
Automated Verification of Practical Garbage Collectors

Chris Hawblitzel
Microsoft Research
One Microsoft Way

Redmond, WA 98052
USA

Chris.Hawblitzel@microsoft.com

Erez Petrank ∗

Dept of Computer Science
Technion

Haifa 32000
Israel

erez@cs.technion.ac.il

Abstract
Garbage collectors are notoriously hard to verify, due to their low-
level interaction with the underlying system and the general dif-
ficulty in reasoning about reachability in graphs. Several papers
have presented verified collectors, but either the proofs were hand-
written or the collectors were too simplistic to use on practical
applications. In this work, we present two mechanically verified
garbage collectors, both practical enough to use for real-world C#
benchmarks. The collectors and their associated allocators consist
of x86 assembly language instructions and macro instructions, an-
notated with preconditions, postconditions, invariants, and asser-
tions. We used the Boogie verification generator and the Z3 auto-
mated theorem prover to verify this assembly language code me-
chanically. We provide measurements comparing the performance
of the verified collector with that of the standard Bartok collectors
on off-the-shelf C# benchmarks, demonstrating their competitive-
ness.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Verification

1. Introduction
Garbage collectors automatically reclaim dynamically allocated
objects that will never be accessed again by the program. Garbage
collection is widely acknowledged for supporting fast development
of reliable and secure software. It has been incorporated into mod-
ern languages, such as Java and C#. Many recent projects have at-
tempted to verify the safety or correctness of garbage collectors.
The goal of this verification is to reduce the trusted computing base
of a system and increase the system’s reliability. This is particu-
larly important for secure systems based on proof-carrying code
(PCC) [23] or typed assembly language (TAL) [22]; typical large-
scale PCC/TAL systems can verify the safety of the mutator (the
program), but not of the run-time system that manages memory and

∗ Part of this work was done while the author was on a sabbatical leave
at Microsoft Research. Supported by THE ISRAEL SCIENCE FOUNDA-
TION (grant No. 845/06).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

other resource on the mutator’s behalf. This prevents untrusted pro-
grams from customizing the run-time system. Furthermore, bugs in
the unverified run-time systems could result in security vulnerabil-
ities that undermine the guarantees promised by PCC and TAL.

Proving that garbage collectors are safe and correct has been a
challenge. In this work, we provide the first fully mechanized cor-
rectness proofs of garbage collectors and allocators realistic enough
to run large, off-the-shelf benchmarks. To make this verification
tractable, we exploit recent advances in automated theorem prov-
ing technology, using the Boogie [3] and Z3 [8] tools to provide
automated verification of the correctness properties. Our key con-
tribution is the expression of garbage collector specifications and
invariants in a style that allows efficient, automated verification.

We verify two collectors, both practical enough for use with
real-world C# benchmarks: a Cheney copying collector [20, 7],
with a bump allocator; and a mark-sweep collector [18], with a
local-cache allocator that allows fast bump-pointer allocation. Both
are simple enough to verify, yet efficient enough to support realistic
benchmarks competitively. The collectors and their associated al-
locators consist of x86 assembly language instructions and macro
instructions, annotated with preconditions, postconditions, invari-
ants, and assertions. These annotations require significant human
effort to write, but once they are written, the Boogie verification
condition generator and the Z3 theorem prover verify the annotated
collectors automatically, with no further human intervention. The
collectors and allocators are entirely self-contained, relying on no
unverified library code, and the verification relies on only a minimal
set of trusted axioms and definitions describing 32-bit arithmetic,
x86 instructions, memory words, and the interface to the mutator.

We show how to define higher-level abstractions, particularly
abstractions drawn from region-based type systems, in terms of
these trusted axioms and definitions; these higher-level abstractions
provide forms of local reasoning that make automated verification
tractable. The verification ensures that if an allocation or garbage
collection operation completes, then the physical heap managed by
the allocator and collector faithfully represents the abstract graph
of objects defined by the mutator. The verification also ensures that
the garbage collector deallocates all objects unreached during the
collection. The verification does not prove termination; verified col-
lectors or allocators could fail to terminate because of an infinite
loop, or fail to terminate properly because of a 32-bit integer over-
flow exception, or an explicit halt operation. (The allocators and
collectors halt if they run out of memory, or if the mutator relies on
a feature not supported by our collectors, such as multithreading.)

The collectors and allocators include support for objects, ar-
rays, strings, header words, interior pointers, static data scanning,
stack scanning, object descriptors, stack frame descriptors, return-
address lookup tables, and bit-level data manipulation, making
them realistic enough to support off-the-shelf single-threaded C#

benchmarks compiled with the Bartok compiler, using the native
Bartok memory layouts and descriptor formats. To assess the effi-
cacy of the proposed collectors, we ran the verified collectors with
the Bartok runtime and compared their performance with the stan-
dard Bartok mark-sweep and generational copying collectors. The
verified collectors demonstrated competitive performance.

The contributions in this paper include:

1. We provide the first mechanically verified garbage collectors
that support a real-world object model, including vtables, ar-
rays, object descriptors, stacks, etc.

2. We provide the first mechanically verified garbage collectors
that can link to code generated by a real-world, optimizing
compiler (Bartok).

3. We demonstrate how to apply automated verification to garbage
collectors, including both copying and mark-sweep garbage
collectors. This automation allows scaling the verification to
realistic collectors without employing a huge human effort.

4. We propose a simple, efficient, easy-to-verify mark-sweep col-
lector and allocator based on local caches.

5. We provide the first performance measurements of off-the-shelf
C# benchmarks running on top of verified garbage collectors.

Outline. Section 2 discusses previous work on garbage collector
verification. Section 3 describes Boogie and Z3. Section 4 presents
a complete example mark-sweep collector and allocator in the
BoogiePL programming language [3], describing the specification
and invariants in detail. Section 5 generalizes Section 4’s ideas to
cover copying collectors, borrowing ideas from region-based type
systems. Section 6 presents two simple, yet practical, collectors
(and their allocators): a Cheney-queue copying collector and an
iterative mark-sweep collector. Section 7 shows that the practical
collectors perform reasonably well compared to Bartok’s native
collectors on a range of off-the-shelf C# benchmarks. Section 8
concludes.

Code availability. The garbage collectors were coded in an x86-
like subset of the BoogiePL language; a small tool automatically
extracted the x86 instructions, which were assembled and linked
with the benchmarks (see Section 6.3). The complete BoogiePL
code for the two practical collectors is available as part of the public
Microsoft Research Singularity RDK2 source (in “Source Code”,
in the base/Imported/Bartok/runtime/verified/GCs directory, which
can be browsed without downloading all of Singularity) at:

http://www.codeplex.com/singularity

The Boogie and Z3 tools (April 2008 release), used to verify the
two collectors, are available from:

http://research.microsoft.com/specsharp/

2. Background and related work
Hand-written proofs of garbage collector correctness, at least for
abstract models of garbage collectors, go back decades (e.g., [9,
10, 4, 17]). The work of Birkedal et al[4] is noteworthy for for-
mally proving a Cheney copying collector correct, rather than a
mark-sweep collector, and emphasizing local reasoning based on
separation logic. Nevertheless, the local reasoning is used mainly to
separate pieces of the invariant at a coarse granularity (e.g. separat-
ing invariants about forwarded objects from unforwarded objects);
we offer a different perspective on local reasoning in section 5.

Other work [25, 13, 14, 15, 12] has mechanically proven
garbage collector correctness, but only for mark-sweep collectors,
and only using abstract models of memory (for instance, repre-
senting the heap as just a mathematical graph and the root set as

just a mathematical set), and only using abstract models of pro-
grams rather than programs executable on real hardware. These
papers used interactive theorem provers, with the exception of
Russinoff[25], and even this paper required over 100 explicitly
user-declared lemmas (each of which was automatically proved).
More recently, McCreight et al [19] used an interactive theorem
prover to verify the correctness of both mark-sweep and copying
collectors written in a RISC-like assembly language, with a more
realistic memory model. This required an enormous effort though,
relying on over 10000 lines of Coq scripts per collector, and the
treatment of the memory still falls short of what realistic compil-
ers expect: the collectors assume that every object has exactly two
fields, and there is no stack, no static data area, no object and stack
frame descriptors, and so on. We adopt McCreight et al’s definition
of correctness as a starting point for our work.

Several papers [27, 21] use typed regions to implement type-
safe copying garbage collectors; these garbage collectors copy live
data from an old region to a new region, and then (safely) delete
the old region. Type safety is a weaker property than correctness,
though, and these techniques don’t obviously extend to mark-sweep
collection. We borrow ideas from typed regions to help us verify
our copying collector.

Vechev et al. [26] describe how to mechanically fit prefabri-
cated, high-level garbage collection building blocks together in a
provably correct way, but they do not mechanically verify the build-
ing blocks themselves.

3. Boogie and Z3
BoogiePL is a simple imperative programming language designed
to support automated program verification. It includes pure (side-
effect free) expressions, written in a standard C/C#/Java syntax, im-
perative statements (which may update local variables and global
variables), pure functions, and imperative procedures. Procedures
support preconditions and postconditions, written with the key-
words requires and ensures, that specify what must be true
upon entry to the procedure and what the procedure guarantees is
true upon exit from the procedure. Within a procedure, loop invari-
ants for while loops are written with the invariant keyword. The
following example shows a pure function Pos, which returns true
if its argument is positive, and a procedure IncreaseX that adds a
positive number y to a global variable x:

function{:expand true} Pos(i:int)returns(bool){i>0}
var x:int;
procedure IncreaseX(y:int)

requires Pos(y);
modifies x;
ensures x > old(x);

{
x := x + y;

}

In this example, the expression old(x) refers to the value of x
at the beginning of the procedure’s execution, so that the post-
condition “ensures x > old(x);” says that x will have a
larger value upon exit from the procedure than upon entry to
the procedure. A procedure must disclose all the global vari-
ables it modifies (just x in this example); this allows callers of
the procedure to know which variables remain unmodified by the
procedure. The expand true annotation turns a function defi-
nition into a macro that is expanded to its definition whenever
it is used, so that “requires Pos(y);” is just an abbreviation
for “requires y > 0;”. (Recursive or mutually recursive macro
defintions are disallowed.)

Our programs occasionally use the statement “assert P;”,
which asks the verifier to prove P, which is then used as a lemma for

subsequent proving. (We do not use the statement “assume P;”,
which introduces a new lemma P without proof, since this would
make our verification unsound.)

The Boogie tool generates verification conditions from the Boo-
giePL code. These verification conditions are logical formulas that,
if valid, guarantee that each procedure call satisfies the procedure’s
precondition, each procedure guarantees its postcondition, and each
loop invariant holds on entry to the loop and is maintained by each
loop iteration. Boogie passes these verification conditions to an au-
tomated theorem prover, which attempts to prove the validity of
the verification conditions. We use the Z3 theorem prover, which is
efficient, scales to large formulas, and reasons about many useful
first-order logic theories, including integers, bit vectors, arrays, and
uninterpreted functions.

BoogiePL’s data types are more purely mathematical than the
data types in conventional programming languages. The type int
represents mathematical integers, ranging from negative infinity to
positive infinity, while bv32 represents 32-bit values. The theorem
prover support for int is more mature and efficient than for bv32,
so we used int wherever possible (section 6 describes how we
reconciled this approach with the x86’s native 32-bit words).

BoogiePL also supports array types [int]t for any element
type t, defining arrays as simple mappings from mathematical inte-
gers to elements. The BoogiePL “select” expression a[i] retrieves
element i from array a, where i can be any integer. The BoogiePL
“update” expression a[i := v] generates a new array, equal to
a except at element i, where the new array contains the value v,
so that (a[i := v])[i] == v is true for any a, i, and v. For
convenience, the statement “a[i] := v;” is an abbreviation for
“a := (a[i := v]);”. Arrays can also be multidimensional: an
array a of type [int,int]t supports a select expression a[i1,i2]
and an update expression a[i1,i2 := v]. Note that BoogiePL
arrays lack many properties of say, Java arrays. For example, Boo-
giePL arrays are not references, so there’s no issue of aliasing: the
statement “a := b;” assigns a copy of array b to variable a.

Due to formatting constraints, the BoogiePL code shown in this
paper omits most type annotations. We abbreviate a<=b && b<c
as a<=b<c, and function{:expand true} as fun. The notation
“∀T ” is an abbreviation for the universal quantifier “∀” with a
particular trigger “T”, used as a hint to Z3, as described further
in Section 4.3. For now, the reader may ignore the “T”.

4. A miniature collector in BoogiePL
This section presents a miniature allocator and mark-sweep col-
lector written in the BoogiePL programming language, introducing
some of the invariants used by the more realistic collectors in sub-
sequent sections. The allocator and collector are implemented as a
single BoogiePL file, shown in its entirety in Figures 1-5. When
run on this example garbage collector, Boogie verifies all 7 proce-
dures in the collector in less than 2 seconds; since Boogie and Z3
process BoogiePL files entirely automatically, no human assistance
or proof scripts are required.

The miniature collector assumes that every object has exactly
two fields, numbered 0 and 1, and each field holds a non-null
pointer to some object. The collector manages memory addresses
in the range memLo...memHi - 1, where memLo and memHi are con-
stants such that 0 < memLo <= memHi - 1, but whose values are
otherwise unspecified (see Figure 1). Memory is object addressed,
rather than byte addressed or word addressed, so that each memory
location in the range memLo...memHi - 1 contains either an entire
object, or free space big enough to allocate an object in. The vari-
able Mem, of type [int,int]int, represents all of memory; for
each address i in the range memLo...memHi - 1 and field field in
the range 0...1, the value Mem[i,field] holds the contents of the
field field in the object at address i.

function{:expand false} T(i) { true }
const NO_ABS:int, memLo:int, memHi:int;
axiom 0 < memLo <= memHi;
fun memAddr(i) { memLo <= i < memHi }

fun Unalloc(i) { i == 0 }
fun White(i) { i == 1 }
fun Gray(i) { i == 2 }
fun Black(i) { i == 3 }

var Mem:[int,int]int, Color:[int]int;
var $toAbs:[int]int, $AbsMem:[int,int]int;

fun WellFormed($toAbs) {
(∀Ti1.∀Ti2. memAddr(i1) && memAddr(i2)

&& $toAbs[i1] != NO_ABS
&& $toAbs[i2] != NO_ABS
&& i1 != i2

==> $toAbs[i1] != $toAbs[i2])
}
fun Pointer($toAbs, ptr, $abs) {

memAddr(ptr) && $abs != NO_ABS
&& $toAbs[ptr] == $abs
}
fun ObjInv(i, $toAbs, $AbsMem, Mem) {
$toAbs[i] != NO_ABS ==>

Pointer($toAbs, Mem[i,0], $AbsMem[$toAbs[i],0])
&& Pointer($toAbs, Mem[i,1], $AbsMem[$toAbs[i],1])

}
fun GcInv(Color, $toAbs, $AbsMem, Mem) {

WellFormed($toAbs)
&& (∀Ti. memAddr(i) ==>

ObjInv(i, $toAbs, $AbsMem, Mem)
&& 0 <= Color[i] < 4
&& (Black(Color[i]) ==> !White(Color[Mem[i,0]])

&& !White(Color[Mem[i,1]]))
&& ($toAbs[i] == NO_ABS <==> Unalloc(Color[i])))

}
fun MutatorInv(Color, $toAbs, $AbsMem, Mem) {

WellFormed($toAbs)
&& (∀Ti. memAddr(i) ==>

ObjInv(i, $toAbs, $AbsMem, Mem)
&& 0 <= Color[i] < 2
&& ($toAbs[i] == NO_ABS <==> Unalloc(Color[i])))

}

Figure 1. Miniature Collector: Definitions.

The allocator and collector use a variable Color to repre-
sent the state of memory at each address. If Color[i] is 0, the
memory at address i is free. Otherwise, the memory is occupied
by an object and is either colored white (Color[i] == 1), gray
(Color[i] == 2), or black (Color[i] == 3).

4.1 Concrete and abstract states
To verify a garbage collector, we must specify what it means for a
collector to be correct. For the mark-sweep collector, the most obvi-
ous criterion is that it frees all objects unreachable from the root and
leaves all reachable objects unmodified. However, this definition of
correctness is specific to one particular class of collectors; it doesn’t
account for collectors that move objects, and doesn’t account for
mutator-collector interaction, such as write barriers and read barri-
ers. We’d like one definition of correctness that encompasses many
classes of collectors, so we follow a more general approach advo-
cated by McCreight et al [19]. In this approach, the mutator de-

C2

C1

C3

A2

A1

A3

A4

$toAbs[C2] == A2

Mem[C1,1]

== C3

Mem[C1,0]

== C2

$AbsMem[A1,1]

== A3

root

Figure 2. Concrete and abstract graphs

procedure Initialize()
modifies $toAbs, Color;
ensures MutatorInv(Color, $toAbs, $AbsMem, Mem);
ensures WellFormed($toAbs);

{
var ptr;
ptr := memLo;
while (ptr < memHi)

invariant T(ptr) && memLo <= ptr <= memHi;

invariant (∀Ti. memLo <= i <ptr ==>
$toAbs[i] == NO_ABS && Unalloc(Color[i]));

{
Color[ptr] := 0;
$toAbs[ptr] := NO_ABS;
ptr := ptr + 1;

}
}

procedure ReadField(ptr, field) returns (val)
requires MutatorInv(Color, $toAbs, $AbsMem, Mem);
requires Pointer($toAbs, ptr, $toAbs[ptr]);
requires field == 0 || field == 1;
ensures Pointer($toAbs, val,

$AbsMem[$toAbs[ptr],field]);
{

assert T(ptr);
val := Mem[ptr,field];

}

procedure WriteField(ptr, field, val)
requires MutatorInv(Color, $toAbs, $AbsMem, Mem);
requires Pointer($toAbs, ptr, $toAbs[ptr]);
requires Pointer($toAbs, val, $toAbs[val]);
requires field == 0 || field == 1;
modifies $AbsMem, Mem;
ensures MutatorInv(Color, $toAbs, $AbsMem, Mem);
ensures $AbsMem ==

old($AbsMem)[$toAbs[ptr],field := $toAbs[val]];
{

assert T(ptr) && T(val);
Mem[ptr,field] := val;
$AbsMem[$toAbs[ptr],field] := $toAbs[val];

}

Figure 3. Miniature Collector: Initialize, ReadField, WriteField.

procedure GarbageCollect(root)
requires MutatorInv(Color, $toAbs, $AbsMem, Mem);
requires root != 0 ==>

Pointer($toAbs, root, $toAbs[root]);
modifies Color, $toAbs;
ensures MutatorInv(Color, $toAbs, $AbsMem, Mem);
ensures root != 0 ==>

Pointer($toAbs, root, $toAbs[root]);
ensures (∀Ti.memAddr(i) && $toAbs[i] != NO_ABS ==>

$toAbs[i] == old($toAbs)[i]);
ensures root != 0 ==>

$toAbs[root] == old($toAbs)[root];
{

assert T(root);
if (root != 0) {

call Mark(root);
}
call Sweep();

}

procedure Alloc(root, $abs) returns (newRoot,ptr)
requires MutatorInv(Color, $toAbs, $AbsMem, Mem);
requires root != 0 ==>

Pointer($toAbs, root, $toAbs[root]);
requires $abs != NO_ABS;

requires (∀Ti. memAddr(i) ==> $toAbs[i] != $abs);
requires $AbsMem[$abs,0] == $abs;
requires $AbsMem[$abs,1] == $abs;
modifies Color, $toAbs, Mem;
ensures MutatorInv(Color, $toAbs, $AbsMem, Mem);
ensures root != 0 ==>

Pointer($toAbs,newRoot,old($toAbs)[root]);
ensures Pointer($toAbs, ptr, $abs);
ensures WellFormed($toAbs);

{
while (true)

invariant MutatorInv(Color, $toAbs, $AbsMem, Mem);
invariant root != 0 ==>

Pointer($toAbs, root, $toAbs[root]);
invariant (∀Ti. memAddr(i) ==> $toAbs[i] != $abs);
invariant root != 0 ==>

$toAbs[root] == old($toAbs)[root];
{

ptr := memLo;
while (ptr < memHi)

invariant T(ptr) && memLo <= ptr <= memHi;
{

if (Unalloc(Color[ptr])) {
Color[ptr] := 1; // make white
$toAbs[ptr] := $abs;
Mem[ptr,0] := ptr;
Mem[ptr,1] := ptr;
newRoot := root;
return;

}
ptr := ptr + 1;

}
call GarbageCollect(root);

}
}

Figure 4. Miniature Collector: Garbage Collection and Allocation.

fines an abstract state, consisting of an abstract graph of abstract
nodes. A memory manager is responsible for representing the ab-
stract state in memory. The memory manager exposes procedures
to initialize memory, allocate memory, read memory, and write
memory (see Initialize, Alloc, ReadField, and WriteField
in Figures 3, 4). Correctness means that each of these procedures
faithfully represent the abstract state.

To make this notion of correctness precise, the variable $AbsMem
of type [int,int]int defines the abstract state as a mapping
from abstract nodes and fields to abstract values. In the miniature
memory model presented so far, each field contains a pointer to
a node, so the abstract values stored in the abstract graph are al-
ways abstract nodes. (Section 6 extends the set of abstract values
with other values, such as primitive integers and null.) For exam-
ple, Figure 2 shows an abstract graph consisting of 4 nodes, A1,
A2, A3, and A4, each having two fields numbered 0 (on top) and
1 (on the bottom). In this example, A1’s bottom field points to A3,
so $AbsMem[A1,1] == A3. Integers represent abstract nodes, but
these integers can be any mathematical integers, and need not be
related to the addresses used by the computer’s actual memory. In
fact, the variable $AbsMem is not represented at run-time at all; it
is used solely for verification. We call such variables “ghost vari-
ables” (also known as “auxillary variables”), and we use a naming
convention that prefixes each ghost variable with a dollar sign.

The function MutatorInv(...) defines the invariant that holds
on the memory manager’s data while the mutator is running. Ini-
tialize establishes MutatorInv, while Alloc, ReadField, and
WriteField require MutatorInv as a precondition and guar-
antee MutatorInv as a postcondition. Each collector defines
MutatorInv(var1...varn) as it wishes. The mutator is not al-
lowed to modify any of the variables var1...varn directly, but
instead must use ReadField, WriteField, and Alloc to affect
these variables. Since MutatorInv varies across collectors, a muta-
tor that wants to work with all collectors should treat MutatorInv
as abstract. In this framework, the specifications for Initialize,
Alloc, ReadField, and WriteField are exactly the same across
all collectors, except for the differing definitions of MutatorInv.

The function $toAbs:[int]int maps each concrete mem-
ory address in the range memLo...memHi - 1 to an abstract node,
or to NO_ABS. The memory management procedures ensure that
$toAbs is well formed (WellFormed($toAbs)), which says that
any two distinct concrete addresses i1 and i2 map to distinct ab-
stract nodes, unless they map to NO_ABS. In Figure 2, $toAbs maps
addresses C1, C2, and C3 to abstract nodes A1, A2, and A3, re-
spectively, while all other concrete addresses map to NO_ABS. The
function Pointer($toAbs,ptr,$abs) says that $toAbs maps
the concrete address ptr to the abstract node $abs.

Suppose the mutator calls ReadField(C1,0), which will re-
turn the contents of field 0 of the object at address C1. The precon-
dition Pointer($toAbs,ptr,$toAbs[ptr]) requires C1 to be a
valid pointer, mapped to some abstract node (A1 in this example). In
the miniature memory model presented so far, all fields hold point-
ers, so the return value will also be a pointer; the postcondition
for ReadField ensures that the returned value is the pointer corre-
sponding to the abstract node $AbsMem[$toAbs[ptr],field] =
$AbsMem[A1,0] = A2. Since only one pointer, C2, maps to A2, the
postcondition forces ReadField(C1,0) to return exactly the ad-
dress C2. (The well-formedness condition, WellFormed($toAbs)
ensures that no node other than C2 maps to A2.) Once the mutator
obtains the pointer C2 from ReadField(C1,0), it may call, say,
ReadField(C2,1) to obtain the pointer C3. In this way, the spec-
ification of ReadField allows the mutator to traverse the reach-
able portion of memory, even though the specification never men-
tions reachability directly. The specification does not obligate the
memory manager to retain unreachable objects. Since A1, A2, and

A3 do not point to A4, the memory manager need not devote any
physical memory for representing A4. In Figure 2, there is no
concrete address that maps to A4. (Note: in our practical veri-
fied collectors, the mutator does not make actual run-time proce-
dure calls to ReadField and WriteField; instead, the postcon-
ditions of ReadField and WriteField prove the properties that
the mutator needs to read or write memory, without actually read-
ing or writing the memory. For example, ReadField ensures that
Pointer($toAbs,Mem[ptr,field],...).)

The mutator allocates new abstract nodes by calling Alloc,
passing in a fresh abstract node $abs whose fields initially point
to itself. Unlike ReadField and WriteField, Alloc modifies
$toAbs, which potentially invalidates any pointers that the muta-
tor possesses. (The mutator can’t use an invalid pointer that refers
to an old version of $toAbs, because Pointer($toAbs,...) for
an old $toAbs won’t satisfy the preconditions for ReadField and
WriteField, which are in terms of the current $toAbs.) There-
fore, the mutator may pass in a root pointer, and the Alloc pro-
cedure returns a new root pointer that points to the same abstract
node as the old pointer. We could also allow ReadField and
WriteField to modify $toAbs, in which case these procedures
would also require a root to be passed in. In practice, though, this
would be an onerous burden on the mutator.

4.1.1 Verifying collection effectiveness
The specification described so far hides the garbage collection
process behind the Initialize, ReadField, WriteField, and
Alloc interfaces. We also verify one internal property of the
garbage collector, invisible to the mutator: after a collection, only
abstract nodes that the collector reached have physical memory
dedicated to them; unreached abstract nodes are not represented in
memory. It’s easy to define an axiom for reachability for any partic-
ular abstract graph: for any node A, if A is reachable, then A’s chil-
dren are also reachable. It’s difficult, though, to track reachability as
the edges in a graph evolve. For the two collectors presented here,
the $AbsMem graph remains unmodified throughout collection, but
in general, this is not true: incremental collectors interleave short
spans of garbage collection with short spans of mutator activity,
and the mutator activity modifies $AbsMem. Therefore, we adopt a
looser criterion: rather than checking that all remaining allocated
nodes at the end of a collection are reachable from the root, we
merely check that all remaining allocated nodes were reached from
the root at some time since the start of the collection. Verifying this
property was only a small extension to the rest of the verification.

4.2 Allocation, marking, and sweeping
Figure 4’s Alloc procedure performs an (inefficient) linear search
for a free memory address; if no free space remains, Alloc calls
the garbage collector. The collector recursively marks all nodes
reachable from some root pointer (the “mark phase”), and then
deallocates all unmarked objects (the “sweep phase”). Figure 5
shows the code for both the Mark and Sweep procedures. The next
few paragraphs trace the preconditions and postconditions for Mark
and Sweep backwards, starting with Sweep’s postconditions.

A key property of Sweep is that it leaves no dangling point-
ers (pointers from allocated objects to free space). This prop-
erty is part of MutatorInv: each memory address i satisfies
ObjInv(i, ...), which ensures that if some object lives at
i (if $toAbs[i] != NO_ABS), then the object’s fields contain
valid pointers to allocated objects (see Figure 1). Specifically,
the fields Mem[i,0] and Mem[i,1] are, like i, mapped to some
abstract nodes, so that $toAbs[Mem[i,0]] != NO_ABS and
$toAbs[Mem[i,1]] != NO_ABS. To maintain this property, Sweep
must ensure that any object it deallocates had no pointers from ob-
jects that remain allocated. Since Sweep deallocates white objects

procedure Mark(ptr)
requires GcInv(Color, $toAbs, $AbsMem, Mem);
requires memAddr(ptr) && T(ptr);
requires $toAbs[ptr] != NO_ABS;
modifies Color;
ensures GcInv(Color, $toAbs, $AbsMem, Mem);
ensures (∀Ti. !Black(Color[i]) ==>

Color[i] == old(Color)[i]);
ensures !White(Color[ptr]);

{
if (White(Color[ptr])) {

Color[ptr] := 2; // make gray
call Mark(Mem[ptr,0]);
call Mark(Mem[ptr,1]);
Color[ptr] := 3; // make black

}
}

procedure Sweep()
requires GcInv(Color, $toAbs, $AbsMem, Mem);
requires (∀Ti. memAddr(i) ==> !Gray(Color[i]));
modifies Color, $toAbs;
ensures MutatorInv(Color, $toAbs, $AbsMem, Mem);
ensures (∀Ti. memAddr(i) ==>

(Black(old(Color)[i]) ==> $toAbs[i] != NO_ABS)
&& ($toAbs[i] != NO_ABS ==>

$toAbs[i] == old($toAbs)[i]));
{

var ptr;
ptr := memLo;
while (ptr < memHi)
invariant T(ptr) && memLo <= ptr <= memHi;
invariant WellFormed($toAbs);
invariant (∀Ti. memAddr(i) ==>

0 <= Color[i] < 4
&& !Gray(Color[i])
&& (Black(old(Color)[i]) ==>

$toAbs[i] != NO_ABS
&& ObjInv(i, $toAbs, $AbsMem, Mem)
&& (Mem[i,0] >= ptr ==>

!White(Color[Mem[i,0]]))
&& (Mem[i,1] >= ptr ==>

!White(Color[Mem[i,1]])))
&& ($toAbs[i] == NO_ABS <==> Unalloc(Color[i]))
&& ($toAbs[i] != NO_ABS ==>

$toAbs[i] == old($toAbs)[i])
&& (ptr <= i ==> Color[i] == old(Color)[i])
&& (i < ptr ==> 0 <= Color[i] < 2)
&& (i < ptr && White(Color[i]) ==>

Black(old(Color)[i])));
{
if (White(Color[ptr])) {

Color[ptr] := 0; // deallocate
$toAbs[ptr] := NO_ABS;

}
else if (Black(Color[ptr])) {

Color[ptr] := 1; // make white
}
ptr := ptr + 1;

}
}

Figure 5. Miniature Collector: Mark and Sweep.

and leaves gray and black objects allocated, Sweep’s preconditions
requires that no gray-to-white or black-to-white pointers exist.

To rule out gray-to-white pointers, Sweep’s second precondition
requires that no gray objects exist at all:

requires (∀T
i. memAddr(i) ==> !Gray(Color[i]));

The GcInv function (see Figure 1) prohibits black-to-white point-
ers: every black object has fields pointing to non-white objects.
(This is known as the tri-color or three color invariant [9].)

The Mark procedure’s postconditions must satisfy Sweep’s pre-
conditions. To ensure that no gray objects exist at the end of the
mark phase, Mark’s second postcondition says that any non-black
object at the end of the mark phase retained its original color from
the beginning of the mark phase. For example, any leftover gray
objects must have been gray at the beginning of the mark phase.
Since no gray objects existed at the beginning, no gray objects ex-
ist at the end. Mark obeys the ban on black-to-white pointers by
coloring an object black after its children are black. (Before col-
oring a node’s children, Mark temporarily colors the node gray to
indicate the node is “in progress”; without this intermediate step, a
cycle in the graph would send Mark into an infinite loop.)

4.3 Quantifiers and triggers
In the absence of universal and existential quantifiers, many theo-
ries are decidable and have practical decision procedures. These in-
clude the theory of arrays, the theory of linear arithmetic, the theory
of uninterpreted functions, and the combination of these theories.
Unfortunately, adding quantifiers makes the theories either unde-
cidable or very slow to decide: the combination of linear arithmetic
and arrays, for example, is undecidable in the presence of quanti-
fiers. This forces verification to rely on heuristics for instantiating
quantifiers. The choice of heuristics determines the success of the
verification.

Many automated theorem provers, including Z3, use programmer-
supplied triggers to guide quantifier instantiation. Consider again
Sweep’s precondition prohibiting gray objects. Here are two ways
to write this in BoogiePL syntax, each with a different trigger:

forall i::{memAddr(i)}memAddr(i)==>!Gray(Color[i]))
forall i::{Color[i]} memAddr(i)==>!Gray(Color[i]))

Both have the same logical meaning, but use different instantia-
tion strategies. The first asks i to be instantiated with expression e
whenever an expression memAddr(e) appears during an attempt to
prove a theorem. The second asks i to be instantiated with e when-
ever Color[e] appears. Selecting appropriate triggers is challeng-
ing in general. With an overly selective trigger, a quantified for-
mula may never get instantiated, leaving a theorem unproved. With
an overly liberal trigger, a quantified formula may be instantiated
too often (even infinitely often), drowning the theorem prover in
unwanted information.

Shaz Qadeer suggested that we look at formulas of form
forall i::{f(i)}f(i) ==> P, using f(i) as a trigger. For
example, we could use memAddr(i) as a trigger, although this
appears in so many places that it would be easy to acciden-
tally introduce an infinite instantiation loop. (The appearance of
memAddr(ptr) inside the Pointer function, which in turn ap-
pears in the ObjInv function, which in turn appears in the GcInv
function, is one example of such a loop.) To avoid accidental loops,
we introduce a function T(i:int), defined to be true for all i,
solely for use as a trigger, writing the invariants above as:

forall i::{T(i)}T(i)==>memAddr(i)==>!Gray(Color[i]))

(Note that the ==> operator is right associative.) For concise-
ness, we abbreviate forall i::{T(i)}T(i)==> as ∀T i. To
avoid instantiation loops, we never write a formula of the form

∀T i.(...T(e)...), where e is some expression other than a simple
quantified variable.

Based on the trigger T(i), we use two strategies to ensure suf-
ficient instantiation of quantified formulas. First, we write explicit
assertions of T(e) for various expressions e that appear in the pro-
gram. This helps Z3 prove formulas (∀T i.P(i))==>P(e). For
example, the ReadField procedure explicitly asserts T(ptr) to
instantiate the quantifiers in MutatorInv at the value ptr.

Second, we use the trigger T(i) to prove formulas of the
form (∀T i.P(i))==>(∀T j.Q(j)). In this case, since T ap-
pears in both quantifiers, Z3 automatically instantiates P at i=j
to prove Q(j). This second strategy isn’t sufficient for all P and
Q; for example, knowing ∀T i.a[i + 5] == 0 does not prove
∀T j.a[j + 6] == 0, even though mathematically, both these
formulas are equivalent. Nevertheless, this strategy works well for
purely local reasoning. For example, Sweep’s loop invariant main-
tains the property ∀T i.memAddr(i)==>!Gray(Color[i]). If the
loop updates Color by changing Color[ptr] to 1 (white), then
the theorem prover attempts to prove:

(memAddr(i)==>!Gray(Color[i]))
==> (memAddr(i)==>!Gray(Color’[i]))

where Color’ == Color[ptr := 1]. In the case where i != ptr,
Color[i] == Color’[i] and the proof is trivial. In the case
where i == ptr, !Gray(Color’[i]) == !Gray(1) == true.
The proof is easy because the formula memAddr(i) ==>
!Gray(Color[i]) is entirely local; it depends only on array ele-
ments at index i.

Many formulas depend on non-local array elements, though.
Consider how Mark maintains this piece of the tri-color invariant
(no black-to-white pointers) from GcInv in Figure 1:

Black(Color[i]) ==> !White(Color[Mem[i,0]])

This depends not only on i’s color, but on the color of some other
node Mem[i,0]. For non-local formulas, the local instantiation
strategy suffices for some programs but not for others. For example,
it suffices for the collector in Figures 1-5 (we invite the reader to
write out the verification conditions by hand to see), but did not
suffice for an analogous copying collector that we wrote (it did
not sufficiently instantiate information about objects pointed to by
forwarding pointers).

5. Regions
A mark-sweep collector appears easier to verify than a copying col-
lector, because the mark-sweep collector doesn’t modify pointers
inside objects. As the previous section mentioned, the mark-sweep
collector in Figures 1-5 passed verification even with a very sim-
ple triggering strategy, while the analogous copying collector did
not. Therefore, this section augments the two strategies described
in the previous section with a third instantiation strategy, based
on regions. Together, these three strategies were sufficient for both
mark-sweep and copying collectors.

Regions have proven useful for verifying the type safety of
copying collectors [27, 21], which suggests that they might also
help verify the correctness of copying collectors. Type systems for
regions are similar to the verification presented in section 4: sec-
tion 4’s verification mapped concrete addresses to abstract nodes,
while type systems type-check a region by mapping concrete ad-
dresses in the region to types (e.g., a type system with types Parent
and Child might map Figure 2’s C1 to Parent and C2 and C3 to
Child). This suggests a strategy for importing regions (and the
ease of verifying copying collectors via regions) from type sys-
tems: rather than defining just one concrete-to-abstract mapping
$toAbs, allow multiple regions, where each region is an indepen-
dent concrete-to-abstract mapping.

For example, consider how Figure 1’s object invariant uses
$toAbs:

ObjInv(i,$toAbs,$AbsMem,Mem) =
$toAbs[i] != NO_ABS ==>

Pointer($toAbs, Mem[i,0], $AbsMem[$toAbs[i],0])
...

Expanding the Pointer function exposes a non-local invariant:

$toAbs[i] != NO_ABS ==>
... $toAbs[Mem[i,0]] != NO_ABS ...

This invariant is crucial; as discussed in section 4, it ensures that no
dangling pointers exist. However, it’s not obvious how to prove that
this invariant is maintained when $toAbs[Mem[i,0]] changes.
Therefore, the remainder of this paper adopts a region-based object
invariant:

ObjInv(i,$rs,$rt,$toAbs,$AbsMem,Mem) =
$rs[i] != NO_ABS ==>

Pointer($rt, Mem[i,0], $AbsMem[$toAbs[i],0])
...

This object invariant describes an object living in a source region
$rs, whose fields point to some target region $rt. Expanding the
Pointer function yields:

$rs[i] != NO_ABS ==>
... $rt[Mem[i,0]] != NO_ABS ...

Now we adopt another idea from region-based type systems: re-
gions only grow over time, and are then deallocated all at once;
deallocating a single object from a region is not allowed. In our
setting, this means that for any address j and region $r, $r[j]
may change monotonically from NO_ABS to some particular ab-
stract node, but thereafter $r[j] is fixed at that abstract node. The
function RExtend expresses this restriction; the memory manager
only changes $r to some new $r’ if RExtend($r,$r’) holds:

fun RExtend($r:[int]int,$r’:[int]int) {
(forall i::{$r[i]}{$r’[i]}

$r[i] != NO_ABS ==> $r[i] == $r’[i])
}

RExtend’s quantifier is not based on T; instead, it can trigger on
either $r[i] or $r’[i]. (Note that RExtend introduces no instan-
tiation loops, because it only mentions r and r’ at index i, and
does not mention T at all.) In combination with the second strategy
from section 4, this triggering allows Z3 to prove formulas of the
form (∀T i.P(r[e]))==>(∀T i.P(r’[e])), where e depends on
i. For example, given the guarantee that RExtend($rt,$rt’), the
object invariant ensures that if $rt[Mem[i,0]] != NO_ABS, then
$rt’[Mem[i,0]] != NO_ABS.

Given this region-based object invariant, a memory manager can
express all other invariants about node i as purely local invariants.
For example, our region-based mark-sweep collector relates i’s
color to i’s region state using purely local reasoning:

(White(Color[i]) ==>
$r1[i] != NO_ABS && $r2[i] == NO_ABS

&& ObjInv(i,$r1,$r1,$toAbs,$AbsMem,Mem))
&& (Gray(Color[i]) ==>

$r1[i] != NO_ABS && $r2[i] != NO_ABS
&& $r1[i] == $r2[i]
&& ObjInv(i,$r1,$r1,$toAbs,$AbsMem,Mem))

&& (Black(Color[i]) ==>
$r1[i] != NO_ABS && $r2[i] != NO_ABS

&& $r1[i] == $r2[i]
&& ObjInv(i,$r2,$r2,$toAbs,$AbsMem,Mem))

If i is black, then ObjInv(i,$r2,$r2,...) ensures that i’s fields
point to members of region $r2. Members of $r2 cannot be white,
since the invariant above forces white nodes to not be members of
$r2. Thus, the invariant indirectly expresses the standard tri-color
invariant (no black-to-white pointers), and the collector need not
state the tri-color invariant directly.

We briefly sketch the region lifetimes during a mark-sweep
garbage collection. The collector’s mark phase begins with $r1
equal to $toAbs and $r2 empty (i.e. $r2 maps all nodes to
NO_ABS). At the beginning of the mark phase, all allocated objects
are white, so the invariant above needs ObjInv(i,$r1,$r1,...),
and requires that no objects be members of $r2. As the mark
phase marks each reached node i gray, it adds i to $r2, so that
$r2[i] != NO_ABS. At the end of the mark phase, $r2 con-
tains exactly the reached objects, while $r1 and $toAbs are the
same as at the beginning of the mark phase. The sweep phase then
removes unreached objects from $toAbs until $toAbs == $r2;
Sweep leaves $r1 and $r2 unmodified. After sweeping, the mu-
tator takes an action analogous to “deallocating” region $r1: it
simply forgets about $r1, throwing out all invariants relating to
$r1 and keeping only the invariants for $r2. In the next collection
cycle, $r2 becomes the new $r1, and the process repeats.

6. Practical verified collectors
This section applies the previous section’s region-based verifica-
tion to realistic copying and mark-sweep collectors, replacing the
naive recursive algorithm of Figures 1-5 with more efficient itera-
tive algorithms in subsections 6.1 and 6.2, then replacing high-level
language constructs with assembly language in subsection 6.3, and
then replacing the miniature 2-field, 1-root memory model with a
Bartok-compatible memory model in subsection 6.4. If sections 1-
5 were the inspiration, this section is the perspiration; the code for
the realistic collectors is far longer than Figures 1-5, but not funda-
mentally much more interesting. We present only short description
and selected highlights of invariants; the reader can find the full
code and complete invariants in the public release.

6.1 A copying collector
The copying collector is a standard two-space Cheney-queue col-
lector [7]. The heap consists of two equally sized spaces. At any
given time, one of the spaces is called from-space and the other
is called to-space. The mutator allocates objects in from-space un-
til from-space fills up. Then the collector traverses all from-space
objects reachable from the root pointer, and copies these objects
into to-space. (All objects left in from-space are garbage, and are
simply ignored by the mutator and collector.) From-space becomes
to-space, to-space becomes from-space, and control returns to the
mutator.

For each object copied to to-space, the collector sets a forward-
ing pointer that points from the old from-space object to the new
to-space copy. This provides a means to find the copied version of
each object in to-space and ensures that the collector doesn’t copy
the same object twice.

When the collector copies an object to to-space, the fields of
the copied object initially point back to from-space. The collector
later fixes up the pointers to point to to-space, by either copying
the referent into to-space, or using the forwarding pointer of an
already-copied object. The set of objects not yet fixed form a
contiguous work area in to-space. The collection algorithm (shown
in Figure 6) treats this work area as a queue, adding newly copied
objects to the back of the queue, and fixing objects from the front
of the queue. When the queue is empty, all objects are fixed, and
the collection is done.

The real collector stores the forwarding pointer in the header
field of a from-space object after the from-space object is copied,

while (QFront < QBack)
for each pointer field f of object QFront

target := Mem[QFront,f];
if(FwdPtr[target] != null)

// target object already copied
Mem[QFront,f] := FwdPtr[target];

else
// copy target object to QBack
Mem[QBack,0] := Mem[target,0];
Mem[QBack,1] := Mem[target,1];
$toAbs[QBack] := $r1[target];
$r2[QBack] := $r1[target];
$toAbs[target] := NO_ABS;
FwdPtr[target] := QBack;
Mem[QFront,f] := QBack;
QBack++;

QFront++;

Figure 6. Copying collector pseudo-code (including ghost variable up-
dates)

overwriting the vtable (virtual method table) pointer in the header.
(The collector can distinguish a vtable pointer from a forwarding
pointer, because vtables do not live in to-space.)

The copying collector shares the same region-based ObjInv
from section 5. Other invariants differ from the mark-sweep col-
lector, though. For example, the copying collector has no colors, so
there is no invariant to relate colors to regions. There are invariants
that relate the forwarding pointer to regions, though. For example,
each object i in from-space satisfies this invariant, which ensures
that only unforwarded objects are present in $toAbs, and that any
forwarding pointer points to a resident of $r2:

(FwdPtr[i]!=null <==> $toAbs[i]==NO_ABS)
&& (FwdPtr[i]!=null ==> Pointer($r2,FwdPtr[i],$r1[i]))

The region $r2 is empty at the start of the collection. The collector
adds each object that it creates in to-space to $r2, while leaving $r1
unchanged. The collector also updates $toAbs to point to to-space
objects rather than from-space objects; at the end, the collector
assigns $r2 to $toAbs, and throws out all invariants related to $r1.

During the collection, each fixed object in to-space points from
region $r2 to region $r2:

ObjInv(i,$r2,$r2,$toAbs,$AbsMem,Mem)

Each object still in the to-space queue points from region $r2 back
to region $r1:

ObjInv(i,$r2,$r1,$toAbs,$AbsMem,Mem)

6.2 A mark-sweep collector
Our verified mark-sweep collector uses the standard 3-color invari-
ant. In the beginning of the collection all objects are white and the
goal is to mark black all objects reachable from the roots. After
this marking process, the sweep process can go over the objects
to reclaim all white objects and to mark all black objects white in
preparation for the next collection. In the beginning of the collec-
tion all objects directly reachable from the roots are put into a list
denoted the mark-stack. All objects in this list are colored gray,
meaning that they have been reached, but their descendants have
not yet been traversed. After the roots have been scanned, the col-
lector proceeds by iteratively choosing a gray object O from the
mark-stack, inserting O’s direct descendants into the mark-stack
and marking O black. The black color signifies that the object is
reachable and all its direct descendants have been noticed (i.e., put
in the mark-stack). The unallocated color labels free space.

Keeping the object color requires two bits per object. The colors
can be kept in the object header or in a separate table. Following
previous work (e.g., [11, 1, 16]) we have chosen the latter. Bartok
assumes that objects are 4-byte aligned. Therefore, it is enough to
keep two color bits per 4 bytes (creating a space overhead of 6%).

The algorithm follows a very simple collection scheme. One
could choose a simpler scheme for verification, for example, by
giving up the mark-stack and searching the heap for gray objects,
or employing recursion. One could also complicate the scheme
and make it more efficient, for example, by using bit-wise sweep.
However, we attempted to find the middle way between simplicity
and efficiency, in order to enable verification while maintaining the
practicability of the collector.

6.2.1 The allocator
A major performance consideration is the allocator. Therefore,
we paid special attention to making the allocator efficient, cache-
friendly, scalable, and simple. We chose the local allocation cache
method that was first invented and used with the IBM JVM alloca-
tor [5] and later employed and explained in [2, 16]. This method
provides efficiency by allowing bump-pointer allocation with a
mark-sweep collection. The mutator holds a local cache in which
it allocates small objects by simply bumping a pointer. When the
space in the cache is exhausted, the mutator acquires a new local
cache from the first chunk in the free list. If that chunk is too large
(larger than some threshold maxCacheSize), then only maxCache-
Size bytes of the first chunk are taken for the local cache, and the
rest is left for future cache allocations. Allocation of large objects
use the free list directly; however, since most allocated objects in
typical programs are small, most allocation work is efficient. Fur-
thermore, these allocations are cache-friendly since the spatial or-
der of allocated objects in the memory matches the temporal order
in which the program allocates them.

Since the mutator only acquires objects or spaces of substantial
size from the free list, there is no need to keep small chunks in it.
Thus, sweep only fills the free-list with large enough spaces; in our
implementation the minimum cache size was set to 256 bytes and
objects of size 192 or up are considered large (and are thus directly
allocated from the free list).

The mark-sweep collector invariants follow the region-based
approach of section 5, sharing the definition of Pointer and
ObjInv with the copying collector. Unlike earlier sections, though,
this mark-sweep collector has a free list with non-trivial structure.
We use two ghost variables, $fs and $fn to represent the size of
each free list entry and the next-list-entry pointer in each free list
entry. Any address i where $fs[i] != 0 holds a free list entry.
Each free list entry must be at least 8 bytes: 4 bytes to store the
next pointer, and 4 bytes to store the size. The central invariant en-
sures, among other things, that the space occupied by each free list
entry does not overlap with any object or any other free list entry:

$fs[i] != 0 ==>
$toAbs[i] == NO_ABS

&& i + 8 <= i + $fs[i] && i + $fs[i] <= memHi
&& (∀T j. i < j && j < i + $fs[i] ==>

$toAbs[j] == NO_ABS && $fs[j] == 0)
&& ...

6.3 From BoogiePL to x86
So far, this paper has expressed all memory management code in
BoogiePL or in pseudocode, neither of which were designed to
execute on real computers. We decided to write our real copying
and mark-sweep collectors (and allocators) in x86 assembly lan-
guage, for two reasons. First, we didn’t want a high-level language
compiler in our trusted computing base. Second, the mutator-to-

allocator interface requires some assembly language to read the
stack pointer, so that the collectors can scan the roots on the stack.
We still wanted to use Boogie to verify our code, so this left us
with a choice: translate annotated x86 into BoogiePL, or translate
BoogiePL into x86. The former approach is the most common way
to use BoogiePL, but we chose the latter approach, for the follow-
ing reason. Since the garbage collectors are written in BoogiePL,
the Boogie and Z3 tools guarantee that we really have verified the
collectors, at least in BoogiePL form, even if our BoogiePL-to-x86
translation subsequently turns the verified BoogiePL into erroneous
x86 code. (If we had translated x86 to BoogiePL, we would have
had to ask the reader to trust that our translator didn’t just produce
a trivially verifiable BoogiePL program.)

We wrote a small tool to automatically translate an x86-like
subset of BoogiePL into MASM-compatible x86 code, which we
then assemble and link with Bartok-compiled benchmarks. The
x86-like subset of BoogiePL consists of top-level variable declara-
tions, non-recursive pure function declarations, and non-recursive
procedure declarations. Each procedure is either a macro that gets
inline-expanded, or a run-time procedure called with the x86 CALL
instruction. The tool enforces matching CALL and RETURN in-
structions; the BoogiePL code may read the stack pointer at any
time, but may not write it. Each procedure consists of local variable
declarations followed by a sequence of statements. Since there’s no
recursion, local variables are statically allocated, as in early FOR-
TRAN. Global and local variables may be ghost variables, of any
type, or physical variables, of type int. The predefined global vari-
ables eax, ebx, ecx, edx, esi, edi, ebp, and esp, all of type int,
represent the x86 registers. We maintain the invariant that all reg-
isters, physical variables, and words in memory hold an integer in
the range 0..232 − 1 at all time.

Each statement in a procedure is a label (used as a jump or
branch target), an assignment to a ghost variable (ignored by the
translation), an assignment to a register or physical variable, a
procedure call, or a control statement. Control statements are either
unconditional jumps (“goto label;”) or conditional branches:

if(operand1 cmp operand2) { goto label; }

where operand1 and operand2 are registers, physical variables,
or integer constants, and cmp is a comparison operator. Most state-
ments are translated into single x86 instructions, but conditional
branches translate into 2 x86 instructions (a compare and a branch).
A procedure call either translates into an inline expansion of the
called procedure, or a single x86 CALL instruction.

Each assignment statement is either a simple move operation
“operand1 := operand2;”, an arithmetic operation, or a mem-
ory operation. Arithmetic operations can either statically check for
32-bit integer overflow, or check at run-time. For example, the
statement “call eax := Sub(eax, 5);” statically verifies that
eax - 5 does not overflow, because of the (tool-supplied) specifi-
cation of Sub (where word(e) means that 0≤e< 232):

procedure Sub(x:int, y:int) returns(ret:int);
requires word(x - y);
ensures ret == x - y;

The program is not allowed to modify predefined global variables,
like Mem, directly. To read or write memory, the program must call
tool-supplied Load and Store procedures, which the tool trans-
lates into x86 MOV instructions. The preconditions for Load and
Store guarantee that the verified code does not read or write out-
side its allowed memory area, and that all reads and writes are to
4-byte aligned addresses. In contrast to the two-dimensional mem-
ory Mem[objAddress,field] presented earlier, Load and Store
work with a one-dimensional memory Mem[byteAddress].

6.4 The Bartok memory model
Our verified garbage collectors form a critical piece of our long-
term goal: an entire verified run-time system for Bartok-compiled
code. Because the existing Bartok run-time system contains over
70,000 lines of code, we decided to take an incremental approach
towards creating a verified run-time system, starting with as small
a run-time system as possible, so as to make the verification as
easy as possible. We still wanted to be able to run real Bartok-
compiled benchmarks, though, and these benchmarks rely on many
non-trivial run-time system features. So before attempting to verify
any run-time system code, we examined the 12 large benchmarks
used in previous papers [6, 24] to see which features could be
evicted from the run-time system. We found that we could remove
two major features, while still supporting 10 of the 12 benchmarks:

• Only one benchmark (SpecJBB) was multithreaded, so we
omitted support for multithreading from our run-time system.

• Only one of the remaining benchmarks (mandelform) relied on
GC support for unsafe code, such as pinning objects (to cast
GC-managed pointers to unmanaged pointers for unsafe code)
and handling callbacks from unsafe code to safe code. Our
verified GC simply halts any program that tries to use these
features.

This still left a moderately large set of features to support:

• Objects have a header word, pointing to a virtual method table
(vtable). Before the header word, there is a “pre-header” that
holds a hash code or other primitive value.

• Non-indexed object types can have any number of fields. In-
dexed object types can be strings, single-dimensional arrays,
or multi-dimensional arrays, each having a different memory
layout. Array element types can be pointers, primitive values,
structs without pointers, or structs with pointers. We imple-
mented only partial support for arrays of structs with pointers,
since the 10 benchmarks did not rely on full support.

• Pointers point to an object’s header word, with one exception:
root pointers may be interior pointers that point to data inside
an object, ranging from the header word up to, and including,
the address of the end of the object.

• An object’s virtual method table has fields that the collector
can read to compute the length of an object and to determine
which fields of an object are pointers. Bartok’s pointer-tracking
representation consists of 2 compact bit-level formats for non-
indexed objects, 1 non-compact format for non-indexed objects,
1 format for strings, 2 formats for single-dimensional arrays,
and 2 formats for multi-dimensional arrays. Our collectors sup-
port all of these (except for some arrays of structs with point-
ers).

• Roots may live on the stack or in static data segments. Each sta-
tic data segment has a bitmap, with one bit per static data word,
indicating pointers and non-pointers in the segment. Finding
pointers on the stack is more complicated; the collector has to
traverse frame pointers to find the stack frames, and it has to
look up return addresses in a sorted table of return addresses
to find a descriptor for each frame. To simplify finding point-
ers, we set a compiler flag telling Bartok to treat all registers as
caller-save registers, with no callee-save registers.

Space constraints preclude a complete, detailed description of the
specification and collector implementation of the features above.
We provide just one example. One of the compact pointer-tracking
formats is a dense format, using one bit per field. The specification
for this says that if the tag of an object for abstract node $abs, with

vtable vt, is DENSE_TAG, then each field is a pointer if and only if
the corresponding bit in the vtable’s mask field is 1:

tag(vt)==DENSE_TAG ==> (∀T j.2<=j<numFields($abs)==>
VFieldPtr($abs,j)==(j<30 && getBit(mask(vt),2+j)))

where mask looks up a 32-bit value from the vtable (in readonly
memory), and tag and getBit extract bits from words:

fun mask(vt:int) { ro32(vt + ?VT_MASK) }
fun tag(vt:int) { and(mask(vt), 15) }
fun getBit(x:int,i:int) { 1 == and(shr(x, i), 1) }

The mutator-allocator interface specification uses the uninterpreted
function VFieldPtr to state which physical values are primitive
values, and which are pointer values. The Value function states the
meaning of values in each of these two cases:

fun Value(isPtr,$r,v,$abs) {
(isPtr && word(v) && gcAddrEx(v) && !word($abs)

&& Pointer($r, v - 4, $abs))
|| (isPtr && word(v) && !gcAddrEx(v) && $abs == v)
|| (!isPtr && word(v) && $abs == v)
}

For primitive data, the data’s abstract value equals its concrete
value. Pointer data may point to GC memory, under the collector’s
control, or they may point outside GC memory, in which case the
collector treats them the same as primitive values. The “- 4” in
the Pointer specification converts a pointer to a header word into a
pointer to the beginning of the object (the pre-header).

Interior pointers are defined like the ordinary pointers shown
above, but may have offsets larger than 4, which forces the col-
lector to search for the beginning of the object. The mark-sweep
collector already has a table of colors, so it simply searches back-
wards from the interior pointer to find the first word whose color
isn’t unallocated. We also had to add an analogous bit map to
the copying collector, with one bit per heap word, solely for the
purpose of handling interior pointers. (On the bright side, these bit
maps did give us a chance to exercise Z3’s bit vector support.)

Before we added support for Bartok’s memory model, the
trusted mutator-allocator specification was fairly short and read-
able. After adding Bartok’s memory model, the specification bal-
looned to hundreds of lines of bit-level details. At this point, we
started to wonder if the specification itself had bugs. We used
two techniques to test the specification. First, we used Boogie’s
“smoke” feature, which attempts to prove false at various points
in the program. This did not turn up any bugs. Second, we hand-
translated the specification into C# code, and then added run-time
assertions to the original Bartok garbage collectors based on this
C# code. We saw many assertion violations, which led us to 5 spec-
ification bugs, ranging from mundane (forgetting to multiply by 4
to convert a word address to a byte address) to subtle (forgetting
that Bartok compresses the sorted return address tables by omitting
any entry whose descriptor is identical to the previous entry).

7. Performance
This section presents performance results, measured on a single
core of a 4-core, 2.4GHz Intel Core2 with 4GB of RAM, 4MB of
L2 cache, and a 64KB L1 cache.

Verifying the copying collector, mark-sweep collector, and the
code shared between the collectors took 115 seconds, 70 seconds,
and 12 seconds, respectively (see Table 1). This fast verification
reflects our choice of a simple trigger T(i). The copying col-
lector and mark-sweep collector contained 802 x86 instructions
(before inlining) and 865 x86 instructions (before inlining), plus
177 x86 instructions (before inlining) shared between the collec-

3.4

3.6

3.8

4

4.2

4.4

0 200 400 600 800 1000

VC VMS GEN MS

Figure 7. Othello Performance Comparison: overall running time (in
seconds) versus heap size(in KB).

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000

VC

VMS

GEN

MS

Figure 8. Ahc Performance Comparison: overall running time (in sec-
onds) versus heap size(in KB).

0

20

40

60

80

0 1000 2000 3000 4000 5000

VC

VMS

GEN

MS

Figure 9. Go Performance Comparison: overall running time (in sec-
onds) versus heap size(in KB).

20

30

40

50

60

0 2000 4000 6000 8000 10000 12000

VC VMS GEN MS

Figure 10. Xlisp Performance Comparison: overall running time (in
seconds) versus heap size(in KB).

3

3.5

4

4.5

0 5000 10000 15000 20000

VC

VMS

GEN

MS

Figure 11. Crafty Performance Comparison: overall running time (in
seconds) versus heap size(in KB).

1

2

3

4

5

6

7

2000 7000 12000 17000 22000 27000 32000

VC

VMS

GEN

MS

Figure 12. Zinger Performance Comparison: overall running time (in
seconds) versus heap size(in KB).

3

5

7

9

11

0 20000 40000 60000 80000 100000

VC VMS GEN MS

Figure 13. Sat Performance Comparison: overall running time (in sec-
onds) versus heap size(in KB).

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50000 100000 150000 200000

VC VMS GEN MS

Figure 14. Asmlc Performance Comparison: overall running time (in
seconds) versus heap size(in KB).

3

3.5

4

4.5

5

5.5

6

300000 800000 1300000 1800000

VC VMS GEN MS

Figure 15. Lcsc Performance Comparison: overall running time (in
seconds) versus heap size(in KB).

50

100

150

200

250

300000 800000 1300000 1800000

VC VMS GEN MS

Figure 16. Bartok Performance Comparison: overall running time (in
seconds) versus heap size(in KB).

BoogiePL code x86 Time to
(non-comment, instructions verify
non-blank lines) (before inlining) (seconds)

Trusted defs 546
Shared code 779 177 12
Copying 2398 802 115
Mark-sweep 3038 865 70

Table 1. Verification times for practical collectors

tors. The BoogiePL files for the copying and mark-sweep collec-
tors contained 2398 non-comment, non-blank lines and 3038 non-
comment, non-blank lines, plus 779 non-comment, non-blank lines
of BoogiePL code shared between the collectors. The trusted defi-
nitions, including x86 instruction specifications and the Bartok in-
terface specification, occupied 546 non-blank, non-comment lines.

Figures 7-16 show the performance of the 10 benchmarks de-
scribed in section 6 as a function of heap size, both for our verified
memory managers and for Bartok’s native run-time system. We de-
note the verified copying collector by VC, the verified mark-sweep
collector by VMS, the generational copying Bartok collector by
GEN, and the Bartok standard mark-sweep collector by MS. These
results demonstrate that (a) our collectors work on real benchmarks,
and (b) the space and time consumption is in the same ballpark as
Bartok’s native run-time system. We emphasize the “ballpark” na-
ture of the comparison between the verified collectors and the na-
tive Bartok collectors, because this comparison is highly unfair to
the native collectors, which support more features than the verified
collectors. In particular, Bartok’s native run-time system supports
multithreading, which adds synchronization overhead to the muta-
tor and memory manager.

Bartok’s native collectors were not designed to be used with
a fixed heap size; they expect to grow the heap as needed. To
get a time vs. space plot for the Bartok collectors, we varied the
triggering mechanism used for heap growth, and then measured the
actual heap space used. For the generational collector, we set the
nursery size to 4MB or 1/4 of the maximum heap size, whichever
was smaller.

Several benchmarks created fragmentation that made it difficult
for the verified mark-sweep collector to find space for very large
objects. The standard Bartok mark-sweep collector simply grows
the heap when the current heap lacks space for a very large ob-
ject; we configured the verified mark-sweep collector to set aside
part of the heap as a wilderness area, used as a last resort for very
large object allocation. While this wilderness area enabled these
benchmarks to keep running under heavy fragmentation, the per-
formance still suffered. For other benchmarks, though, the verified
mark-sweep collector performed well across a large spectrum of
heap sizes. The verified copying collector, as expected, required a
larger minimum heap size, but performed asymptotically well as
the heap size increased.

8. Conclusion
We have presented two simple collectors with the minimal set of
properties required to make them reasonably efficient in a prac-
tical setting. We have mechanically verified that these collectors
maintain a heap representation that is faithful to a mutator-defined
abstract heap, and have run the collector on large, off-the-shelf C#
benchmarks.

Given the large size of the mutator-allocator specification, we
were very curious to see whether our collectors would run cor-
rectly the first time. Alas, running the verified copying collec-
tor revealed two specification bugs that we hadn’t caught before:
Initialize’s postcondition forgot to ensure that the ebp register

was saved, and the allocation postcondition specified a return value
that was off by 4 bytes (a header/pre-header confusion). Thus, the
copying collector ran correctly the third time we tried it, which
is still no small achievement for a garbage collector hand-coded
in assembly language. Furthermore, we were then able to verify
the mark-sweep collector against the debugged specification, so
that the mark-sweep collector ran correctly the first time we tried
it. In addition, having a clear and well-tested specification is use-
ful for TAL/PCC verifiers: based on the specification, we found
a bug in our TAL verifier [6], which didn’t check that the sparse
pointer tracking formats mention no field more than once; this bug
can allow TAL code to crash when linked to Bartok’s native slid-
ing/compacting collector.

The fast verification times give us hope that there is still room
to grow to support more features and better GC algorithms. In par-
ticular, multithreading and pinning are essential for many appli-
cations and libraries. Pinning should be easy for the mark-sweep
collector, but would complicate the copying collector: pinned ob-
jects fragment the heap, forcing the allocator to allocate from a
non-contiguous free space. Multithreading would require reasoning
about mutual exclusion (e.g. to keep allocators in different threads
from allocating the same memory simultaneously), reasoning about
suspending mutator threads during collection, and support for a
more elaborate object pre-header word (for monitor operations on
objects). As the collectors grow, modularity becomes more impor-
tant, so we’re interested to see if the Boogie/Z3 approach can be
combined with modular verification approaches based on separa-
tion logic and/or higher-order logic; hopefully, the automation pro-
vided by Boogie/Z3 will allow verification at a scale where modu-
larity becomes essential.

Acknowledgments
The authors would like to thank Nikolaj Bjørner, Shaz Qadeer,
Shuvendu Lahiri, Bjarne Steensgaard, Jeremy Condit, Juan Chen,
Zhaozhong Ni, and the anonymous reviewers for many helpful
discussions, suggestions, and comments.

References
[1] Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An on-

the-fly mark and sweep garbage collector based on sliding view.
In OOPSLA’03 ACM Conference on Object-Oriented Systems,
Languages and Applications, ACM SIGPLAN Notices, Anaheim,
CA, November 2003. ACM Press.

[2] Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner,
Victor Leikehman, Yoav Ossia, Avi Owshanko, and Erez Petrank.
A parallel, incremental, mostly concurrent garbage collector for
servers. ACM Transactions on Programming Languages and Systems,
27(6):1097–1146, November 2005.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A Modular Reusable Verifier for
Object-Oriented Programs. In Formal Methods for Components and
Objects: 4th International Symposium, FMCO 2005.

[4] Lars Birkedal, Noah Torpe-Smith, and John C. Reynolds. Local
reasoning about a copying garbage collector. In POPL, pages 220–
231, Venice, January 2004. ACM Press.

[5] Sam Borman. Sensible sanitation — understanding the IBM Java
garbage collector, part 1: Object allocation. IBM developerWorks,
August 2002.

[6] Juan Chen, Chris Hawblitzel, Frances Perry, Mike Emmi, Jeremy
Condit, Derrick Coetzee, and Polyvios Pratikakis. Type-preserving
compilation for large-scale optimizing object-oriented compilers. In
PLDI, pages 183–192, Tucson, AZ, June 2008.

[7] C. J. Cheney. A non-recursive list compacting algorithm. Communi-
cations of the ACM, 13(11):677–8, November 1970.

[8] Leonardo de Moura and Nikolaj Bjorner. Z3: An Efficient SMT
Solver. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2008.

[9] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens. On-the-fly garbage collection: An exercise in
cooperation. In Lecture Notes in Computer Science, No. 46. Springer-
Verlag, New York, 1976.

[10] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In POPL, Portland, OR,
January 1994. ACM Press.

[11] Tamar Domani, Elliot Kolodner, and Erez Petrank. A generational
on-the-fly garbage collector for Java. In PLDI, Vancouver, June 2000.
ACM Press.

[12] Healfdene Goguen, Richard Brooksby, and Rod Burstall. An abstract
formulation of memory management, December 1998. draft.

[13] Georges Gonthier. Verifying the safety of a practical concurrent
garbage collector. In R. Alur and T. Henzinger, editors, Computer
Aided Verification CAV’96, Lecture Notes in Computer Science, New
Brunswick, NJ, 1996. Springer-Verlag.

[14] Klaus Havelund and N. Shankar. A mechanized refinement proof
for a garbage collector. Technical report, Aalborg University, 1997.
Submitted to Formal Aspects of Computing.

[15] Paul B. Jackson. Verifying a garbage collection algorithm. In
Proceedings of 11th International Conference on Theorem Proving
in Higher Order Logics TPHOLs’98, volume 1479 of Lecture Notes
in Computer Science, pages 225–244, Canberra, September 1998.
Springer-Verlag.

[16] Haim Kermany and Erez Petrank. The Compressor: Concurrent,
incremental and parallel compaction. In PLDI, pages 354–363,
Ottawa, June 2006. ACM Press.

[17] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting
garbage collector for Java. In PLDI, 28(1), January 2006.

[18] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine. Communications of the ACM, 3:184–
195, 1960.

[19] Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li.
A general framework for certifying garbage collectors and their
mutators. In PLDI, San Diego, CA, June 2007.

[20] Marvin L. Minsky. A Lisp garbage collector algorithm using serial
secondary storage. Technical Report Memo 58 (rev.), Project MAC,
MIT, Cambridge, MA, December 1963.

[21] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging.
In PLDI, Snowbird, Utah, June 2001.

[22] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
System F to typed assembly language. In POPL, pages 85–97,
January 1998.

[23] George Necula. Proof-Carrying Code. In POPL, pages 106–119.
ACM Press, 1997.

[24] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of
concurrent real-time garbage collectors. In PLDI, pages 33–44,
Tucson, AZ, June 2008.

[25] David M. Russinoff. A mechanically verified incremental garbage
collector. Formal Aspects of Computing, 6:359–390, 1994.

[26] Martin Vechev, Eran Yahav, David Bacon, and Noam Rinetzky.
CGCExplorer: A semi-automated search procedure for provably
correct concurrent collectors. In PLDI, San Diego, CA, June 2007.

[27] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage
collectors. In POPL, January 2001.

