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Deformable Spectrograms
Manuel Reyes-Gomez, Nebojsa Jojic, Daniel P.W. Ellis,

Abstract

Speech and other natural sounds show high temporal correlation and smooth spectral evolution

punctuated by a few, irregular and abrupt changes. In a conventional Hidden Markov Model (HMM),

such structure is represented weakly and indirectly through transitions between explicit states representing

‘steps’ along such smooth changes. It would be more efficient and informative to model successive spectra

as transformationsof their immediate predecessors, capturing the evolution of the signal energy through

time. We present a model which focuses on local deformations of adjacent bins in a time-frequency

surface to explain an observed sound, using explicit representation only for those bins that cannot be

predicted from their context. We further decompose the log-spectrum into two additive layers, which are

able to separately explain and model the evolution of the harmonic excitation, and formant filtering of

speech and similar sounds. Smooth deformations are modeled with hidden transformation variables in both

layers, using Markov Random fields (MRFs) with overlapping subwindows as observations; inference

is efficiently performed via loopy belief propagation. The model can fill-in deleted time-frequency cells

without any signal model, and an entire signal can be compactly represented with a few specific states

along with the deformation maps for both layers. We present results on a speech recognition task, that

suggest that the model discovers a global structure on the dynamics of the signal’s energy that helps to

alleviate the problems generated by noise interferences.

Index Terms

signal models, spectrogram, pitch and formants dynamics, belief propagation

I. I NTRODUCTION

Hidden Markov Models (HMMs) work best when only a limited set of distinct states need to be

modeled, as in the case of speech recognition where the models need only be able to discriminate
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between phone classes. When HMMs are used with the express purpose of accurately modeling the full

detail of a rich signal such as speech, they require a large number of states. In [1], HMMs with 8,000

states were required to accurately represent one person’s speech for a source separation task. The large

state space is required because it attempts to capture every possible instance of the signal. If the state

space is not large enough, the HMM will not be a good generative model since it will end up with a

“blurry” set of states which represent an average of the features of different segments of the signal, and

cannot be used in turn to “generate” the signal.

In many audio signals including speech and musical instruments, there is a high correlation between

adjacent frames of their spectral representation. Our approach consists of exploiting this correlation so

that explicit models are required only for those frames that cannot be accurately predicted from their

context. In [2], context is used to increase the modeling power of HMMs, while keeping a reasonable

size of parameter space, however the correlation between adjacent frames is not explicity modeled. Our

model captures the general properties of such audio sources by modeling the evolution of their harmonic

components. Based on the widely-used source-filter model for such signals, we devise a layered generative

graphical model that describes these two components in separate layers: one for the excitation harmonics,

and another for resonances such as vocal tract formants. This layered approach draws on successful

applications in computer vision that use layers to account for different sources of variability [3], [4],

[5]. Our approach explicitly models the self-similarity and dynamics of each layer by fitting the log-

spectral representation of the signal in framet with a set of transformations of the log-spectra in frame

t− 1. As a result, we do not require separate states for every possible spectral configuration, but only a

limited set of “sharp” (not blurry) states that can still cover the full spectral variety of a source via such

transformations. This approach is thus suitable for any time series data with high correlation between

adjacent observations.

We will first quickly review of the graphical model framework including the belief propagation

algorithm and some of the terminology used in the paper. Then we will introduce a model that captures

the spectral deformation field of the speech harmonics, and show how this can be exploited to interpolate

missing observations. Following that, we introduce the two-layer model that separately models the

deformation fields for harmonic and formant resonance components, and show that such a separation

is necessary to describe speech signals accurately through examples of interpolating missing data based

on one and two layers. Then we will present the complete model including the two deformation fields

and the “sharp” states. Using only a few states in combination with the two deformation fields, this model

can accurately reconstruct the signal. We present results on a speech recognition task that suggest that
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the model discovers a global structure in the dynamics of the signal’s energy that helps to alleviate the

problems generated by noisy interference. Finally we discuss a modification of this model to segment

a mixture of speakers into dominant speaker regions, an application to be described in more detail in a

forthcoming paper.

Early developments of this work were presented in [6] and [7]. In this paper we present a longer version

with more complete implementation details and results on a speech recognition task not presented in the

previous publications.

II. PROBABILISTIC GRAPHICAL MODELS

The graphical models framework is an intuitive and modular way to model complex systems as a

graphical structure of simpler parts. The observed variables of the system as well as the unknown or

hidden variables are represented using nodes. Observed variables which have known fixed values are

represented by shaded nodes, while hidden variables, modeled as random variables, are illustrated by

unshaded nodes. Sets of variables that have direct interaction with each other are connected through

edges, forming a graphical representation of the system. Probability theory permits us to investigate or

to query the state of the unknown variables given the observed variables, a process known as inference.

Graphical models are divided into two major classes: directed and undirected graphical models.

A. Directed Graphical Models

In directed graphical models, the edges between variables have a notion of causality and therefore are

represented by edges with directions or arrows. The set of nodes (Xπi
) that have arrows pointing into

nodeXi are referred as the parents ofXi. In directed graphs, the causal relationship between a node and

its parents is defined by conditional probabilities p(Xi | Xπi
). The joint probability p(X1,X2,X3,...,Xn)

between all variables (hidden and observed) in the system is defined as:

p(X1, X2, X3, ..., Xn) =
n∏

i=1

p(Xi | Xπi
). (1)

A directed graphical model widely used to model speech and audio is the hidden Markov model

(HMM), (figure 1a). There, hidden nodes X = [X0,X1,..,XT ] represent the acoustic class at framet,

while the observed variables Y = [Y0,Y1,...,YT ] represent features of the audio signal. The conditional

probabilities in this model are defined by p(Xt+1 | Xt) and p(Yt | Xt). The conditional probabilities

p(Xt+1 = j | Xt = i) = π(i,j) =π(Xt,Xt+1) , are represented as entries on anN×N transition probabilities
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Fig. 1. a) An HMM as a directed graphical model, b) HMM factor graph representation.

matrix π, whereN is the number of different acoustic classes thatXt can take. The local likelihood

conditional probabilities p(Yt | Xt) are frequently modeled with a Gaussian distribution (or a mixture of

Gaussians) such that p(Yt | Xt = i) = N (Yt;µi,Σi). Then theN acoustic classes are defined byN sets of

parametersθi = (µi,Σi). The parametersθ that define an HMM areθ = {π, µ1,Σ1, µ2,Σ2, ..., µN ,ΣN}.

For a given model with parametersθ and observationsY , we would like to find the best set of

parameters that maximize the likelihood of the observations given the model, a process known as

“maximum likelihood parameters estimation”. The expectation-maximization (EM) algorithm provides

a general approach to the problem of maximum likelihood parameter estimation in statistical graphical

models. In this approach the log-likelihood of the model p(Y | θ) is lower bounded by a auxiliary

function,L(q, θ), defined as:

log p(Y | θ) ≥ L(q, θ) =
∑
X

q(X | Y ) log
p(X,Y | θ)
q(X | Y )

(2)

where the termq(X | Y ) is regarded as the averaging function approximating the posterior (see below).

The EM algorithm is essentially a coordinate ascent algorithm on the auxiliary functionL(q, θ). In the

t + 1th iteration, qt+1 is found as the choice ofq that maximizesL(q, θt) given the current set of

parametersθt. Thenqt+1 is used to maximizeL(qt+1, θ) with respect toθ to find θt+1. Further iterations

of the algorithm are made to findqt+2, θt+2, etc. The above steps give the algorithm its name since they

are regarded as:

Expectation Step argmaxq(L(q, θt)) (3)

Maximization Step argmaxθ(L(qt+1, θ)) (4)

It can be shown [8] that the choice for the averaging functionqt+1(X | Y ) that maximizesL(q, θt) on

the E step isp(X | Y, θt), the posterior probability of the hidden variables given the observations and
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the latest estimated parameters. The M step is done by taking the derivatives ofL(qt+1, θ) with respect

to of each one of the parameters inθ and solving the equations. The E step is also referred to as the

inference procedure since it consists of inferring the state of the model’s hidden variables, by computing

their joint probability given the observed variables and the model parameters. The M step is also referred

to as “learning” since it is the process of estimating the best set of parameters for the model given the

observations. The posterior probability of the hidden variables given the observation can be found using

Bayes theorem:

p(X | Y, θt) =
p(X,Y | θt)
p(Y | θt)

(5)

The numerator of eqn. 5 for the case of an HMM is defined using eqn. 1 as:

p(X,Y | θt) =
T−1∏
t=0

p(Xt+1 | Xt)
T∏

t=0

p(Yt | Xt) (6)

The overall likelihood of the model,P (Y | θ), can be obtained by marginalizing 6 with respect toX,

resulting in:

p(Y | θ) =
∑
X0

∑
X1

· · ·
∑
XT

T−1∏
t=0

p(Xt+1 | Xt)
T∏

t=0

p(Yt | Xt) (7)

At first sight it seems that we need to performNT summations since we haveT variablesXt with

N values each. However, the factorized form of the joint probability distribution (eqn. 6) permits us to

organize the summations by moving the relevant factors inside as shown in eqn. 8, reducing the total

number of summations needed and revealing useful recursions.

p(Y ) =
∑
XT

· · ·
∑
X1

p(X2 | X1)p(Y1 | X1)
∑
X0

p(X1 | X0)p(Y0 | X0) (8)

The sum-product algorithm (described later) systematically exploits the factorization of the joint proba-

bility distribution to perform exact inference in complex graphical models.

B. Undirected Graphical Models

Undirected graphical models, also known as Markov random fields (MRFs) lack the notion of causality

that the directed models have, eliminating the use of the directions on the edges. They are used in systems

where local constraints between connected nodes can be expressed, but where it is hard to ensure that the

conditional probabilities at different nodes are consistent with each other. Local parameterization was done

in directed graphs through the use of conditional probabilities; in undirected graphs such parameterization

is done through the use ofpotential functions, which are structured to favor certain local configurations

of variables by assigning them a larger value. They are assumed to be strictly positive, real-valued
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functions, but are otherwise arbitrary. In general, potential functions are neither conditional probabilities

nor marginal probabilities and in this sense they do not have a local probabilistic interpretation. The

product of the potential functions is, however, still required to represent the joint distribution of all the

variables, hidden and observed, in the graphical model:

p(X) =
1
Z

∏
S

ψXS
(XS) (9)

whereψXS
represents the potential function defined on the subset of variablesXS , andZ is a normal-

ization constant. Eqn. 9 permits the likelihood of the model to be factorized in simpler terms allowing

a tractable way to perform the inference of the model. Exact inference, however, is not always possible

for either type of models. This can occur when the conditional distributions or the potential functions

involve a large number of variables, reducing the model factorization capabilities, or if the model has

some specific topological characteristic that will be discussed later. Exact inference, when possible, for

both types of models can be achieved through the use of several similar algorithms: the junction tree

algorithm, Pearl’s propagation algorithm, and the sum-product algorithm. In this paper we relied in the

sum-product algorithm since it is easily extended to perform approximate inference on intractable models.

The sum-product algorithm is defined in terms of thefactor graphrepresentation of a graphical model.

C. Factor Graphs

Factor graphs have been explicitly designed to work with algorithms that exploit the factorization of a

complex functionp with domainX into simpler functionsψXS
defined over subsetsXS of setX. Just

as in eqn. 9, or in eqn. 1 withψXS
= p(Xi | Xπi

) andXS = {Xi, Xπi
}. Definition: A factor graph

is a bipartite graph that expresses the structure of a factorization such as eqn. 9. A factor graph has a

variable node for each variableXi, a factor node for each local functionψXS
, and an edge connecting

variable nodeXi to factor nodeψXS
if only and only if Xi is an argument ofψXS

, i.e. Xi ∈ XS [9].

Variable nodes are represented with circles, while function nodes are represented with squares. Figure

1b shows the factor graph for an HMM. In the figure the notation of the function nodes is equivalent to:

gk = p(Yk | Xk) andhk = p(Xk+1 | Xk).

D. Sum-Product Algorithm

Coming back to the likelihoodP (Y | θ) of an HMM (eqn. 8), notice that the right-most summation,∑
X0
p(X1 | X0)p(Y0 | X0) can be seen as a functionf(X1) of variableX1. The second-rightmost

summation can be expressed as:
∑

X1
p(X2 | X1)p(Y1, X1)f(X1, which is a functionf(X2) of variable
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a) Factor graph without loops a) Factor graph with loops

Fig. 2. Shaded nodes represent leaf nodes

X2 and so on. Each one of the summations is marginalizing one of the variables in the model. The sum-

product algorithm is an efficient procedure for computing marginal functions that exploits the factorization

of the global function, using the distributive law to simplify the summations and reuse intermediate partial

sums. The “flow” of intermediate products and summations used by the algorithm is conceptualized as

a set of messages between the nodes of the factor graph representation of the model. The update rules

for those messages are defined as:

Message from variablex to local functionf :

mx→f (x) =
∏

h∈gx\f

mh→x(x) (10)

wheregx represents all the functions that havex as one of its arguments. The messages consist of all

the incoming messages into nodex, except the one coming from nodef .

Message from local function to variable:

mf→x(x) =
∑
∼x

f(X)
∏

y∈n(f)\x

my→f (y) (11)

whereX = n(f) is the set of arguments of the functionf , and
∑
∼x represents the summations of

all the arguments inX exceptingx. Notice that both kind of messages are functions of variablex.

Variable-to-function messages can be interpreted as the “belief” that the variable has, of itself, given

to the values of all its other functions. Function-to-variable messages can be interpreted as the “belief”

that the function has with respect to the variable’s state, given the states of all the other variables in the

function’s argument.

The algorithm starts sending messages through the leaf nodes (fig. 2a). Here, only nodes representing

hidden variables are considered. Observed variable nodes just send identity messages.Condition one.- A

node sends a message once all the incoming messages needed to send that message have been received.
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Condition two.- The algorithm terminates once two messages have been passed over every edge, once

in each direction. The marginal posterior probability for (hidden) variable nodeXi, p(Xi), is found by

multiplying all the incoming messages into the node. Alternatively, it can be computed by multiplying

the incoming and outgoing messages through the same edge. The operation of the algorithm is described

for the case of an HMM on Appendix I.

E. Loopy Belief Propagation

The sum-product algorithm, like the junction tree algorithm, computes exact inference in models that

can be organized as trees (fig. 2a), i.e. models without loops. When the model structure involves loops

(fig.2b), condition onefor the algorithm operation can not be met. In those situations, the sum-product

algorithm can still be used although it no longer provides exact inference. There is evidence, however,

that it approximates exact inference [10], [11]. When the sum-product algorithm is used for models

with loops it is called the loopy belief propagation algorithm. The lack of clear leaf nodes in loopy

graphs blurs the message passing initialization process, creating the need forad hocschedules for the

message passing. Whenevercondition onecannot be met, the missing incoming messages are set to be

uniform, which requires iterating the message passing procedure even aftercondition twohas been met.

The algorithm should finish when the inference of the variables’ posteriors does not change between

successive iterations (where an iteration is defined as a complete cycle of message passing rules). Given

the existence of loops in the graph, there is no theoretical proof that such convergence can be reached;

however, in practice, it does occur.
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III. SPECTRAL DEFORMATION MODEL

Many audio signals, including speech and musical instruments, have short-time spectral representations

that show great similarity between temporally-adjacent frames over much of the signal. We propose a

model that discovers and tracks the nature of such correlation by finding how the patterns of energy are

transformed between adjacent frames and how those transformations evolve over time.

Figure 3 shows a narrow-band spectrogram representation of a speech signal, where each column

depicts the energy content across frequency in a short-time window, or time-frame. The value in each

cell is actually the log-magnitude of the short-time Fourier transform in decibels:

xk
t = 20 log

(
abs

(
NF−1∑
τ=0

w[τ ]x[t ·H + τ ]e−j2πτk/NF

))
(12)

wheret is the time-frame index,k indexes the frequency bands,NF is the size of the discrete Fourier

transform,H is the hop between successive time-frames,w[τ ] is theNF -point short-time window, and

x[τ ] is the original time-domain signal. We use 32 ms windows with 16 ms hops. Using subscriptC

to designate current andP to indicate previous, the model predicts a patch ofNC time-frequency bins

centered at thekth frequency bin of framet as a “transformation” of a patch ofNP bins around thekth

bin of framet− 1, i.e.

~X
[k−nC ,k+nC ]
t ≈ ~T k

t · ~X [k−nP ,k+nP ]
t−1 (13)

wherenC = (NC − 1)/2, nP = (NP − 1)/2, and ~T k
t is the particularNC ×NP transformation matrix

employed at that point on the time-frequency plane. Figure 3 shows an example withNC = 3 and

NP = 5 to illustrate the intuition behind this approach. The selected patch in framet can be seen as a

close replica of an upward shift of part of the patch highlighted in framet−1. This “upward” relationship

can be captured by a transformation matrix such as the one shown in the figure. The patch in framet−1

is larger than the patch in framet to permit both upward and downward motions. The proposed model

selects, from a discrete set, the particular transformation that better describes the evolution of the energy

from frame t − 1 to frame t around every one of the time frequency binsxk
t in the spectrogram. The

patches used between adjacent time frequency bins overlap, which promotes transformation consistency

[4]. The model also tracks the structure of the transformations throughout the whole signal to find useful

patterns of transformation.

The generative graphical model is depicted in figure 4. NodesX = {x1
1, x

2
1, ..., x

k
t , ..., x

K
T } represent all

the time-frequency bins in the spectrogram. For now, we consider the continuous nodesX as observed,

although below we will allow some of them to be hidden when analyzing the missing-data scenario.
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Discrete nodesT = {T 1
1 , T

2
1 , ..., T

k
t , ..., T

K
T } index the set of transformation matrices used to model the

dynamics of the signal. EachNC ×NP transformation matrix~T is of the form:
~w 0 0

0 ~w 0

0 0 ~w

 (14)

i.e. each of theNC cells at timet predicted by this matrix is based on the same transformation of cells

from t − 1, translated to retain the same relative relationship. Here,NC = 3 and ~w is a row vector

with lengthNW = NP − 2; using ~w = (0 0 1) yields the transformation matrix shown in figure 3. To

ensure symmetry along the frequency axis, we constrainNC , NP andNW to be odd. The complete set

of ~w vectors include upward/downward shifts by whole bins as well as fractional shifts. An example set,

containing each~w vector as a row, is: 
0 0 0 0 1
0 0 0 .25 .75
0 0 0 .75 .25
0 0 0 1 0
0 0 .25 .75 0
. . . . .

.75 .25 0 0 0
1 0 0 0 0

 (15)

The lengthNW of the transformation vectors defines the supporting coefficients from the previous frame

~X
[k−nW ,k+nW ]
t−1 (wherenW = (NW − 1)/2) that can “explain”xk

t .

For harmonic speech signals sampled at 16 kHz and analyzed over 1024-point short-time windows

(15 Hz bin resolution), we have found that a model using the above set of~w vectors with parameters

NW = 5, NP = 9 andNC = 5 (which corresponds to a model with a transformation space of 13 different

matrices~T ) is very successful at capturing the self-similarity and dynamics of the harmonic structure.

The transformations set could, of course, be learned, but in view of the results we have obtained with

this predefined set, we defer the learning of the set to future work. The results presented in this paper

are obtained using thefixedset of transformations described by the matrix in eqn. 15.

Since we want to capture spectral transformations that can be described in the form of eqn. 13, we need

to select potentials that impose such restrictions on the data. Therefore, the “local-likelihood” potential

between the time-frequency binxk
t , its relevant neighbors in framet, its relevant neighbors in frame

t− 1, and its transformation nodeT k
t has the following form:

ψ
(
~X

[k−nC ,k+nC ]
t , ~X

[k−nP ,k+nP ]
t−1 , T k

t

)
=

N
(
~X

[k−nC ,k+nC ]
t ; ~T k

t
~X

[k−nP ,k+nP ]
t−1 ,Σ[k−nC ,k+nC ]

)
(16)
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Fig. 5. Transformations that naively maximize the likelihood potentials. Each color represents a different transformation matrix

from the set of 13.

The diagonal matrixΣ[k−nC ,k+nC ], which is learned, has different values for each frequency band to

account for the variability of noise across frequency bands. Local constraints between adjacent transforma-

tion nodes are modeled by horizontal and vertical transition potentialsψhor(T k
t , T

k
t+1) andψver(T k

t , T
k+1
t ),

which are represented by transition matrices.

A naive approach for finding the best set of transformationsT that better describe the data would be to

choose the transformationsT k
t that maximize the local potentials, eqn. 16. Figure 5a shows an example

of such transformations for the spectrogram on the left in figure 6. In the figure each color indexes a

different transformation matrix. There is little visible structure since the transformation choices capture

only local information. If we require transformations with more global consistency we have to perform

inference on the model.

When nodesX are fully observed, inference consists of finding probabilities for each transformation

index at each time-frequency bin. Exact inference is intractable given that our model is quite “loopy”,

and it is approximated using Loopy Belief Propagation [10], [11]. Figure 7 shows the factor graph

representation of a section of our model. For now, variable nodesxk
t are observed, therefore all messages

mxt
k→gj

i
consist of trivial identity messages; the only messages we need to compute are the ones that go

through theT k
t variable nodes.

Our schedule for the “belief propagation” is as follows: We first run messages through the vertical

chains, i.e. all the bins in a given framet. Next, we run messages through all the horizontal chains

(constant frequency index). We choose this order because there is more correlation between the frequency

bins in a given frame than between the bins at the same frequency across all time frames. Applying the

“belief propagation” formulas on the chains results in forward/backward, upward/downward recursions
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similar to the ones obtained in HMMs. But unlike HMMs where the posterior at each point is determined

by the local likelihood and by the neighbors in the chain, here the equations result in a weighted local

likelihood that takes into account the match to the local observation as well as the “beliefs” from the

neighboring chains. (This derivation is presented in Appendix II). The use of HMM-like recursions make

the inference procedure relatively fast.

b) Transformation Mapa) Signal

Green:
Identity transform

Yellow/Orange: 
Upward motion
(darker is steeper)

Blue: 
Downward motion
(darker is steeper)

1

2

3

Fig. 6. Example transformation map showing corresponding points on the original signal.
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Fig. 7. Factor Graph for the relationships between spectrogram binsxk
t and transformation nodesT k

t .

We consider a full iteration of the model as a full pass of messages in both directions for all the vertical

and horizontal chains. Given that the graph has loops we typically find it takes around five iterations

before the transformations posteriors converge.
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Fig. 8. Missing data interpolation example a) Original, b) Incomplete, c) After 10 iterations, d) After 30 iterations.

Clean Signal Clean Formants Map Noisy Signal Noisy Formants Map

Fig. 9. Formant tracking map for clean speech (left panels) and speech in noise (right panels).

Once converged, we can find the transformation map, a graphical representation of theexpectedtrans-

formation node indices across time-frequency, which provides an appealing description of the harmonics’

dynamics as shown in figure 6. In these panels, the links between three specific time-frequency bins and

their corresponding transformations on the map are highlighted. Bin 1 is described by a steep downward

transformation, while bin 3 also has a downward motion but is described by a less steep transformation,

consistent with the dynamics visible in the spectrogram. Bin 2, on the other hand, is described by a steep

upwards transformation. Notice how the transformation map emphasizes the global structure of the signal

that the naive approach fails to reflect. Also, since the transformation maps follow global consistencies

they can be robust to noise (see fig. 9), potentially making them a valuable representation in their own

right, as investigated in section VIII for speech recognition.

IV. I NFERRINGM ISSING DATA

If a certain region of cells in the spectrogram is missing, as in the case of corrupted data, the

corresponding nodes in the model become hidden. This is illustrated in figure 8, where regions of the

spectrogram have been removed and tagged as missing. Inference of the missing values is performed

again using belief propagation, although the update equations are more complex since there is the need
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= +

Signal Harmonics Formants

a)Missing Sections b) Fill-in; one layer c) Fill-in; two layers

Fig. 10. First Row: Harmonics/Formants decomposition (posterior distribution means). Second Row: (a) Spectrogram with

deleted (missing) regions. (b) Filling in using a single-layer transformation model. (c) Results from the two-layer model.

to deal with continuous messages.

The posteriors of the hidden continuous nodes are represented using Gaussian distributions, and the

missing sections on figure 8b are filled in with the means of their inferred posteriors as shown in figure

8 parts c and d.

The transformation node posteriors for the missing region are also estimated. In the early stages

of the “fill-in” procedure the transformation “belief” (mgi
j→T j

i
) from the local likelihood potentialgj

i

to the transformation nodesT j
i that interact with ‘missing” nodes̃xk

t are set to uniform so that their

transformation posteriors are driven only by the reliable observed neighbors. Messagesmx̃t
k→gj

i
= δ(x̃k

t −

µ) are initialized with the meanµ of the observed data.

The fill-in process starts with the missing values that have reliable immediate neighbors. Once those

missing values have been filled-in with estimated data (i.e. using the meanµk
t of their Gaussian distri-

butions) the process continues to their immediate “missed” neighbors and so on. Full details including

the equations used in this scenario are given in Appendix III.

Here, an iteration is defined as each time the complete set of missing values is estimated. DefineNwidth

as the maximum number of consecutive corrupted bins in any direction: The transformation posteriors

are re-estimated everyNwidth/3 iterations, and at each re-estimation those transformation “beliefs” from

the local likelihood potentialgj
i to the transformation nodesT j

i that interact with ‘missing” nodesxk
t

are recomputed using the newly-estimated values for the missing variables. This is important to ensure

that the estimated data from different directions of the missing region agree. The algorithm normally



15

converges afterNwidth × 3 iterations.

X

TF

t
t-1

F

TH

H

t
t-1

Fig. 11. Graphical representation of the two-layer source-filter transformation model.

V. TWO LAYER SOURCE-FILTER TRANSFORMATIONS

Many sound sources, including voiced speech, can be successfully modeled as the convolution of a

broadbandsource excitation, such as the pseudo-periodic glottal flow, and a time-varying resonantfilter,

such as the vocal tract, that ‘colors’ the excitation to produce speech sounds or other timbres. When

the excitation has a spectrum consisting of well-defined harmonics, the resulting spectrum is in essence

the resonant frequency response sampled at the frequencies of the harmonics, since convolution of the

source with the filter in the time domain corresponds to multiplying their spectra in the Fourier domain,

or adding in the log-spectral domain. Hence, we can model the log-spectraX as the sum of variablesF

andH, intended to be explicit models of the formants and harmonics of the speech signal. The source-

filter transformation model is based on two additive layers of the deformation model described above, as

illustrated in figure 11.

VariablesF andH in the model are hidden, whileX can be observed or hidden, as before. The

symmetry between the two layers is broken by using different parameters in each, chosen to suit the

particular dynamics of each component. We use transformations with a larger support in the formant layer

(NW = 9) compared to the harmonics layer (NW = 5). Since all harmonics tend to move in the same

direction, we enforce smoother transformation maps on the harmonics layer by using potential transition

matrices with higher self-loop probabilities.

An example of the transformation map for the formant layer is shown in figure 9, which also illustrates

how these maps can retain key features in the face of high levels of signal corruption; belief propagation

searches for a consistent dynamic structure within the signal, and since noise is less likely to have a

well-organized structure, it is properties of the speech component that are extracted. Inference in this

model is more complex, but the actual form of the continuous messages is essentially the same as in the
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a) States b) Reconstruction; Iter. 1 c) Reconstruction; Iter. 3 d) Reconstruction; Iter. 5 e) Reconstruction; Iter. 8

Fig. 12. Reconstruction from the matching-tracking representation, starting with just the explicitly-modeled states, then

progressively filling in the transformed intermediate states.

one layer case, with the addition of the potential function relating the signalxk
t with its transformation

components at each time-frequency binhk
t (not to be confused with the factor graph nodes) andfk

t :

ψ(xk
t , h

k
t , f

k
t ) = N (xk

t ;h
k
t + fk

t , σ
k) (17)

The two layers are iteratively estimated as described on Appendix IV. An iteration is defined as one

estimation of the harmonic layer followed by one estimation of the formants layer. The model usually

converges after 10 iterations.

The first row of figure 10 shows the decomposition of a speech signal into harmonics and formants

components, illustrated as the means of the posteriors of the continuous hidden variables in each layer.

The decomposition is not perfect, since we separate the components in terms of differences in dynamics;

this criteria becomes insufficient when both layers have similar motion. However, separation improves

modeling precisely when each component has a different motion, and when the motions coincide, it

is not really important in which layer the source is actually captured. In the second row of fig. 10,

panel (a) shows spectrogram from the top row with deleted regions; notice that the two layers have

distinctly different motions. In panel (b) the regions have been filled via inference in a single-layer

model; notice that since the formant motion does not follow the harmonics the formants are not captured

in the reconstruction. In panel (c) the two layers are first decomposed and then each layer is filled in;

the figure shows the addition of the filled-in reconstructions from each layer.

VI. M ATCHING-TRACKING MODEL

Prediction of frames from their context is not always possible, for instance when there are transitions

between silence and speech or transitions between voiced and unvoiced speech. As a result, we need a set

of states to represent these unpredictable frames explicitly. We will also need a second “switch” variable

that will decide when to “track” (transform) and when to “match” the observation with a state. Figure
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13 shows a graphical representation of this model. At each time frame, discrete variablesSt and Ct

are connected to all frequency bins in that frame.St is a uniformly-weighted Gaussian Mixture Model

containing the means and the variances of each of the explicitly-modeled states,µj and φj . Variable

Ct takes two values: when it is equal to 0, the model is in “tracking mode”; a value of 1 designates

“matching mode”.

TF
T

t+1 t+1

t

F H

Xt+1

St+1St St+2

Ct+1 Ct+2Ct

TF
T

t+1 t+1

t

F H

Xt+1

St+1St St+2

Ct+1 Ct+2Ct

Fig. 13. Graphic model of the matching-tracking model

The potentials between observationsxk
t , harmonics and formants hidden nodeshk

t andfk
t respectively,

and variablesSt andCt, are given by:

ψ
(
xk

t , h
k
t , f

k
t , St, Ct = 0

)
= N

(
xk

t ;h
k
t + fk

t , σ
k
)

(18)

ψ
(
xk

t , h
k
t , f

k
t , St = j, Ct = 1

)
= N

(
xk

t ;µ
k
j , φ

k
j

)
(19)

Inference is done again using loopy belief propagation. Definingφ as a diagonal matrix, the M-Step is

given by:

µj =
∑

tQ(St = j)Q(Ct = 0)Xt∑
tQ(St = j)Q(Ct = 0)

σk =
∑

tQ(Ct = 1)(xk
t − (fk

t + hk
t ))

2∑
tQ(Ct = 1)

φj =
∑

tQ(St = j)Q(Ct = 0)(Xt − µj)2∑
tQ(St = j)Q(Ct = 0)

(20)

Q(St) andQ(Ct) are obtained using the belief propagation rules.Q(Ct = 0) is large if eqn. 18 is

larger than eqn. 19 for several time frequency bins at framet. In early iterations when the means are

still quite random, eqn. 18 is quite large, makingQ(Ct = 0) large with the result that the explicit states

are never used. To prevent this we start the model with large variancesφ and σ, which will result in

non-zero values forQ(Ct = 1), and hence the explicit states will tend to be learned.

As we progress, we start to learn the variances by annealing the thresholds i.e. reducing them at each

iteration. We start with a relatively large number of means, but this becomes much smaller once the
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Selected Bin Harmonic Tracking Formant Tracking

FormantsHarmonicsSignal

a). c).b).

Fig. 14. Row 1: Harmonics/formants tracking example. The transformation maps on both layers are used to find the ancestors a

given time-frequency bin (shown by the dark patches). Row 2: Semi-supervised two speaker separation. (a) The user selects bins

on the spectrogram that she believes correspond to one speaker. (b) The system finds the corresponding bins on the transformation

map. (c) The system selects and removes all bins whose transformations match the ones chosen; the remaining bins are assumed

to correspond to the other speaker.

variances are reduced; the lower thresholds then control the number of states used in the model. The

resulting states typically consist of single frames at discontinuities as intended. An iteration for this model

consist of finding the posteriors for each one of the layers then applying the belief propagation rules to

nodesSt andCt. Finally, the means and variances are learned through eqns. 18 and 19.

Figure 12a shows the frames chosen for a short speech segment whose spectrogram is shown in figure

8. The following panes show, at various iterations, how the signal can be regenerated from the model

using the states and the two estimated motion fields. This reconstruction is another instance of inferring

missing values, but in this case the motion fields are not re-estimated since we have the true ones.

VII. M ODEL DEMONSTRATION

We have built an interactive demo that implements formant and harmonics tracking, missing data

interpolation, formant/harmonics decomposition, and semi-supervised source separation of two speakers.

Videos illustrating the use of this demo are available at:http://www.ee.columbia.edu/˜mjr59/

def_spec.html .

Formants and Harmonics Tracking: Analyzing a signal with the two-layer model permits separate

tracking of the harmonic and formant ‘ancestors’ of any given point. The user clicks on the spectrogram

to select a bin, and the system reveals the harmonics and formant “history” of that bin, as illustrated in

the first row of figure 14.
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Semi-Supervised Source Separation:After modeling the input signal, the user clicks on time-

frequency bins that appear to belong to a certain speaker. The program then selects all neighboring

bins with the same value in the transformation map; the remaining bins should belong to the other

speaker. The second row of figure 14 depicts an example with the resultant mask and the “clicks” that

generated it. Although far from perfect, the separation is good enough to perceive each speaker in relative

isolation.

The demo also includes the missing data interpolation and harmonics/formants separation as described

in the earlier sections.

Features CLEAN SNR20 SNR15 SNR10 SNR5

PLP12+delta .94 2.3 4.1 7.9 12.2

PLP12+delta+dct8(FTM1) .98 2.3 3.4 6.8 11.1

PLP12+delta+dct10(FTM1) .99 2.3 3.3 7.4 11.3

PLP12+delta+dct8(FTM2) 1.3 2.5 4.2 9.7 12.5

PLP12+delta+dct10(FTM2) 1.3 2.5 4.2 9.4 12.7

TABLE I

WORD ERRORRATE PERCENTAGES OBTAINED WITH DIFFERENT SETS OF FEATURES AS A FUNCTION OF SIGNAL-TO-NOISE

RATIO IN DB.

VIII. S PEECHRECOGNITION RESULTS:

The phonetic distinctions at the basis of speech recognition reflect vocal tract filtering of glottal

excitation. In particular, the dynamics of formants (vocal tract resonances) are known to be powerful

“information-bearing elements” in speech.

The formant transformation maps capture information about the global dynamics of the formants since

the belief propagation algorithm searches for consistent structure in the energy evolution across both time

and frequency. The delta and double-delta features of commonly-used features such as Perceptual Linear

Prediction (PLP) or Mel Frequency Cepstrum Coefficients (MFCC) similarly capture local dynamics of

energy, but they describe the frame-to-frame changes only within each frequency band. The transition

maps can capture how the energy is movingacrossfrequencies.

We computed two sets of transformation maps: one using formants obtained with our model as described

above, and another with formants obtained using conventional cepstral smoothing. For the latter we only
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require a single layer model to compute the transformations maps. We then use features derived from these

maps in combination with standard features in a speech recognizer to test if the maps can contribute new

information not captured by the regular features. We chose PLP coefficients plus deltas as the baseline

features.

To convert the formant transformation maps into features suitable for the recognizer, we applied mel-

scale filtering to the maps then used a discrete cosine transform to decorrelate and further reduce the

dimensionality of the final feature vectors.

We used the Aurora-2 noisy digits database for our experiments [?]. We trained on the complete

“multicondition” training set and tested the recognizer using test set C (mismatched noises and channel).

Results at different SNR levels are shown in table I. Features derived from formant transformation maps

obtained using two layers are referred to as “FTM2” and the ones obtained from the single layer model

are denoted “FTM1”; we tried using both 8 and 10 coefficients from the DCT (“dct8” and “dct10”).

Looking at the results obtained using PLP features combined with FTM1 features (second and third

rows in table I), we see that recognizer performance remains about the same as the standard features alone

(first row) when the signal has high SNR values, but when the SNR decreases the new features improve

the word error rate (WER) by as much as 19.5% relative for the 15 dB SNR (“SNR15”) condition. We

interpret these results as follows: when the signals are relatively clean, a local analysis of the energy

dynamics, as performed by conventional features, is sufficient to effectively disambiguate the words.

However as the interference becomes larger a more global model of the energy dynamics, such as the

formants transition maps, can reduce the influence of local energy variations due to the noise. The belief

propagation process searches for a consistent dynamic structure within the signal, and since noise is less

likely to have a well-organized structure, it is the properties of the speech component that are extracted.

The table also shows that FTM2 features derived from the two-layer version of the model do not

improve the performance of the recognizer. This may be because the layers cannot be separated when the

two layers have parallel dynamics, as mentioned above: When the formants and the harmonics are well

modeled by the same transformation, the formants are usually captured and modeled in the harmonics

layer. Independent modeling of transformation maps for both layers may be more important for other

applications such as the missing data inference in section IV, as well as the source separation approach

described in the following section.
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IX. U NSUPERVISEDDOMINANT SOURCESEPARATION

The separation of speech mixtures into its individual sources using a single microphone is a very hard

problem that has generated considerable interest in the research community. Current approaches include

attempts to segregate a time-frequency representation (spectrogram) on a bin-by-bin basis, sometimes

called time-frequency masking. Each bin is subjected to analysis and tagged as belonging to one of

the individual sources. The large combinatorial space created by the analysis of the signal at such a fine

resolution poses a great challenge to systems attempting to do such a separation. In [12] the combinatorial

search is restricted by the use of pretrained speaker models, which limits the applicability of the approach

to mixtures of sources whose individual properties in great detail. In [13], a training session is required

to choose the right parameters for a spectral clustering algorithm. Finding clusters among the set of all

time-frequency bins requires huge matrices that pose significant numerical problems. Hence, the algorithm

requires a great deal of time to separate short mixtures. On the other hand, other research had shown

that an intelligible separation can be done by grouping those regions of the spectrogram where a given

speaker is more dominant than the others [?]. The problem is how to find those speaker-dominant regions.

A subband version of our matching-and-tracking model has been used to segment such regions, which

can be further clustered to separate the sources. Since the number of these regions is significantly smaller

than the total number of time-frequency bins in the spectrogram, the clustering problem is several orders

of magnitude less complex. The process of segmenting the spectrogram of a mixture into its dominant

speaker regions, examples of how to cluster those regions, and how to further infer masked (missing)

regions will be described in a forthcoming paper.

X. CONCLUSIONS

We have presented a harmonic/formant separation and tracking model that models the short-time

spectra of sound sources as local transformations of their immediate neighbors, then infers globally-

consistent patterns of transformation through belief propagation. From among a range of applications,

we demonstrate the usefulness of this information on a recognition task for speech in noise. The model

has several other possible applications, including reconstructing partially-masked sounds and segmenting

sounds into regions dominated by individual sources; we will examine these in more detail in the future.



22

APPENDIX I

SUM-PRODUCT ALGORITHM ON HMM S

Referring to figure 1 b), wheregt = p(Yt | Xt) and ht = p(Xt+1 | Xt), thenmgt→Xt
= gt. The

algorithm starts at the leaf nodesX0 andXT .

mX0→h0 =mg0→X0= g0, mh0→X1 =
∑

X0
h0mX0→h0 .

mX1→h1 = mh0→X1g1 =
∑

X0
(h0mX0→h0)g1.

Continuing forward the following recursion formula can be obtained:

mXt→ht
=
∑

Xt−1
(ht−1mXt−1→ht−1)gt

mXt→ht
=
∑

Xt−1
(p(Xt | Xt−1)mXt−1→ht−1)p(Yt | Xt).

which is the conventional forward recursion for HMMs, (αt). From the other end:

mXT→hT−1 = gT , mhT−1→XT−1 =
∑

XT
(hT−1mXT→hT−1).

mXT−1→hT−2 = mhT−1→XT−1gT−1.

mhT−2→XT−2 =
∑

XT−1
(hT−2mXT−1→hT−2)

mhT−2→XT−2 =
∑

XT−1
(hT−2mhT−1→XT−1gT−1).

mhT−2→XT−2=
∑

XT−1

p(XT−1 | XT−2)p(YT−1 | XT−1)mhT−1→XT−1 .

The last recursion corresponds to the conventional backwards recursion, (βt). Computing p(Xt) as the

multiplication of the messages on the edge toht. p(Xt) = mXt→ht
mht→Xt

= αtβt.

APPENDIX II

MESSAGES FOR THESPECTRAL DEFORMATION MODEL WITH FULLY OBSERVEDSPECTROGRAM

Referring to figure 7, variablesxk
t are observed so they only send identity messages, i.e.mxk

t→gi
l

=

δ(xk
t − x̂k

t ), wherex̂k
t is the actual observations at that time-frequency bin. Function nodesgk

t represents

the likelihood potential (Eq. 16),hk
t = ψhor(T k

t , T
k
t+1) andfk

t = ψver(T k
t , T

k−1
t ). Working on the vertical

chain at framet, from variableT 1
t to variableTK

t for a spectrogram withK coefficients.

mg1
t→T 1

t
= g1

t , mT 1
t →f1

t
= g1

tmh1
t−1→T 1

t
mh1

t→T 1
t
.

mf1
t →T 2

t
=
∑

T 1
t
(f1

t mT 1
t →f1

t
).

mT 2
t →f2

t
= mf1

t →T 2
t
g2
tmh2

t−1→T 2
t
mh2

t→T 2
t
.

Making g
′k
t = gk

t mhk
t−1→T k

t
mhk

t→T k
t
.

mT 2
t →f2

t
=
∑

T 1
t
(f1

t mT 1
t →f1

t
)g

′2
t .

This corresponds to an upward (in frequency) recursionα
′k
t on the vertical chain at framet using

a “weighted” local likelihood functiong
′k
t , which corresponds to the regular local likelihood function

weighted by the “belief” of the adjacent vertical chains. A similar “weighted” downward recursion can
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be found examining the sequence of messages from variableT T
t to variableT 1

t . Analogous “weighted”

forward/backward recursions can be found while working with the horizontal chains.

APPENDIX III

CONTINUOUS MESSAGES FOR THE MISSING DATA SCENARIO

The local likelihood messages, i.e.mgk
t→T k

t
, of the function nodesgk

t that have any of the missing

time frequency bins as arguments are initially set to uniform. For all others,mgk
t→T k

t
= gk

t . Once this

initialization is done, the messages involving the transformation nodes are estimated as above, so that

the “transformation beliefs” for the missing time frequency bins are driven only by the “beliefs” of the

surrounding reliable neighbors and not by the unreliable local likelihood potentials.

Messages from the local likelihood potential functionsgk
t to missing time frequency binxi

j are functions

in term ofxi
j . Therefore to facilitate the manipulation of the messages we need to express local likelihoods

gk
t as functions of an individual time frequency binxi

j .

The local likelihood potentials are defined as:gk
t = N

(
~X

[k−nC ,k+nC ]
t ; ~T k

t
~X

[k−nP ,k+nP ]
t−1 ,Σ[k−nC ,k+nC ]

)
That can be rewritten as:

gk
t = 1√

2πΣ
exp−

1
2
(Zk

t )
′
Σ−1(Zk

t ), where

Zk
t =X [k−nC ,k+nC ]

t −T k
t X

[k−nP ,k+nP ]
t−1 , is a function of variables (xk−nC

t , xk−nC+1
t , .., xk+nC

t , xk−nP

t−1 , .., xk+nP

t−1 , T k
t );

Since column vectorsX [k−nC ,k+nC ]
t andX [k−nP ,k+nP ]

t−1 are concatenations of individual bins. We can

expressZk
t either as:

Zk
t = aixi

t +X
[k−nc,k+nc]
t . ∗ (1N1 − ai)− T k

t X
[k−np,k+np]
t−1 or

Zk
t = −T k

t b
ixi

t−1 − T k
t (X [k−nP ,k+nP ]

t−1 . ∗ (1N2 − bi)) + X
[k−nC ,k+nC ]
t Whereai and bi areN1 andN2

column vectors with zeros in all positions excepting the one corresponding toxi
t and xi

t−1 relative to

vectorsX [k−nC ,k+nC ]
t andX [k−nP ,k+nP ]

t−1 ; 1N1 and1N2 are N1 and N2 column vectors of ones and (.*)

is the matlab pointwise vector multiplication.

Generalizing even further we can expressZk
t as:

Zk
t = αi

jx
i
j − βi

j(X
[k]
t,t−1, T

k
t )

WhereX [k]
t,t−1 = [[X [k−nC ,k+nC ]

t , X
[k−nP ,k+nP ]
t−1 ] \ xi

j ].

αi
j =

 ai : j = t

−T k
t b

i : j = t− 1
and

βi
j(X

[k]
t,t−1, T

k
t =

 X
[k−nc,k+nc]
t . ∗ (1N1 − ai)− T k

t X
[k−np,k+np]
t−1 : j = t

−T k
t (X [k−nP ,k+nP ]

t−1 . ∗ (1N2 − bi)) +X
[k−nC ,k+nC ]
t : j = t− 1
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The fill-in process starts with the missing values that have reliable neighbors. In general, a given

missing binxi
j will exchange messages with Np function nodesgl

t−1 at framej+1 and with Nc function

nodesgr
j at framej. If gk

t is one of such function nodes. Then the message from function nodegk
t to

variablexi
j has the form.

mgk
t→xi

j
= [ ∑

T k
t

∫
X [k]

t,t−1

1
C
exp

1
2
(αi

jx
i
j−βi

j(X
[k]
t,t−1,T

k
t ))

′
Σ−1(αi

jx
i
j−βi

j(X
[k]
t,t−1,T

k
t ))

mT k
t →gk

t

∏
y∈X [k]

t,t−1

my→gk
t
dy] (21)

Wherej is eithert− 1 or t and i ∈ [k− nP , k+ nP ] if j = t− 1 or i ∈ [k− nC , k+ nC ] if j = t. The

individual time frequency binsy that belong to the setX [k]
t,t−1 are a collection of missing and observed

variables. The ones that are observed have identity messagesmy→gk
t

= δ(y− ŷ), whereŷ is the actual

observed value, while the ones that are missing should have messagesmy→gk
t

equal to the multiplication

of their own (NC + NP - 1) mgr
s→y messages (Eq. 21) coming from all the other function nodesgr

s

connected to variabley. Given the exponential complexity of suchmy→gk
t

messages, we approximate

them by delta functions, i.e.my→gk
t

= δ(y − µy). Parametersµy are initially set to the mean of the

observed data, these parameters are eventually estimated as explained below.

mT k
t →gk

t
= mhk

t−1→T k
t
mhk

t+1→T k
t
mfk−1

t →T k
t
mfk+1

t →T k
t

is simplified by making one the position of the

“most-likely” transformation,T̂ k
t , and zero all the others. Then Eq. 21 reduces to:

mgk
t→xi

j
= 1

C exp
1
2
(αi

jx
i
j−β̂i

j)
′
Σ−1(αi

jx
i
j−β̂i

j),

whereβ̂i
j = βi

j(X̂
[k]
t,t−1, T̂

k
t ). X̂ [k]

t,t−1 is formed by the concatenation of the relevantŷs andµys.

The posterior probability of nodexj
i , p(x

k
t ), is equal to the multiplication of all its incoming messages.

We approximate this multiplication with a Gaussian distribution,q
′
(xj

i ) = N (xj
i ;µxj

i
, φxj

i
). Minimizing

their KL divergence we find:

µxj
i
=
∑NC+NP

l=1 α
′

lΣ
−1
l β̂l∑NC+NP

i=1 α
′

lΣ
−1
l α−1

l

(22)

The values displayed by the missing data application are these mean values. The mean of the variable

to local function nodes messages, (my→gk
t

= δ(y − µy) for missing variablesy in Eq. 21), have the

same form as in equation 22, just subtracting the numerator and denominator factor corresponding to the

incoming message from the corresponding function.
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Fig. 15. Factor graph of a section of the two-layers model

APPENDIX IV

TWO LAYERS DECOMPOSITION

We first estimate the harmonics layer. Initializing messagemltk→hark
t

asN (ltk, x
k
t , σ

k), (figure 15 where

ltk is the function node for the two layers local likelihood potential (17) and messagesmhark
t→ghart

k
=

δ(ltk − xk
t ) with the actual values of the spectrogram. Then we estimate the posterior probabilities of

the harmonics layer q(hart
k) and their meansµhark

t as in the one layer case using Eq. 22, adding to

both, the denominator and numerator the corresponding terms frommltk→hark
t
. Messagesmhark

t→ghart
k

are also recomputed. We then proceed to estimate the formants layer, initializing messagemltk→fork
t

as

N (ltk, x
k
t − µhark

t , σk), and messagesmfort
k→gfork

t
= δ(ltk − (xk

t − µhark
t ) with the subtraction of the

estimated harmonics layer from the observed data. The idea here, is to model in this layer all the data

that was not captured by the harmonic layer given the restrictions on its parameters. We then estimate the

posterior probabilities of the formants layer q(fort
k) and their meansµfork

t as in the case of the harmonics

layer. Messagesmfort
k→gfork

t
are also recomputed. We then go back to re-estimate the harmonics layer,

since all messages have been computed at least once, we just update the messages and recompute the

harmonics layer means. Then the formants layer is re-estimated. We keep iterating back and forth until

convergence.
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