for all ΠΩk with k ≥ 2, ΠΩk cannot be transformed into Υ. This is the first
key result. Moreover, because ΠΩk can be transformed into ΠΩΥk, Lemma 6 further implies that ΠΩΥk

is strictly weaker than Υ, the second key result of the paper. Next lemma shows another key result of the
paper.

Lemma 7 (1) ΠΥ can be transformed into Υ when n ≤ 2. (2) ΠΥ cannot be transformed into Υ when
n ≥ 3.

Proof Outline. For (2), suppose there is a transformation T . The adversary sets up ΠΥ with two components
each with at least two processes and all processes are correct. This satisfies (ΠC3), and thus the adversary
is free to manipulate the S output of ΠΥ at its will. It then uses the technique similar as in the proof of
Lemma 6 to construct a run in which the output of Υ never stabilizes. 2

Lemma 8 Υ cannot be transformed into ΠΩn when n ≥ 2.

Proof Outline. Suppose there is a transformation T . If the partition of ΠΩn generated by transformation T
contains only a single component, then the proof is the same as proving Υ cannot be transformed into Ωn

in [8]. If the partition of ΠΩn has at least two components, let P1 be one of the components. The adversary
first sets the Υ output to P \P1, and apply a technique used in [6] to repeatedly suppress the leader processes
in all components that are potentially live components for ΠΩn (these are called quasi-live components in
the proofs), the purpose of which is to construct an infinite run in which there is no live component. The
only way the transformation can counter this measure is by setting the lbound outputs of processes in P1

to |P1|. But the adversary can counter this again by crashing all processes in P1, setting Υ output to P1,
and re-apply the suppression technique. The result is a run in which no live component exists. The key is
that the adversary need to wait until the lbound output on P1 is at least the size of a component to crash the
component. This guarantees that the transformation cannot set lbound on P \ P1 to |P \ P1| to defeat the
adversary. 2

Lemma 6 and 8 establish that Υ and ΠΩk with k ≥ 2 are not comparable. Together with the possible
transformations of Lemma 3, they immediately imply that ΠΩΥk is strictly weaker than both Υ and ΠΩk

for any k ≥ 2.
Next lemma establishes that the strength of ΠΩk (as well as Ωk) decreases as k increases.

Lemma 9 Ωk cannot be transformed into ΠΩk−1 with k ≥ 2.

Proof Outline. Suppose there is a transformation T . The adversary selects k processes to set their isLeader
to True, and set lbound on all processes to k. Let Q be the set of k processes whose isLeader is set to True
by the adversary. It then let T run to see how T partitions the processes. Suppose {P1, P2, . . . , Ps} is the
partition. Next, the adversary go through P1, P2, . . . , one by one to do the following. At each component
Pj , if at any time it finds that |Pj ∩ Q| is at most the lbound output generated by T at some process in Pj ,
then the adversary crashes Pj and goes to Pj+1. The adversary will not crash all components in this manner
because, by (ΠΩ1) of ΠΩk−1, the sum of maximum lbound outputs of all components is at most k − 1
while the size of Q is k. So the adversary will stop at some component Pj such that the maximum lbound
generated by T for processes in Pj is less than |Pj ∩Q|. While at this component, the adversary suppresses
all other processes not in Pj , and forces T to stabilize to a set of leaders, the number of which is at most the
maximum lbound value of Pj . Then the adversary can suppress all these leaders and continue the run. It can
do so because the number of leader suppressed is less than |Pj ∩Q|, and thus some process in Pj ∩Q is not
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suppressed and there is at least a leader for Ωk. The adversary repeats such suppression of leader processes
generated by T , and between two suppression period, it releases all processes in Pj to make sure they all
take steps. Therefore, the adversary forces T into a run in which Pj is the only component containing correct
processes, but its leaders never stabilizes, contradicting to the requirement of ΠΩk−1. 2

Lemma 10 ΠΩΥk cannot be transformed into ΠΩΥk−1 for any k ≥ 1 and n ≥ 2.

Proof Outline. Suppose there is a transformation T . Consider the case when k < n first. The adversary
creates a partition of two components {P1, P2} for ΠΩΥk, where P1 contain k processes with lbound = k
and S = ∅ and is the live component in the infinite run. It then uses the similar strategy as in Lemma 9 to
defeat the transformation algorithm T . First, it lets T run to see how T partitions the processes. Suppose
the partition is {P ′1, P

′
2, . . . , P

′
s}. It then goes through P ′1, P

′
2, . . . one by one. For P ′i , whenever it sees that

the lbound outputs generated by T in P ′i increases to at least |P1 ∩ P ′i |, it crashes P ′i and goes to the next
component. Eventually it stops at a component P ′j in which the lbound outputs of processes in P ′j are always
less than |P1 ∩P ′j |. This is guaranteed by (ΠΩ1) of ΠΩΥk−1. Then for P ′j , it suppresses all processes not in
P ′j to force T to generate Si ⊆ P ′j and Si 6= ∅ and Si 6= correct(P ′j). Whenever this happens, it suppresses
processes in P ′j \ Si to force T to generate Si+1 6= Si. It then releases all processes in P ′j to make sure
they take steps so that eventually they are correct processes. The adversary can keep doing so because it can
manipulate the S output of ΠΩΥk for processes in P2 to make P2 temporarily look like a live component
during any one suppression period. Therefore, eventually the adversary forces a run of T in which only one
component P ′j contains correct processes but S outputs never stabilize, a contradiction.

Now consider the case when k = n. In this case, the caveat of the above strategy is that P2 contains only
one process and thus the adversary cannot possibly generate a correct S output in P2 during any suppression
period. For this case, the adversary needs to adapt its strategy such that it waits to see how T partitions the
processes and then decides how to set lbound and S outputs for ΠΩΥn. It still partitions the processes into
P1 and P2 with P1 containing n processes. It initially sets lbound of every process to 0, and sets the S output
of processes in P1 to {p} with p ∈ P1. Since P1 contains at least two processes, this S output makes P1 a
live component. The adversary then lets T run until T outputs all cid’s and fixes the partition of ΠΩΥn−1.
Let the partition be {P ′1, P

′
2, . . . , P

′
s}, with P ′s ⊇ P2. If P ′s = P2, the adversary sets lbound and S outputs

of processes in P1 to n and ∅, respectively, and sets lbound and S outputs of the only process in P2 to 0 and
∅; otherwise, it sets lbound and S outputs of processes in P1 to n − 1 and P ′s ∩ P1, respectively, and sets
lbound and S outputs of the only process in P2 to 1 and ∅.

The adversary then uses the same strategy as in the above case of k < n to go through P ′1, P
′
2, . . ..

If it stops at a component P ′j before P ′s, the adversary already forces a run in which only P ′j contains
correct processes but the S outputs of ΠΩΥn−1 never stabilize. Suppose the adversary crashes all other
components and only P ′s left. In this case, P ′s cannot be the same as P2, since otherwise, the sum of lbound’s
of all previous components must be n, violating (ΠΩ1) of ΠΩΥn−1. Thus P ′s \ P2 = P ′s ∩ P1 is not
empty. Note that only one component P ′s is left for ΠΩΥn−1 but it crosses two components P1 and P2 for
ΠΩΥn. Moreover, P2 is a live component with respect to ΠΩΥn. The adversary can now manipulate the S
outputs of processes in P ′s \ P2 such that during each suppression period, either P1 or P2 looks like a live
component for ΠΩΥn to force T to change the S output of ΠΩΥn−1. By repeating the suppression period
while releasing processes in P ′s between two suppression period, the adversary forces a run in which the S
outputs in P ′s never stabilize. 2

Lemma 10 together with ΠΩΥk � ΠΩΥk−1 implies that {ΠΩΥ0,ΠΩΥ1, . . . ,ΠΩΥn} forms a strictly
weakening hierarchy.
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Lemma 11 ΠΩk+1 cannot be transformed into ΠΩΥk−1 for any k ≥ 2.

Proof Outline. Suppose there is a transformation T . The adversary uses the same approach as in the proof
of Lemma 10 for the case of k < n. The only difference is that for component P2, the adversary can always
set the isLeader of one process in P2 to True because the sum of maximum lbound values of each component
is k + 1 in ΠΩk+1. This allows the adversary to make P2 appear to be a live component temporarily in each
suppression period. The full proof is omitted since it is mostly a repetition of the proof of Lemma 10 for the
case of k < n. 2

Lemma 12 For any n ≥ 3, (1) ΠΥ cannot be transformed into ΠΩΥn−3, and (2) ΠΥ cannot be trans-
formed into ΠΩΥn−2 when n is odd.

Proof Outline. Suppose there is transformation T . Consider the case of ΠΩΥn−3 first. The adversary
partitions the processes such that each component contains exactly two processes, except perhaps one com-
ponent that contains three processes (when n+1 is odd). It then uses the similar approach as in the proof of
Lemma 10. In this case, whenever the adversary sees a component Q of ΠΩΥn−3 such that the maximum
lbound of Q so far is at least |Q|, it crashes the component. By (ΠΩ1) of ΠΩΥn−3, at least 4 processes will
not be crashed. This implies that there are at least two components of ΠΥ that contain correct processes
in the infinite run, so (ΠC3) are satisfied and the adversary are free to set S outputs at its will. Then the
adversary uses the same technique of suppressing processes as in the proof of Lemma 10 to make sure there
is no live components in the infinite run.

The same proof can be extended to the case of ΠΩΥn−2 when n is odd, since P contains an even number
of processes and all components of ΠΥ contains exactly two processes. In this case, at least 3 processes will
not be crashed by the adversary, so at least two components of ΠΥ contain correct processes. 2

In conclusion, Theorem 1 is implied by Lemma 1(1)(3), Lemma 2, Lemma 6, Lemma 8 and Lemma 9.
Theorem 3 is implied by Lemma 1(2)(4), Lemma 4, Lemma 10 and Lemma 11. Theorem 5 is implied by
Lemma 1(5), Lemma 5, Lemma 6, Lemma7, Lemma 8 and Lemma 12.

There are still a couple open problems left before we can completely characterize all relationships in
Figure 1. They are: (a) whether ΠΩk can be transformed into ΠΩΥk−1 for any k ≥ 2; and (b) whether
ΠΥ can be transformed into ΠΩΥn−2 when n is even. We conjecture that all these transformations are
impossible. If so, Figure 1 is indeed a full characterization of all relationships.

7 Concluding Remarks

All of our partitioned failure detectors use static partitions, which means the partition cannot be changed
once the cid outputs are fixed to non-⊥ values. In [6] we also propose dynamically splittable partitioned
failure detectors ΠS

k that further weakens statically partitioned failure detectors Πk in the message-passing
model. However, it is not clear how to adapt this approach to weaken the statically partitioned failure
detectors defined in this paper. This is left as future research.

The discovery of failure detectors even weaker than Υ may suggest that the conjecture made in [8] that
n-set agreement is the minimum decision task in terms of minimum information required is not true. This
is another research direction to see if there is any other decision task strictly weaker than n-set agreement in
terms of failure information needed to solve the problem.
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Appendix

A The converge() routine

The complete converge() routine is shown in Figure 8. It is exactly the same as the original one in [18],
except that the interface is changed.

function converge(`, p, v)
Shared variables a[1 . . . n + 1] and b[1 . . . n + 1], initially ⊥

1 a[p]← v

2 for q = 1 to n + 1
3 r[q]← a[q]
4 if |{r[q]|r[q] 6= ⊥}| ≤ ` then
5 b[p]← True
6 else
7 b[p]← False
8 for q = 1 to n + 1
9 s[q]← b[q]
10 if ∀q(s[q] 6= False) then
11 return (True, v)
12 else if ∃q(s[q] = True) then
13 return (False, a[q]) such that s[q] = True
14 else
15 return (False, v)

Figure 8: The extended converge algorithm allowing processes to use different converge number `.

Theorem 7 The algorithm in Figure 8 is a correct implementation of converge().

Proof. It is straightforward that C-Termination and C-Validity hold. The Convergence property is also easy
to show, since every process p will set b[p] to True.

We now prove the C-Agreement property. Let `max be the maximum ` value that processes pass into
the converge() instance. We say that a value v is proposed if some process p writes v into the array a[p]
and writes True into b[p]. It is easy to see that only the first `max values written to the array a[ ] could be
proposed, and processes only commits to the proposed values. Thus, to show C-Agreement, we only need
to check the case when p commits to a value v while q picks a value v ′ but q does not commit to v′. Since p
commits, b[p] must be True and p does not find any False flags in array b[ ]. Since q does not commit, it must
perceive at least one False flag in b[ ]. This implies q must see b[p] = True. Therefore, q picks a proposed
value at line 13. Since all picked values are proposed values and there are at most `max proposed values,
C-Agreement holds. 2

B Impossible transformations in Section 6

Lemma 6 ΠΩ2 cannot be transformed into ΠΥ, i.e., ΠΩ2 6� ΠΥ.

Proof. Suppose, for a contradiction, that we have an algorithm T that transforms any failure detector D in
ΠΩ2 to a failure detector D′ in ΠΥ. Let (isLeader, lbound, cid) denote the output of D, and (S, cid ′) denote
the output of D′ generated by algorithm T .



MSR-TR-2007-50 25

We consider a partition of P , π = {P1, P2}, such that P1 = {p}. We consider a failure pattern in which
p is a correct process. The failure pattern for other processes will be determined shortly. We construct a
failure detector history H of D such that (a) lbound outputs of all processes are always 1; (b) for process p,
p’s isLeader outputs are always True, p’s cid outputs are always 1; and (c) for process q other than p, q’s cid
outputs are always 2. And, at any time, exactly one process in P2 outputs isLeader = True. We can see that
in H , component P1 must be a live component, so it is an admissible failure detector history of D. Next we
will manipulate the isLeader outputs of processes in P2 to reach a contradiction.

To achieve the objective, we construct run R as follows. Initially the isLeader outputs of processes in P2

could be arbitrary, and we let T run to some time t0 at which the outputs (S, cid′) of D′ are generated by T
and cid′ 6= ⊥. By ΠC1, all correct processes eventually have cid ′ 6= ⊥, so such time t0 exists. From the cid′

outputs, it is clear how processes are partitioned with respect to D ′. Let Q1 be the component containing
process p. We then crash all processes not in Q1 in run R at time t0 + 1. Thus the failure pattern for run R
is such that all processes in Q1 are correct and all processes not in Q1 crash at time t0 + 1. Since there is
only one component containing correct processes, (ΠC3) does not hold. Therefor (ΠΥ2) must hold, which
implies immediately that Q1 contains at least two processes. The rest of the proof is essentially the proof
that ΠΩ2 cannot be transformed into Υ.

We let T continue to run after the crash of processes not in Q1. By property (ΠΥ2), eventually all
processes in Q1 output the same nonempty set S ⊆ Q1, and S is not the set of correct processes in Q1. Let
t1 be such a time and S1 be the output. After time t1, we suppress all processes in Q1 \ S1 (i.e., prohibit
these processes from taking any steps). There are two cases. In the first case, p ∈ S1, which means p is not
suppressed. Then component P1 is still a live component with respect to D and thus we can set isLeader
outputs of other processes arbitrarily and continue the run of T . In the second case, p 6∈ S1, i.e., p is
suppressed. In this case, S1 ⊆ P2, and we select one process q ∈ S1 and set its isLeader to True and set
the isLeader of all other processes in P2 to False. Thus P2 is a live component with respect to D. We then
continue the run of T . In either case, processes in S1 cannot distinguish this run from a run in which all
processes not in S1 indeed have crashed. So by (ΠΥ2) eventually at some time t2 processes in S1 output a
nonempty set S2 ⊆ Q1 such that S2 is not the set of correct processes in Q1, i.e. S2 6= S1. After t2, we let
all processes in Q1 \ S1, those previously suppressed, to take at least one step each. We then suppress all
processes in Q1 \ S2 and repeat the above process.

We can repeat the above procedure infinitely many times. In the resulting run R, (a) all processes in Q1

take infinitely many steps so they are all correct; (b) component P1 is a live component with respect to D;
and (c) there are infinite time points t1, t2, . . . and infinite number of sets S1, S2, . . . such that some process
outputs Si at time ti for failure detector D′ and Si+1 6= Si, for all i ≥ 1. Therefore in run R, the S output of
D′ is not stable in component Q1. This violates property (ΠΥ2) since Q1 is the only component containing
correct processes. 2

Lemma 7 (1) ΠΥ can be transformed into Υ when n ≤ 2. (2) ΠΥ cannot be transformed into Υ when
n ≥ 3.

Proof. For part (1), we present a transformation algorithm from a failure detector D in ΠΥ into a failure
detector D′ in Υ. Suppose (S, cid) is the output of failure detector D in ΠΥ and S ′ is the output of failure
detector D in Υ. For process pi, there are three cases. Case 1: If it finds there exists some process with
cid = ⊥, set S ′ = {pi | pi.cid = ⊥}. Case 2: If there is only one component with n + 1 processes in
ΠΥ, pi set S′ = S. Case 3: If there are at least two components in ΠΥ, since n + 1 ≤ 3, at least one
component contains only one process. Then pi set S′ be such singleton component. If there are several
singleton components, use process ID to break the tie. It is obviously that all correct processes have the
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same and stable output S ′. In case 1 and 2, it is easy to prove S ′ is not the set of exact correct processes. In
case 3, if S ′ is the set of exact correct processes, this means only a singleton component does not crash. But
in such component, D cannot give a correct output of S. Thus, the transformation algorithm is correct.

For part (2), suppose there exists a transformation algorithm T from a failure detector D in ΠΥ into a
failure detector D′ in Υ. Suppose (S, cid) is the output of failure detector D in ΠΥ and S ′ is failure detector
D in Υ. We consider a partition {P1, P2} of P with |P1| ≥ 2 and |P2| ≥ 2 which is possible when n ≥ 3.

Then, we construct a run R in which all processes are correct, so by (ΠC3) that S output of all processes
could be arbitrary. By the specification of Υ, eventually all processes output the same nonempty set S ′, and
S′ is not the set of correct processes. Let t1 be such a time and S1 be the output. After time t1, we suppress
all processes in P \ S1 (i.e., prohibit these processes from taking any steps). And set S 6= S1 ∩ P1 for
processes in P1 and set S 6= S1 ∩ P2 for processes in P2. Since |P1| ≥ 2 and |P2| ≥ 2, it is always possible
to find suitable non-empty S output of all processes. We then continue the run of T . Processes in S1 cannot
distinguish this run from a run in which all processes not in S1 indeed have crashed. So by the specification
of Υ, eventually at some time t2 processes in S1 output a nonempty set S2 ⊆ P such that S2 is not the set of
correct processes, i.e. S2 6= S1. After t2, we let all processes take at least one step each. We then suppress
all processes in P \ S2 and repeat the above process.

We can repeat the above procedure infinitely many times. In the resulting run R, (a) all processes take
infinitely many steps, so they are all correct; (b) there are infinite time points t1, t2, . . . and infinite number
of sets S1, S2, . . . such that some process outputs Si at time ti for failure detector D′ and Si+1 6= Si, for all
i ≥ 1. Therefore in run R, the S ′ output of D′ is not stable. This violates the specification of Υ. 2

Lemma 8 Υ cannot be transformed into ΠΩn when n ≥ 2.

Proof. Suppose, for a contradiction, that we have an algorithm T that transforms any failure detector D in Υ
to a failure detector D′ in ΠΩn. Let S denote the output of D, and (isLeader, lbound, cid) denote the output
of D′ generated by algorithm T .

Firstly, set S = {p} for arbitrary process p and we let T run to some time t0 at which the outputs
(isLeader, lbound, cid) of D′ are generated by T and cid 6= ⊥. By ΠC1, all correct processes eventually
have cid 6= ⊥, so such time t0 exists. From the cid outputs, it is clear how processes are partitioned with
respect to D′. If there is only one component, that is, no partition occurs, we can apply the same proof as
that of Theorem 1 in [8] to reach a contradiction, since with only one component ΠΩn collapses into Ωn.
So we only consider the case in which the output of D ′ has at least two components. Suppose the partition
is {P1, P2, · · · , Ps} with s ≥ 2.

Let F be a failure pattern, H ′ be the failure detector history of D ′ generated by T under failure pattern
F . We define Pi.lbound(t) = max{H ′(p, t′).lbound | t′ ≤ t, p ∈ Pi \ F (t′)}. We define A(Pi, t) = {p ∈
Pi \ F (t) |H ′(p, t).isLeader′ = True}. We say that component Pi is quasi-live at time t if |A(Pi, t)| ≤
Pi.lbound(t). Note that for a live component Pi, there exists a time after which Pi is always quasi-live.
We define A(t) to be the union of A(Pi, t)’s where Pi is a quasi-live component. Now, we construct two
possible infinite sequences of runs by the following inductive process.

Possibility 1. Set S = P \ P1.
Run R0: no process crashes in this run. Define t0 such that A(t0) 6= ∅.
Run R1: R1 runs exactly the same as in R0 until time t0. Because we do not crash any processes yet,

F (t) = ∅ for all t ≤ t0. Let A(t0) be as defined above in run R1. If P1.lbound(t0) ≥ |P1|, go to Possibility
2. Otherwise, at time t0 + 1, we crash all processes in A(t0). So for all t ≥ t0 + 1, F (t) ≡ A(t0). We
then continue the run of algorithm T to find a time t1 > t0 + 1, by which every correct process has taken
at least one step after time t0 + 1. If P1 is not a quasi-live component at t0, then P1 ∩ A(t0) = ∅. If P1 is
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a quasi-live component at t0, then |A(P1, t0)| ≤ P1.lbound(t0), and since P1.lbound(t0) < |P1|, we know
that P1 \ A(t0) 6= ∅. Thus, in either case, at least one process in P1 does not crash in run R1. Therefore,
S = P \ P1 is an admissible output of Υ in run R1.

In general, we try to construct Ri based on Ri−1 for all i ≥ 2. In Ri−1, there are two critical time points
ti−2 and ti−1. The failure pattern in Ri−1 is F (t) = ∅,∀t ≤ ti−2 and F (t) = A(ti−2),∀t ≥ ti−2 + 1.
Every process not in A(ti−2) has taken at least one step between ti−2 + 1 and ti−1. Ri is constructed as the
following.

Run Ri: Ri runs exactly the same as in Ri−1 until time ti−2. From ti−2 + 1 to ti−1, instead of crashing
the processes in A(ti−2), we hold these processes and do not let them take any steps in Ri. All the other
processes simulate their execution as in Ri−1 until ti−1. Now we have a simulated “Ri−1” at the beginning
of Ri, with a different failure pattern: F (t) = ∅,∀t ≤ ti−1. Since the algorithm is deterministic, at time
ti−1 process and shared object states are exactly the same as in run Ri−1.

During the execution between ti−2+1 and ti−1, we calculate A(ti−1) in a similar manner as described in
R1. If P1.lbound(ti−1) ≥ |P1|, go to Possibility 2. Otherwise, we crash the processes in A(ti−1) at ti−1 +1,
and let the processes not crashed run. So the failure pattern after ti−1 +1 is F (t) = A(ti−1),∀t ≥ ti−1 + 1.
Let ti be the time by which every correct process in Ri has taken at least one step after ti−1 + 1. Since
P1.lbound(ti−1) < |P1|, so at least one process in P1 does not crash. Therefore, S = P \ P1 is an
admissible output of Υ in run Ri.

If P1.lbound(ti) < |P1| for all i ≥ 0, then we have constructed an infinitely series of runs
R0, R1, R2, . . .. Let R∞ = limi→∞Ri. That is, for any i, let the failure detector history and the se-
quence of steps of run R∞ be identical to the run Ri until time ti−1. We need to show that R∞ is still a
legitimate run of algorithm T with some failure detector.

We start by defining the failure pattern F of R∞ in the following way. For every process p, there are
two possible cases. In the first case, there exists j such that for all i ≥ j, p crashes in run Ri. Let jp be the
smallest such value. Then we define that in run R∞, p crashes at time tjp−1 + 1. For all processes that do
not belong to the first case, they are correct in run R∞.

Now we show R∞ is a legitimate run of algorithm T under the failure pattern F . First, we need to show
that the failure pattern F derived above does not make the output S of D violate the property of Υ. Since
P1.lbound(ti) < |P1| for all i, there exists at least one process p ∈ P1 correct in run Ri. Therefore, at least
one process p ∈ P1 is a correct process in run R∞. Then, S = P \P1 is not the exact set of correct processes
in run R∞.

Second, we need to verify that in run R∞, all correct processes take an infinite number of steps. Suppose
p is a correct process in R∞. By its definition, for any time t, there is a j ≥ 1 such that tj−1 > t and p is a
correct process in run Rj . By the construction of Rj , we know that p must take at least one step after tj−1

and by time tj . Then we know that p must take at least a step in run R∞ after tj−1 and by time tj . This
implies immediately that p takes an infinite number of steps in R∞.

Therefore, by the above arguments, we know that R∞ is a legitimate run of algorithm T with a failure
detector D in Υ. Then we know that T should generate correct outputs of D ′ in ΠΩn. This means that
eventually there is a live component Pj w.r.t. D′ and correct process p ∈ Pj such that there is a time t after
which Pj is always quasi-live and isLeader′ of p is always True. Thus, for all runs Rl such that tl−1 > t
and l ≥ u, we know that Pj is a quasi-live component in Rl, and isLeader′ of p at tl−1 is True in Rl. Since
l ≥ u, A(tl−1) can be calculated and p ∈ A(tj−1). So p will be crashed in Rl. By our definition of F , p is
crashed in R∞ at some time. Therefore, we reach a contradiction.

Possibility 2: If for some i ≥ 1, we find P1.lbound(ti−1) ≥ |P1| in run Ri, we construct another
infinitely sequence runs R′0, R

′
1, · · · as follows.
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Run R′0: R′0 runs exactly the same as in Ri until time ti−1. At time ti−1 + 1, crash all processes in P1,
set S = P1 and let the processes not crash run. In run R′0, the failure patter is F (t) = ∅,∀t ≤ ti−1 and
F (t) = P1,∀t ≥ ti−1 + 1. Since S contains faulty process, R0 is a legitimate run of algorithm T with a
failure detector D in Υ. Then, we find t′0 > ti−1 such that A(t′0) 6= ∅.

Then, we use the same inductive process as for Possibility 1 to construct run R ′1, R
′
2, · · · with the output

S of Υ be P \ P1,∀t ≤ ti−1 and P1,∀t > ti−1. Note that by the property (ΠΩ1) of ΠΩn, we have∑s
j=1 lbound(Pj) ≤ n. Since P1.lbound(ti−1) ≥ |P1|, there must exist at least one other component Pj

(j ≥ 2) such that Pj .lbound(t) ≤ lbound(Pj) < |Pj | for all t ≥ 0. Thus, it is easy to see for any run R′i at
least one process in Pj is correct in the run. We then use the same method to construct a legitimate run R ′∞
based on infinitely sequence of runs R′0, R

′
1, · · ·. We can also prove that R′∞ is a legitimate run of algorithm

T under a failure pattern F ′ defined in the same way as F , in which at least one process is correct. However,
by the same argument as for run R∞, we can argue that there is no live component in run R′∞. This violates
the liveness property of ΠΩn. 2

Lemma 9 Ωk cannot be transformed into ΠΩk−1 with k ≥ 2.

Proof. Suppose, for a contradiction, there exists a transformation algorithm T that transforms any failure
detector D in Ωk to a failure detector D′ in ΠΩk−1. The output of D is denoted by (lbound, isLeader), and the
output of D′ is denoted by (cid′, lbound′, isLeader′). Assume the set of processes is P = {p1, p2, . . . , pn+1}.
Let Q = {p1, p2, . . . , pk}. Let F be a failure pattern. H be an output history of D, and H ′ be an output
history of D′.

In the following, we are going to construct a sequence of runs. In each run, we let H be as
(1) H(pi, t).lbound = k for all i and t; (2) H(pi, t).isLeader = True, for all t and pi ∈ Q; (3)
H(pi, t).isLeader = False, for all t and pi 6∈ Q. Informally, Q is the set of leaders in D, and the out-
put of D is stable at the beginning.

We go through the components P1, P2, . . . one by one. In the series of runs Rj,m with m ≥ 0, compo-
nents P1, . . . , Pj−1 have been crashed because their lbound outputs already exceed the number of processes
both in Q and in the component. In series Rj,m, components Pj+1, . . . , Ps are also crashed because we want
to isolate component Pj+1 to run. Each run in this series is an extension of the previous one, and it forces
some isLeader output in Pj to change. If at some point in this series, the lbound output of Pj also exceeds
the number of processes in both Q and Pj , then we crash Pj and start the series Rj+1,m. Eventually, this
ends at some series Rj,m. This final series corresponds a run R∞ in which only processes in Pj are correct,
but the isLeader outputs of processes in Pj never stabilizes. This is the contradiction we want. We now give
the details of this construction of series of runs.

Run R0: We let all the processes to run as if all of them are correct, according to (ΠC1) eventually each
process needs to output non-⊥ values for cid′. Let t0 be the time at which H ′(p, t).cid′ 6= ⊥ for all p ∈ P .
Let π = {P1, P2, . . . , Ps} be the derived partition according to cid′ at time t0. According to (ΠC2), We
know that cid′ will not change after t0. Let lbound′(Pj , t) = max{H ′(p, t′).lbound′|t′ ≤ t, p ∈ Pj \F (t′)}.
For convenience we assume max ∅ = 0. Let Leaders′(Pj , t) = {p|H ′(p, t).isLeader′ = True, p ∈ Pj \
F (t′)}.

Run R1,0: R1,0 runs exactly the same as R0 until t0. Let t1 = t0. If lbound′(P1, t1) ≥ |P1 ∩ Q|, we
turn to run R2,0. Otherwise, we crash all processes in P \ P1 at time t1 + 1 and let processes in P1 run.
Because lbound′(P1, t1) < |P1 ∩ Q| implies at least one process in Q is in P1, H is still a legitimate Ωk

output in this run. Then we wait for a time t1,0 > t1 + 1 at which P1 becomes quasi-live. A component Pj

is quasi-live at time t if and only if. lbound′(Pj , t) ≥ |Leaders′(Pj , t)| and |Leaders′(Pj , t)| > 0. Since P1

is the only component having correct process, t1,0 must exist. If lbound′(P1, t1,0) ≥ |P1 ∩ Q|, we turn to
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run R2,0. Otherwise, we crash all process in Leaders′(P1, t1,0) at time t1,0 +1. Since |Leaders′(P1, t1,0)| ≤
lbound′(P1, t1,0) < |P1 ∩ Q|, at least one process in Q does not crash and H is still legitimate in this run.
Then we wait for a time t′1,0 > t1,0 + 1 at which P1 becomes quasi-live again, and turn to run R1,1.

Run Rj,m (1 ≤ j ≤ s, m ≥ 1): Rj,m runs exactly the same as Rj,m−1 until tj,m−1. At time
tj,m−1 + 1, instead of crashing processes in Leaders′(Pj−1, tj,m−1), we suppress the execution of these
processes and schedule the other processes to take exactly the same sequence of steps as in Rj,m−1 until
t′j,m−1. After t′j,m−1, we allow all processes in Pj to run until a time tj,m such that (1) every process in
Pj takes at least one step between t′j,m−1 and tj,m; and (2) Pj becomes a quasi-live component at time
tj,m. If lbound′(Pj , tj,m) ≥ |Pj ∩ Q|, we turn to run Rj+1,0. Otherwise, isLeader output of some pro-
cesses in Pj must have changed. We then crash all process in Leaders ′(Pj , tj,m) at time tj,m + 1. Since
|Leaders′(Pj , tj,m)| ≤ lbound′(Pj , tj,m) < |Pj ∩ Q|, at least one process in Q does not crash and H is still
legitimate in this run. Then we wait for a time t′j,m > tj,m + 1 at which Pj becomes quasi-live again, and
turn to run Rj,m+1.

Run Rj,0 (2 ≤ j ≤ s): Rj,0 runs exactly the same as Rj−1,0 until time tj−1. We know com-
ponents Pi (1 ≤ i < j − 1) has been crashed at time tj−1 with lbound′(Pi, tj−1) ≥ |Pi ∩ Q|. If
lbound′(Pj−1, tj−1) ≥ |Pj−1 ∩ Q|, let tj = tj−1 + 1. Otherwise, it must be true that a run Rj−1,mj−1

exists such that lbound′(Pj , tj−1,mj−1
) ≥ |Pj−1 ∩Q|. At time tj−1 + 1 instead of crashing processes in Pj′

(j′ ≥ j), we suppress these process from running and allow the processes in Pj−1 to take exactly the same
sequence of steps as in run Rj−1,mj−1

until time tj−1,mj−1
. After time tj−1,mj−1

, we allow every process in
Pj′ (j′ ≥ j − 1) to run, and wait for everyone to take at least one step. Let tj > tj−1,mj−1

be the time such
that everyone in Pj′ takes at least one step by tj − 1. At time tj we further crash processes in component
Pj−1. Now we have crash all processes in Pi (1 ≤ i ≤ j − 1). Since we have lbound′(Pi, tj)) ≥ |Pi ∩ Q|

and
∑j−1

i=1 lbound′(Pi) ≤ k − 1 (ensured by (ΠΩ1) for ΠΩk−1), |Q| = k implies at least one process in Q
is not crashed. So H is still a legitimate output for Ωk in this run.

Now we look at component Pj . If lbound′(Pj , tj) ≥ |Pj∩Q|, we turn to run Rj+1,0. Otherwise, we crash
all processes in Pj′ (j < j′ ≤ s) at time tj+1 and let processes in Pj run. Because lbound′(Pj , tj) < |Pj∩Q|
implies at least one process in Q is in Pj , H is still a legitimate Ωk output in this run. Then we wait for a
time tj,0 > tj + 1 at which Pj becomes quasi-live. Since Pj is the only component having correct process,
tj,0 must exist. If lbound′(Pj , tj,0) ≥ |Pj ∩ Q|, we turn to run Rj+1,0. Otherwise, we crash all process in
Leaders′(Pj , tj,0) at time tj,0 + 1. Since |Leaders′(Pj , tj,0)| ≤ lbound′(Pj , tj,0) < |Pj ∩ Q|, at least one
process in Q does not crash and H is still legitimate in this run. We wait for a time t ′j,0 > tj,0 + 1 at which
Pj becomes quasi-live again, and turn to run Rj,1.

In the above, we have constructed a series of runs, in which our H is always a legitimate output of
Ωk. We claim that there exist a j ∈ [1 . . . s], such that lbound ′(Pj , tj)) < |Pj ∩ Q| in run Rj,0 and
lbound′(Pj , tj,m) < |Pj ∩ Q| for all m ≥ 0 in run Rj,m. Otherwise, for all j either lbound′(Pj , tj)) ≥
|Pj ∩ Q| in run Rj,0, or there exists a mj such that lbound′(Pj , tj,mj

) ≥ |Pj ∩ Q| in run Rj,mj
. Then there

must be a run Rs,ms , in which lbound′(Pj , t) ≥ |Pj ∩ Q| for all j ∈ [1 . . . s] at some time t. However,
sums

j=1|Pj ∩ Q| = k. This is contradictory to the fact that sums
j=1lbound′(Pj , t) ≤ k − 1 for all t. So our

claim holds. Now let R∞ be the infinite run such that every Rj,m shares a prefix with it until tj,m. In this
run, all processes in Pj are correct and all processes not in Pj crash eventually, but the isLeader′ output on
processes in Pj cannot stabilize. Therefore, T is not a correct transformation algorithm. 2

Lemma 10 ΠΩΥk cannot be transformed into ΠΩΥk−1 for any k ≥ 1 and n ≥ 2.

Proof. Suppose, for a contradiction, there exists a transformation algorithm T that transforms any failure



MSR-TR-2007-50 30

detector D in ΠΩΥk to a failure detector D′ in ΠΩΥk−1. The output of D is denoted by (cid, lbound, S), and
the output of D′ is denoted by (cid′, lbound′, S′). Assume the set of processes is P = {p1, p2, . . . , pn+1}.
Let Q = {p1, p2, . . . , pk}. Let F be a failure pattern. H be an output history of D, and H ′ be an output
history of D′.

We split the proof of this lemma into two parts: 1. k < n; 2. k = n.
Part 1. In this part, k < n, and we let D to output the following initially: (a) The processes are

partitioned into two components P1 and P2 such that P1 = Q and P2 = P \Q = {pk+1, . . . , pn+1}. (b) All
processes in P1 set their lbound and S to k and ∅. (c) All processes in P2 set their lbound and S to 0 and
{pn+1}.

Run R0: We let all process in P to run until T outputs cid′. This is possible because the initial output
of D is valid for ΠΩΥk. Suppose at time t0, every process outputs their cid′, and π′ = {P ′1, P

′
2, . . . , P

′
s} is

the partition derived from the outputs. To make the proof easier, we assume the components in π ′ are sorted
according to how many processes in Q they contain. Formally, we want |P ′1 ∩ Q| ≥ |P ′2 ∩ Q| ≥ . . . ≥
|P ′s ∩ Q|. In the following, we design a set of runs Rj,m for 1 ≤ j ≤ s and m ≥ 0.

Run R1,0: R1 runs exactly the same as R0 until time t0. Let t1 = t0. If lbound′(P ′1, t1) ≥ |P ′1|, we turn
to run R2,0. Otherwise, we crash all processes in P \ P ′1 at time t1 + 1, and let processes in P ′1 run. Since
our sorting ensures P ′1 ∩ Q 6= ∅ (|Q| = k ≥ 2), the D output is still legitimate for ΠΩΥk. Then we wait for
a time t1,0 > t1 +1 at which P ′1 becomes quasi-live. Since P ′1 is the only component having correct process,
t1,0 must exist. Since we have not crashed any process in P ′1 yet, lbound′(P ′1, t1,0) ≥ |P ′1 \ F (t1,0)| implies
lbound′(P ′1, t1,0) ≥ |P ′1|. If lbound′(P ′1, t1,0) ≥ |P ′1|, we turn to run R2,0. Otherwise, P ′1.S

′(t1,0) must be a
non-empty set. We crash all process in P ′1 \P ′1.S

′(t1,0) at time t1,0 +1. If Q∩P ′1.S
′(t1,0) 6= ∅, the D output

is still legitimate and we can wait for S ′ output to change. If Q ∩ P ′1.S
′(t1,0) = ∅, we can set the S output

on processes in P ′1.S
′(t1,0) to an arbitrary subset of P2 that is not equal to P ′1.S

′(t1,0). Since |P2| ≥ 2, this
is always possible. Now P2 becomes the live component in ΠΩΥk, and the D output becomes legitimate.
Then we wait for a time t′1,0 > t1,0 + 1 at which P ′1 becomes quasi-live again, and turn to run R1,1.

Using a similar procedure in part 1, and the same process-crashing technique described in R1,0, we can
construct other runs Rj,m.

We first claim that we will never reach the runs Rj,m such that P ′j ∩ Q = ∅. Otherwise, we know that
lbound′(P ′i ) ≥ |P ′i | for all i ∈ {1, . . . , j−1}. Based on the component sorting of π ′, we have Q ⊆

⋃j−1
i=1 P ′i

This implies
∑j−1

i=1 ≥ k, contradictory to the (Ω1) requirement of ΠΩΥk−1. Second we claim that there
exist a j ∈ {1, . . . , s} such that at any time t, lbound ′(P ′j , t) < |lbound′(P ′j , t)| in all runs Rj,m. Otherwise
we will have

∑j−1
i=1 = n + 1 > k − 1. Let R∞ be a infinite run such that every Rj,m shares a prefix with it

until ts,m. It’s obvious in R∞, we do not crash any process in P ′j . Since P ′j ∩ Q 6= ∅ and P1 = Q is always
the live component for ΠΩΥk, our D output is legitimate. But T cannot provide a stable Υ output S ′ for
ΠΩΥn−1.

Part 2. In this part, k = n, and we let D to output the following initially: (a) The processes are
partitioned into two components P1 and P2 such that P1 = Q and P2 = P \Q = {pn+1}. (b) All processes
in P1 set their lbound and S to 1 and {p1}. (c) pn+1 set its lbound and S to 0 and ∅.

Run R0: We let all process in P to run until T outputs cid′. This is possible because the initial output
of D is valid for ΠΩΥn. Suppose at time t0, every process outputs their cid′, and π′ = {P ′1, P

′
2, . . . , P

′
s} is

the partition derived from the outputs. We define lbound ′(P ′j , t) similarly as in Lemma 9.
There must be a component in π′ which contains process pn+1. Without loss of generality, we assume

pn+1 ∈ P ′s. We then set lbound and S values of processes based on the two possible cases: (1) if P ′s = P2,
we set lbound and S of processes in Q to n and ∅, respectively, and set lbound of pn+1 to 0 and S output of
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pn+1 to ∅; (2) if P ′s 6= P2, we set lbound and S of processes in Q to n − 1 and Q ∩ P ′s, respectively, and
set lbound of pn+1 to 1 and S output of pn+1 to ∅. Note that the lbound output values always satisfy that
the sum of maximum lbound values of the two components P1 and P2 is at most n, i.e., satsifying (ΠΩ1) of
ΠΩΥn. In the following, we design a set of runs Rj,m for 1 ≤ j < s and m ≥ 0.

Run R1,0: R1 runs exactly the same as R0 until time t0. Let t1 = t0. If lbound′(P ′1, t1) ≥ |P ′1|, we turn
to run R2,0. Otherwise, we crash all processes in P \ P ′1 at time t1 + 1, and let processes in P ′1 run. Since
P ′1 6= ∅ and P ′1 ⊆ Q, our D output is still legitimate for ΠΩΥn. Then we wait for a time t1,0 > t1 + 1 at
which P ′1 becomes quasi-live. A component P ′j is quasi-live at time t iff. ∀p, q ∈ P ′j(H

′(p, t).lbound′ =
H ′(q, t).lbound′∧H ′(p, t).S′ = H ′(q, t).S′ 6= P ′j \F (t) and lbound′(P ′j , t) ≥ |P ′j \F (t)|∨H ′(p, t).S′ 6= ∅.
P ′j is quasi-live always implies the S ′ output stables. In the following we will use P ′j .S

′(t) as the short form
to the stable S ′ output at time t on processes in P ′j . Since P ′1 is the only component having correct process,
t1,0 must exist. Since we have not crashed any process in P ′1 yet, lbound′(P ′1, t1,0) ≥ |P ′1 \ F (t1,0)| implies
lbound′(P ′1, t1,0) ≥ |P ′1|. If lbound′(P ′1, t1,0) ≥ |P ′1|, we turn to run R2,0. Otherwise, P ′1.S

′(t1,0) must be a
non-empty set. We crash all process in P ′1 \ P ′1.S

′(t1,0) at time t1,0 + 1. Since P ′1.S
′(t1,0) 6= ∅, at least one

process in Q does not crash and H is still legitimate. Then we wait for a time t ′1,0 > t1,0 + 1 at which P ′1
becomes quasi-live again, and turn to run R1,1.

Run Rj,m (1 ≤ j < s, m ≥ 1): Rj,m runs exactly the same as Rj,m−1 until tj,m−1. At time tj,m−1 + 1,
instead of crashing processes in P ′j .S

′(tj,m−1), we suppress the execution of these processes and schedule
the other processes to take exactly the same sequence of steps as in Rj,m−1 until t′j,m−1. After t′j,m−1,
we allow all processes in P ′j to run until a time tj,m such that (1) every process in P ′j takes at least one
step between t′j,m−1 and tj,m; and (2) P ′j becomes quasi-live at time tj,m. Since at time tj,m, we have not
crashed any process in P ′j yet, lbound′(P ′j , tj,m) ≥ |P ′j \ F (t)| still implies lbound′(P ′j , tj,m) ≥ |P ′1|. If
lbound′(P ′j , tj,m) ≥ |P ′j |, we turn to run Rj+1,0. Otherwise, we crash all process not in P ′j .S

′(tj,m) at time
tj,m + 1. Since P ′j .S

′(tj,m) 6= ∅, at least one process in Q does not crash and H is still legitimate. Then we
wait for a time t′j,m > tj,m + 1 at which P ′j becomes quasi-live again, and turn to run Rj,m+1.

Run Rj,0 (2 ≤ j ≤ s): Rj,0 runs exactly the same as Rj−1,0 until time tj−1. We know com-
ponents P ′i (1 ≤ i < j − 1) has been crashed at time tj−1 with lbound′(P ′i , tj−1) ≥ |P ′i |. If
lbound′(P ′j−1, tj−1) ≥ |P ′j−1|, let tj = tj−1 + 1. Otherwise, it must be true that a run Rj−1,mj−1

ex-
ists such that lbound′(P ′j−1, tj−1,mj−1

) ≥ |P ′j−1|. At time tj−1 + 1 instead of crashing processes in P ′j′
(j′ ≥ j), we suppress these process from running and allow the processes in P ′j−1 to take exactly the same
sequence of steps as in run Rj−1,mj−1

until time tj−1,mj−1
. After time tj−1,mj−1

, we allow every process in
P ′j′ (j′ ≥ j − 1) to run. Let tj > tj−1,mj−1

be the time such that everyone in P ′j′ takes at least one step by
tj − 1 and after tj−1,mj−1

. At time tj we further crash processes in component P ′j−1. Now we have crash
all processes in P ′i (1 ≤ i ≤ j − 1). Since we have lbound′(P ′i , tj)) ≥ |P ′i | and

∑j−1
i=1 lbound′(Pi) ≤ k − 1

, |Q| = k implies at least one process in Q is not crashed. So H is still a legitimate.
Now we look at component P ′j . If lbound′(P ′j , tj) ≥ |P ′j |, we turn to run Rj+1,0. Otherwise, we crash

all processes in P ′j′ (j < j′ ≤ s) at time tj + 1 and let processes in P ′j run. Because P ′j ⊆ Q and P ′j 6= ∅
implies at least one process in Q is in P ′j , H is still a legitimate ΠΩΥn output in this run. Then we wait for
a time tj,0 > tj +1 at which P ′j becomes quasi-live. Since P ′j is the only component having correct process,
tj,0 must exist. If lbound′(P ′j , tj,0) ≥ |P ′j |, we turn to run Rj+1,0. Otherwise, we crash all process not in
P ′j .S

′(tj,0) at time tj,0 + 1. Since P ′j.S
′(tj,0) 6= ∅, at least one process in Q does not crash and H is still

legitimate in this run. We wait for a time t′j,0 > tj,0 + 1 at which Pj becomes quasi-live again, and turn to
run Rj,1.

In the above, we have constructed a series of runs, in which our H is always a legitimate output of
ΠΩΥn. If Rs,0 is never entered, there must exist a j ∈ {1, . . . , s − 1}, such that lbound ′(P ′j , tj)) < |P ′j | in
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run Rj,0 and lbound′(P ′j , tj,m) < |P ′j | for all m ≥ 0 in run Rj,m. Let R∞ be the infinite run such that every
Rj,m shares a prefix with it until tj,m. In this run, the S ′ output on processes in P ′j cannot stabilize. So, T is
not a correct transformation algorithm. If otherwise, we enter run Rs,0, we construct a series of run Rs,m in
the following.

Run Rs,0: According to the runs Rj,m (j ∈ {1, . . . , s − 1}), Rs,0 being entered implies that there
exist a run Rs−1,m and a time t such that lbound′(P ′j , t) ≥ |P ′j | for all j ∈ {1, . . . , s − 1} in Rs−1,m.
If P ′s = P2, we know

⋃s−1
j=1 P ′j = Q, thus

∑s−1
j=1 lbound′(P ′j) = n. This contradicts to the fact that

∑s−1
j=1 lbound′(P ′j) ≤ n − 1. So we know P ′s 6= P2 and lbound(P1, t) = n − 1.
Rs,0 runs exactly the same as Rs−1,m until ts−1,m. At time ts−1,m + 1, we crash all processes not in

P ′s. For each process in Q ∩ P ′s, we also set its S output to ∅. Then we let processes in P ′s run. In this
run, P2 is a live component with respect to ΠΩΥn, so the D output is still legitimate. Now P ′s is the only
component having correct processes, so T must give a legitimate output for ΠΩΥn−1 on processes in P ′s.
Because lbound′(P ′s) < |P ′s| (otherwise

∑s
j=1 lbound′(P ′j) = n + 1 > n − 1), we know T must provide

a non-empty correct Υ output S ′ on every correct process. Suppose at time ts,0, S′ becomes stable on all
processes in P ′s. Let the stable S0 = P ′s.S

′(ts,0) 6= ∅. At time ts,0 + 1 we crash all process not in S0. Now
S0 becomes the exact set of correct processes. If pn+1 ∈ S0, our H is still legitimate, so we can just wait
for S′ on processes in S0 to change. If pn+1 6∈ S0, it must be true that S0 ⊆ Q. If S0 6= Q, we can set S
output of processes in S0 to Q \ S0. Otherwise, we set S to {p1}. Since |Q| = n = k ≥ 2, S 6= S0. Now
P1 = Q becomes a live component regarding to ΠΩΥn. So we can still wait for S ′ to change. Suppose S ′

becomes stable at time t′s,0 and P ′s.S
′(t′s,0) 6= S0.

Now we can construct run Rs,1, Rs,2, . . . in a similar way using the same technique in Rj,m. And we
let R∞ be the infinite run such that every Rs,m shares a prefix with it until ts,m. It’s obvious that in R∞, we
do not crash any process in P ′s. So P2 is a live component in ΠΩΥn and our D output is legitimate. But T
cannot provide a stable Υ output S ′ for ΠΩΥn−1.

Our proof in part 1 and part 2 concludes that ΠΩΥk cannot be transformed to ΠΩΥk−1. 2

Lemma 12 For any n ≥ 3, (1) ΠΥ cannot be transformed into ΠΩΥn−3, and (2) ΠΥ cannot be trans-
formed into ΠΩΥn−2 when n is odd.

Proof. When n ≤ 2, by Lemma 4 and Lemma 7, we know ΠΥ can be transformed into Υ = ΠΩΥ0, so ΠΥ
can be transformed into ΠΩΥn−2 when n = 2.

For the case when n ≥ 3, we firstly prove ΠΥ cannot be transformed into ΠΩΥn−3. Suppose, for a
contradiction, that we have an algorithm T that transforms any failure detector D in ΠΥ to a failure detector
D′ in ΠΩΥn−3. Let (S, cid) denote the output of D, and (S ′, lbound, cid′) denote the output of D′ generated
by algorithm T .

We consider the partition of P , π = {P1, P2, · · · , Ps} where s = dn
2 e and P1 = {p1, p2}, P2 =

{p3, p4}, · · · , Ps = {pn, pn+1} if n is odd and Pk = {pn−1, pn, pn+1} if n is even. Firstly, let all
processes are correct processes. Their cid outputs correspond to our partition construction, and S out-
puts are arbitrary. Since there exist two components Pi and Pj containing correct process, the out-
put of D satisfies the specification of ΠΥ. Then we let T run to some time t0 at which the outputs
(S′, lbound, cid′) of D′ are generated by T and cid′ 6= ⊥ for all processes. By ΠC1, all correct pro-
cesses eventually have cid′ 6= ⊥, so such time t0 exists. From the cid′ outputs, it is clear how processes
are partitioned with respect to D′. Suppose the partition of D′ is π′ = {Q1, Q2, · · · , Qs′}. We define
Qi.lbound(t) = max{H ′(p, t′).lbound | t′ ≤ t, p ∈ Qi \ F (t′)}. At time t, we say that component Qi is
overflowing if Qi.lbound(t) ≥ |Qi|, and we say Qi is quasi-live if Qi.lbound(t) < |Qi| and all processes in
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Qi has the same nonempty output S ′ which is not the set of correct processes in Qi. By (ΠΥ1), for a live
component Qi, there exists a time after which Qi is either overflowing or quasi-live. We construct run R
using the following procedure to reach a contradiction.

Procedure: At any time t, if we find overflowing component Qi, we crash all processes in Qi at time
t + 1 and repeat the procedure again. Otherwise, since any survive component Qj is not overflowing,
we can find some quasi-live components eventually. Suppose, at time t′, all quasi-live components are
{Qi1 , Qi2 , · · · , Qil} where l ≥ 1. From time t′ + 1, we suppress all processes p such that p /∈ Qij for any j
or p ∈ Qij and p /∈ H ′(p, t′).S′. Since S′ output in Qi1 is not empty, at least one process is not suppressed.
Intuitively, we try to simulate a run R′ in which all suppressed processes are also crashed. In run R′, for
each correct process p (p is neither crashed nor suppressed in run R), we can choose suitable non-empty S
output for it. This is because in our construction of partition π = {P1, P2, · · · , Ps}, each component has
at least two processes. But in run R′, every components generated by T is not the live components at time
t′ + 1, so, eventually, at least one correct process p changes its S ′ output. Since p cannot distinguish run R
and run R′, it also changes its S ′ output in run R. After it, we suppress all processes in Qij (1 ≤ j ≤ l) if
Qij contains some process which changes its S ′ output in run R. If there still exists some process which has
not been suppressed, we continue run R. By the same argument, eventually, all correct processes in run R
are suppressed. This means all components Qij (1 ≤ j ≤ l) contain at least one process which changes its
S′ output after time t′. Then, we recover all processes which does not crash in run R (that is, the processes
which are not in the overflowing component) and let them take at least one step.

By (ΠΩ2), sum of lbound of all components are not greater than n − 3, so there are at least 4 processes
which are not crashed in run R. So, we can repeat the above procedure infinitely many times. Then, (1) we
firstly define a failure pattern F for run R which describe above, then prove that (2) all correct processes
in R take an infinite number of steps; (3) the output (S, cid) of D satisfies the specification of ΠΥ; (4) the
output (S ′, lbound, cid′) of D′ violates the specification of ΠΩΥn−3. Then, by (2)(3), we know run R is
a legitimate run of algorithm T under some specified failure pattern F and we can reach the contradiction
with (4).

(1): We define F (t) = {p| let p ∈ Qi, Qi.lbound(t − 1) ≥ |Qi|}. Firstly, by the definition of
Qi.lbound(t), if p ∈ F (t), then p ∈ F (t′),∀t′ ≥ t. Thus, for any component Qj , either all processes
in Qj are correct processes or none of them are correct.

(2): For any correct process in R, since it is not in the overflowing component at any time, it does not
crash in our procedure. So, it takes at least one step in the end of the procedure. Thus, every correct process
takes an infinite number of steps.

(3): (ΠC1) and (ΠC2) hold directly from our construction of partition. Since there are at least 4 correct
processes in run R. Then, by our construction of partition π = {P1, P2, · · · , Ps}, we know at least two
components Pi and Pj contains correct processes. Thus, (ΠC3) holds.

(4): Prove by contradiction. If the output (S ′, lbound, cid′) of D′ satisfies the specification of ΠΩΥn−3,
suppose Qj is the live component. Then, Qj .lbound(t) < |Qj | for any t, otherwise, Qj does not contain
correct process by our definition of failure pattern. Thus, eventually, all correct processes in Qj output the
same nonempty S ′ ⊆ Qj such that S ′ is not the set of correct processes in Qj . Suppose this time is tj ,
then after tj , Qj is quasi-live. By the procedure, there exists the time t′j , at least one correct process in Qj

changes its S ′ output. This means the S ′ output in Qj is not stable, which violates (ΠΥ1)
In fact, we can easily check that the same argument can also prove ΠΥ cannot be transformed into

ΠΩΥn−2 when n is an odd number. In this case, all components Pi contain exactly two processes, and
since at least 3 processes are not crashed by the procedure, we have at least two components with correct
processes left. 2


