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Abstract. Automatic program verification and symbolic model check-
ing tools interface with theorem proving technologies that check satisfi-
ability of formulas. A theme pursued in the past years by the authors of
this paper has been to encode symbolic model problems directly as Horn
clauses and develop dedicated solvers for Horn clauses. Our solvers are
called Duality, HSF, SeaHorn, and µZ and we have devoted considerable
attention in recent papers to algorithms for solving Horn clauses. This
paper complements these strides as we summarize main useful properties
of Horn clauses, illustrate encodings of procedural program verification
into Horn clauses and then highlight a number of useful simplification
strategies at the level of Horn clauses. Solving Horn clauses amounts to
establishing Existential positive Fixed-point Logic formulas, a perspec-
tive that was promoted by Blass and Gurevich.

1 Introduction

We make the overall claim that Constrained Horn Clauses provide a suitable ba-
sis for automatic program verification, that is, symbolic model checking. To sub-
stantiate this claim, this paper provides a self-contained, but narrowly selected,
account for the use of Horn clauses in symbolic model checking. It is based
on experiences the authors had while building tools for solving Horn clauses.
At the practical level, we have been advocating the use of uniform formats,
such as the SMT-LIB [6] standard as a format for representing and exchanging
symbolic model checking problems as Horn clauses. The authors and many of
our colleagues have developed several tools over the past years that solve Horn
clauses in this format. We illustrate three approaches, taken from Duality, Sea-
Horn and HSF, for translating procedural programs into Horn clauses. At the
conceptual level, Horn clause solving provides a uniform setting where we can
discuss algorithms for symbolic model checking. This uniform setting allows us
to consider integration of separate algorithms that operate as transformations
of Horn clauses. We illustrate three transformations based on recent symbolic
model checking literature and analyze them with respect to how they simplify
the task of fully solving clauses. As a common feature, we show how solutions
to the simplified clauses can be translated back to original clauses by means of
Craig interpolation [22].

1.1 Program Logics and Horn Clauses

Blass and Gurevich [15] made the case that Existential positive Least Fixed-point
Logic (E+LFP) provides a logical match for Hoare logic: Partial correctness of



simple procedural imperative programs correspond to satisfiability in E+LFP.
We can take this result as a starting point for our focus on Horn clauses. As we
show in Section 2.1, the negation of an E+LFP formula can be written as set of
Horn clauses, such that the negation of an E+LFP formula is false if and only
if the corresponding Horn clauses are satisfiable.

The connections between Constrained Horn Clauses and program logics orig-
inates with Floyd-Hoare logic [53, 29, 37]. Cook’s [21] result on relative complete-
ness with respect to Peano arithmetic established that Hoare’s axioms were com-
plete for safety properties relative to arithmetic. Clarke [20] established bound-
aries for relative completeness. Cook’s result was refined by Blass and Gurevich.

In the world of constraint logic programming, CLP, expressing programs as
Horn clauses and reasoning about Horn clauses has been pursued for several
years, spearheaded by Joxan Jaffar and collaborators [41]. The uses of CLP for
program analysis is extensive and we can only mention a few other uses of CLP
for program analysis throughout the paper. Note that the more typical objective
in constraint logic programming [2, 42] is to use logic as a declarative program-
ming language. It relies on an execution engine that finds a set of answers, that
is a set of substitutions that are solutions to a query. In an top-down evaluation
engine, each such substitution is extracted from a refutation proof.

In the world of deductive databases [19], bottom-up evaluation of Datalog
programs has, in addition to top-down, been explored extensively. Bottom-up
evaluation infers consequences from facts and project the consequences that
intersect with a query. Each such intersection corresponds to a refutation proof
of a statement of the form “query is unreachable”. Note that if the intersection
is empty, then the smallest set of consequences closed under a Datalog program
is a least model of the program and negated query.

Rybalchenko demonstrated how standard proof rules from program verifica-
tion readily correspond to Horn clauses [32], and we have since been promoting
constrained Horn clauses as a basis for program analysis [12].

1.2 Paper Outline

Figure 1 summarizes a use of Horn clauses in a verification workflow. Sections 3
and 4 detail translation of programs into clauses and simplifying transformations
on clauses, respectively. Section 2 treat Horn clause basics. It is beyond the scope
of this paper to go into depth of any of the contemporary methods for solving
clauses, although this is central to the overall picture.

Program +
Specification
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Fig. 1. Horn Clause verification flow



In more detail, in Section 2, we recall the main styles of Horn clauses used
in recent literature and tools. We also outline contemporary methods for solving
clauses that use strategies based on combinations of top-down and bottom-up
search. As the main objective of solving Horn clauses is to show satisfiability,
in contrast to showing that there is a derivation of the empty clause, we intro-
duce a notion of models definable modulo an assertion language. We call these
symbolic models. Many (but not all) tools for Horn clauses search for symbolic
models that can be represented in a decidable assertion language. Note that sym-
bolic models are simply synonymous to loop invariants, and [16] demonstrated
that decidable assertion languages are insufficient for even a class of very simple
programs. Section 3 compares some of the main approaches use for converting
procedural programs into clauses. The approaches take different starting points
on how they encode procedure calls and program assertions and we discuss how
the resulting Horn clauses can be related. Section 4 summarizes three selected
approaches for transforming Horn clauses. Section 4.1 recounts a query-answer
transformation used by Gallagher and Kafle in recent work [30, 46]. In Section 4.2
we recall the well-known fold-unfold transformation and use this setting to recast
K-induction [64] in the form of a Horn clause transformation. Section 4.3 dis-
cusses a recently proposed optimization for simplifying symbolic model checking
problems [49]. We show how the simplification amounts to a rewriting strategy
of Horn clauses. We examine each of the above transformation techniques under
the lens of symbolic models, and address how they influence the existence and
complexity of such models. The treatment reveals a common trait: the transfor-
mations we examine preserve symbolic models if the assertion language admits
interpolation.

2 Horn Clause Basics

Let us first describe constrained Horn clauses and their variants. We take the
overall perspective that constrained Horn clauses correspond to a fragment of
first-order formulas modulo background theories.

We will assume that the constraints in constrained Horn Clauses are for-
mulated in an assertion language that we refer to as A. In the terminology of
CLP, an assertion language is a constraint theory. In the terminology of SMT,
an assertion language is a logic [6]. The terminology assertion language is bor-
rowed from [52]. Typically, we let A be quantifier-free (integer) linear arithmetic.
Other examples of A include quantifier-free bit-vector formulas and quantifier-
free formulas over a combination of arrays, bit-vectors and linear arithmetic.
Interpretations of formulas over A are defined by theories. For example, inte-
ger linear arithmetic can be defined by the signature 〈Z,+,≤〉, where Z is an
enumerable set of constants interpreted as the integers, + is a binary function
and ≤ is a binary predicate over integers interpreted as addition and the linear
ordering on integers.

Schematic examples of constrained Horn clauses are

∀x, y, z . q(y) ∧ r(z) ∧ ϕ(x, y, z)→ p(x, y)



and

∀x, y, z . q(y) ∧ r(z) ∧ ϕ(x, y, z)→ ψ(z, x)

where p, q, r are predicate symbols of various arities applied to variables x, y, z
and ϕ,ψ are formulas over an assertion language A. More formally,

Definition 1 (CHC: Constrained Horn Clauses). Constrained Horn clauses
are constructed as follows:

Π ::= chc ∧Π | >
chc ::= ∀var . chc | body → head

pred ::= upred | ϕ
head ::= pred

body ::= > | pred | body ∧ body | ∃var . body

upred ::= an uninterpreted predicate applied to terms

ϕ ::= a formula whose terms and predicates are interpreted over A
var ::= a variable

We use P,Q,R as uninterpreted atomic predicates and B,C as bodies. A
clause where the head is a formula ϕ is called a query or a goal clause. Con-
versely we use the terminology fact clause for a clause whose head is an unin-
terpreted predicate and body is a formula ϕ.

Note that constrained Horn clauses correspond to clauses that have at most one
positive occurrence of an uninterpreted predicate. We use Π for a conjunction
of constrained Horn clauses and chc to refer to a single constrained Horn clause.

Convention 1 In the spirit of logic programming, we write Horn clauses as
rules and keep quantification over variables implicit. Thus, we use the two rep-
resentations interchangeably:

∀x, y, z . q(y) ∧ r(z) ∧ ϕ(x, y, z)→ p(x) as p(x)← q(y), r(z), ϕ(x, y, z)

Example 1. Partial correctness for a property of the McCarthy 91 function can
be encoded using the clauses

mc(x, r)← x > 100, r = x− 10

mc(x, r)← x ≤ 100, y = x+ 11,mc(y, z),mc(z, r)

r = 91← mc(x, r), x ≤ 101

The first two clauses encode McCarthy 91 as a constraint logic program. The last
clause encodes the integrity constraint stipulating that whenever the McCarthy
91 function is passed an argument no greater than 101, then the result is 91.



Some formulas that are not directly Horn can be transformed into Horn
clauses using a satisfiability preserving Tseitin transformation. For example, we
can convert 1

p(x)← (q(y) ∨ r(z)), ϕ(x, y, z) (1)

into

s(y, z)← q(y) s(y, z)← r(z) p(x)← s(y, z), ϕ(x, y, z) (2)

by introducing an auxiliary predicate s(y, z).
A wider set of formulas that admit an equi-satisfiable transformation to con-

strained Horn clauses is given where the body can be brought into negation
normal form, NNF, and the head is a predicate or, recursively, a conjunction of
clauses. When we later in Section 3 translate programs into clauses, we will see
that NNF Horn clauses fit as a direct target language. So let us define the class
of NNF Horn clauses as follows:

Definition 2 (NNF Horn).

Π ::= chc ∧Π | >
chc ::= ∀var . chc | body → Π | head

head ::= pred

body ::= body ∨ body | body ∧ body | pred | ∃var . body

The previous example suggests there is an overhead associated with convert-
ing into constrained Horn clauses.

Proposition 1. NNF Horn clauses with n sub-formulas and m variables can be
converted into O(n) new Horn clauses each using O(m) variables.

Thus, the size of the new formulas is O(n·m) when converting NNF Horn clauses
into Horn clauses. The asymptotic overhead can be avoided by introducing a the-
ory of tupling with projection and instead pass a single variable to intermediary
formulas. For the formula (1), we would create the clauses:

s(u)← q(π1(u)) s(u)← r(π2(u)) p(x)← s(〈y, z〉), ϕ(x, y, z) (3)

where π1, π2 take the first and second projection from a tuple variable u, and
the notation 〈x, y〉 is used to create a tuple out of x and y.

Several assertion languages used in practice have canonical models. For ex-
ample, arithmetic without division has a unique standard model. On the other

1 Note that we don’t need the clause s(x, y) → q(y) ∨ r(z) to preserve satisfiability
because the sub-formula that s(x, y) summarizes is only used in negative scope.



hand, if we include division, then division by 0 is typically left under-specified
and there is not a unique model, but many models, for formulas such as x/0 > 0.

Recall the notion of convexity [55], here adapted to Horn clauses. We will
establish that Horn clauses and an extension called universal Horn clauses are
convex. We show that a further extension, called existential Horn clauses, is
not convex as an indication of the additional power offered by existential Horn
clauses. Let Π be a set of Horn clauses, then Π is convex if for every pair of
uninterpreted atomic predicates P , Q:

Π |= P ∨Q iff Π |= P or Π |= Q

Proposition 2. Suppose A has a canonical model I(A), then Horn clauses over
A, where each head is an uninterpreted predicate, are convex.

The proposition is an easy consequence of

Proposition 3. Constrained Horn clauses over assertion languages A that have
canonical models have unique least models.

This fact is a well known basis of Horn clauses [40, 67, 25]. It can be estab-
lished by closure of models under intersection, or as we do here, by induction on
derivations:

Proof. Let I(A) be the canonical model of A. The initial model I of Π is defined
inductively by taking I0 as ∅ and Ii+1 := {r(c) | (r(x) ← body(x)) ∈ Π, Ii |=
body(c), c is a constant in I(A)}. The initial model construction stabilizes at
the first limit ordinal ω with an interpretation Iω. This interpretation satisfies
each clause in Π because suppose (r(x) ← body(x)) ∈ Π and Iω |= body(c) for
c ∈ I(A). Then, since the body has a finite set of predicates, for some ordinal
α < ω it is the case that Iα |= body(c) as well, therefore r(c) is added to Iα+1.

To see that Proposition 2 is a consequence of least unique models, consider a
least unique model I of Horn clauses Π, then I implies either P or Q or both,
so every extension of I implies the same atomic predicate.

While constrained Horn clauses suffice directly for Hoare logic, we applied
two kinds of extensions for parametric program analysis and termination. We
used universal Horn clauses to encode templates for verifying properties of array-
based systems [14].

Definition 3 (UHC). Universal Horn clauses extend Horn clauses by admit-
ting universally quantifiers in bodies. Thus, the body of a universal Horn clause
is given by:

body ::= > | body ∧ body | pred | ∀var . body | ∃var . body

Proposition 4. Universal Horn clauses are convex.

Proof. The proof is similar as constrained Horn clauses, but the construction of
the initial model does not finish at ω, see for instance [15, 14]. Instead, we treat
universal quantifiers in bodies as infinitary conjunctions over elements in the



domain of I(A) and as we follow the argument from Proposition 3, we add r(c)
to the least ordinal greater than the ordinals used to establish the predicates in
the bodies.

Existential Horn clauses can be used for encoding reachability games [9].

Definition 4 (EHC). Existential Horn clauses extend Horn clauses by admit-
ting existential quantifications in the head:

head ::= ∃var . head | pred

Game formalizations involve handling fixed-point formulas that alternate
least and greatest fixed-points. This makes it quite difficult to express using for-
malisms, such as UHC, that are geared towards solving only least fixed-points.
So, as we can expect, the class of EHC formulas is rather general:

Proposition 5. EHC is expressively equivalent to general universally quantified
formulas over A.

Proof. We provide a proof by example. The clause ∀x, y . p(x, y)∨ q(x)∨¬r(y),
can be encoded as three EHC clauses

(∃z ∈ {0, 1} . s(x, y, z))← r(y) p(x, y)← s(x, y, 0) q(x)← s(x, y, 1)

We can also directly encode satisfiability of UHC using EHC by Skolemizing
universal quantifiers in the body. The resulting Skolem functions can be con-
verted into Skolem relations by creating relations with one additional argu-
ment for the return value of the function, and adding clauses that enforce that
the relations encode total functions. For example, p(x) ← ∀y . q(x, y) becomes
p(x)← sk(x, y), q(x, y), and (∃y . sk(x, y))← q(x, y). Note that (by using stan-
dard polarity reasoning, similar to our Tseitin transformation of NNF clauses)
clauses that enforce sk to be functional, e.g., y = y′ ← sk(x, y), sk(x, y′) are
redundant because sk is introduced for a negative sub-formula.

As an easy corollary of Proposition 5 we get

Corollary 1. Existential Horn clauses are not convex.

2.1 Existential Fixed-point Logic and Horn Clauses

Blass and Gurevich [15] identified Existential Positive Fixed-point Logic (E+LFP)
as a match for Hoare Logic. They established a set of fundamental model the-
oretic and complexity theoretic results for E+LFP. Let us here briefly recall
E+LFP and the main connection to Horn clauses. For our purposes we will as-
sume that least fixed-point formulas are flat, that is, they use the fixed-point
operator at the top-level without any nesting. It is not difficult to convert for-
mulas with arbitrary nestings into flat formulas, or even convert formulas with
multiple simultaneous definitions into a single recursive definition for that mat-
ter. Thus, using the notation from [15], a flat E+LFP formula Θ is of the form:



Θ : LET
∧
i

pi(x)← δi(x) THEN ϕ

where pi, δi range over mutually defined predicates and neither δi nor ϕ contain
any LET constructs. Furthermore, each occurrence of pi in δj , respectively ϕ is
positive, and δj and ϕ only contain existential quantifiers under an even number
of negations. Since every occurrence of the uninterpreted predicate symbols is
positive we can convert the negation of a flat E+LFP formula to NNF-Horn
clauses as follows:

Θ′ :
∧
i

∀x(δi(x)→ pi(x)) ∧ (ϕ→ ⊥)

Theorem 1. Let Θ be a flat closed E+LFP formula. Then Θ is equivalent to
false if and only if the associated Horn clauses Θ′ are satisfiable.

Proof. We rely on the equivalence:

¬(LET
∧
i

pi(x)← δi(x) THEN ϕ) ≡ ∃p . (
∧
i

∀x . δi(x)→ pi(x)) ∧ ¬ϕ[p]

where p is a vector of the predicate symbols pi. Since all occurrences of pi are
negative, when some solution for p satisfies the fixed-point equations, and also
satisfies ¬ϕ[p], then the least solution to the fixed-point equations also satisfies
¬ϕ[p].

Another way of establishing the correspondence is to invoke Theorem 5
from [15], which translates E+LFP formulas into ∀11 formulas. The negation
is an ∃11 Horn formula.

Remark 1. The logic U+LFP, defined in [15], is similar to our UHC. The differ-
ences are mainly syntactic in that UHC allows alternating universal and exis-
tential quantifiers, but U+LFP does not.

2.2 Derivations and Interpretations

Horn clauses naturally encode the set of reachable states of sequential programs,
so satisfiable Horn clauses are program properties that hold. In contrast, unsat-
isfiable Horn clauses correspond to violated program properties. As one would
expect, it only requires a finite trace to show that a program property does not
hold. The finite trace is justified by a sequence of resolution steps, and in par-
ticular for Horn clauses, it is sufficient to search for SLD [2] style proofs. We call
these top-down derivations.

Definition 5 (Top-down derivations). A top-down derivation starts with a
goal clause of the form ϕ ← B. It selects a predicate p(x) ∈ B and resolves it
with a clause p(x) ← B′ ∈ Π, producing the clause ϕ ← B \ p(x), B′, modulo
renaming of variables in B and B′. The derivation concludes when there are no
predicates in the goal, and the clause is false modulo A.



That is, top-down inferences maintain a goal clause with only negative predicates
and resolve a negative predicate in the goal with a clause in Π. Top-down meth-
ods based on infinite descent or cyclic induction close sub-goals when they are
implied by parent sub-goals. Top-down methods can also use interpolants or in-
ductive generalization, in the style of the IC3 algorithm [17], to close sub-goals.
In contrast to top-down derivations, bottom-up derivations start with clauses
that have no predicates in the bodies:

Definition 6 (Bottom-up derivations). A bottom-up derivation maintains
a set of fact clauses of the form p(x) ← ϕ. It then applies hyper-resolution on
clauses (head ← B) ∈ Π, resolving away all predicates in B using fact clauses.
The clauses are inconsistent if it derives a contradictory fact clause (which has
a formula from A in the head).

Bottom-up derivations are useful when working with abstract domains that have
join and widening operations. Join and widening are operations over an abstract
domain (encoded as an assertion language A) that take two formulas ϕ and ϕ′

and create a consequence that is entailed by both.
For constrained Horn clauses we have

Proposition 6 (unsat is r.e.). Let A be an assertion language where sat-
isfiability is recursively enumerable. Then unsatisfiability for constrained Horn
clauses over A is r.e.

Proof. Recall the model construction from Proposition 3. Take the initial model
of the subset of clauses that have uninterpreted predicates in the head. Checking
membership in the initial model is r.e., because each member is justified at level
Ii for some i < ω. If the initial model also separates from ⊥, then the clauses are
satisfiable. So assuming the clauses are unsatisfiable there is a finite justification
(corresponding to an SLD resolution derivation [2]), of ⊥. The constraints from
A along the SLD chain are satisfiable.

From the point of view of program analysis, refutation proof corresponds to a
sequence of steps leading to a bad state, a bug. Program proving is much harder
that finding bugs: satisfiability for Horn clauses is generally not r.e.

Definition 7 (A-definable models). Let A be an assertion language, an A-
definable model assigns to each predicate p(x) a formula ϕ(x) over the language
of A.

Example 2. A linear arithmetic-definable model for the mc predicate in Exam-
ple 1 is as follows:

mc(x, y) := y ≥ 91 ∧ (y ≤ 91 ∨ y ≤ x− 10)

We can verify that the symbolic model for mc satisfies the original three Horn
clauses. For example, x > 100∧ y = x− 10 implies that y > 100− 10, so y ≥ 91
and y ≤ x− 10. Thus, mc(x, r)← x > 10, r = x− 10 is true.



Presburger arithmetic and additive real arithmetic are not expressive enough
to define all models of recursive Horn clauses, for example one can define mul-
tiplication using Horn clauses and use this to define properties not expressible
with addition alone [16, 63]. When working with assertion languages, such as
Presburger arithmetic we are interested in more refined notions of completeness:

Definition 8 (A-preservation). A satisfiability preserving transformation of
Horn clauses from Π to Π ′ is A-preserving if Π has an A-definable model if
and only if Π ′ has an A-definable model.

We are also interested in algorithms that are complete relative to A. That
is, if there is an A-definable model, they will find one. In [47] we identify a class
of universal sentences in the Bernays Schoenfinkel class and an associated algo-
rithm that is relatively complete for the fragment. In a different context Revesz
identifies classes of vector addition systems that can be captured in Datalog [61].
In [11] we investigate completeness as a relative notion between search methods
based on abstract interpretation and property directed reachability.

2.3 Loose Semantics and Horn Clauses

A formula ϕ is satisfiable modulo a background theory T means that there is
an interpretation that satisfies the axioms of T and the formula ϕ (with free
variables x). Thus, in Satisfiability Modulo Theories jargon, the queries are of
the form

∃f . Ax(f) ∧ ∃x . ϕ (4)

where f are the functions defined for the theory T whose axioms are Ax. The
second-order existential quantification over f is of course benign because the
formula inside the quantifier is equi-satisfiable.

When the axioms have a canonical model, this condition is equivalent to

∀f . Ax(f) → ∃x . ϕ (5)

In the context of Horn clause satisfiability, the format (5) captures the proper
semantics. To see why, suppose unk is a global unknown array that is initialized
by some procedure we can’t model, and consider the following code snippet and
let us determine whether it is safe.

`0 : if (unk [x] > 0) goto : error

In this example, the interpretation of the array unknown is not fully specified.
So there could be an interpretation of unknown where the error path is not taken.
For example, if `0 is reached under a context where unk [x] is known to always
be non-positive, the program is safe. Consider one possible way to translate this
snippet into Horn clauses that we denote by Safe(`0, unk):

∀x . (> → `0(x)) ∧ (`0(x) ∧ unk [x] > 0→ ⊥).



These clauses are satisfiable. For example, we can interpret the uninterpreted
predicates and functions as follows: unk := const(0), `0(x) := >, where we use
const(0) for the array that constantly returns 0. This is probably not what we
want. For all that we know, the program is not safe. Proper semantics is obtained
by quantifying over all loose models. This amounts to checking satisfiability of:

∀unk∃`0 . Safe(`0, unk)

which is equi-satisfiable to:

∀unk , x . ((> → `0(unk , x)) ∧ (`0(unk , x) ∧ unk [x] > 0→ ⊥)).

which is easily seen to be false by instantiating with unk := const(1).

3 From Programs to Clauses

The are many different ways to transition from programs to clauses. This section
surveys a few of approaches used in the literature and in tools. The conceptually
simplest way to establish a link between checking a partial correctness property
in a programming language and a formulation as Horn clauses is to formulate an
operational semantics as an interpreter in a constraint logic program and then
specialize the interpreter when given a program. This approach is used in the
VeriMAP [24] tool an by [30]. The methods surveyed here bypass the interpreter
and produce Horn clauses directly. Note that it is not just sequential programs
that are amenable to an embedding into Horn clauses. One can for instance
model a network of routers as Horn clauses [51].

3.1 State Machines

A state machine starts with an initial configuration of state variables v and
transform these by a sequence of steps. When the initial states and steps are
expressed as formulas init(v) and step(v,v′), respectively, then we can check
safety of a state machine relatively to a formula safe(v) by finding an inductive
invariant inv(v) such that [52]:

inv(v)← init(v) inv(v′)← inv(v) ∧ step(v,v′) safe(v)← inv(v) (6)

3.2 Procedural Languages

Safety of programs with procedure calls can also be translated to Horn clauses.
Let us here use a programming language substrate in the style of the Boogie [4]
system:

program ::= decl∗

decl ::= def p(x) { local v;S }
S ::= x := E | S1;S2 | if E then S1 else S2 | S1�S2

| havoc x | assert E | assume E

| while E do S | y := p(E) | goto ` | ` : S

E ::= arithmetic logical expression



In other words, a program is a set of procedure declarations. For simplicity of
presentation, we restrict each procedure to a single argument x, local variables v
and a single return variable ret . Most constructs are naturally found in standard
procedural languages. The non-conventional havoc(x) command changes x to
an arbitrary value, and the statement S1�S2 non-deterministically chooses run
either S1 or S2. We use w for the set of all variables in the scope of a procedure.
For brevity, we write procedure declarations as def p(x) {S} and leave the return
and local variable declarations implicit. All methods generalize to procedures
that modify global state and take and return multiple values, but we suppress
handling this here. We assume there is a special procedure called main, for the
main entry point of the program. Notice that assertions are included in the
programming language.

Consider the program schema in Fig. 2. The behavior of procedure q is defined
by the formula ψ, and other formulas init , ϕ1, ϕ2 are used for pre- and post-
conditions.

def main (x) {
assume init(x) ;
z := p(x) ;
y := p(z) ;
assert ϕ1(y) ;

}

def p(x) {
z := q(x) ;
ret := q(z) ;
assert ϕ2(ret) ;

}

def q (x) {
assume ψ(x, ret) ;

}

Fig. 2. Sample program with procedure calls

Weakest Preconditions If we apply Boogie directly we obtain a translation
from programs to Horn logic using a weakest liberal pre-condition calculus [26]:

ToHorn(program) := wlp(Main(),>) ∧
∧

decl∈program

ToHorn(decl)

ToHorn(def p(x) {S}) := wlp

(
havoc x0; assume x0 = x;
assume ppre(x);S, p(x0, ret)

)
wlp(x := E,Q) := let x = E in Q

wlp((if E then S1 else S2), Q) := wlp(((assume E;S1)�(assume ¬E;S2)), Q)

wlp((S1�S2), Q) := wlp(S1, Q) ∧ wlp(S2, Q)

wlp(S1;S2, Q) := wlp(S1,wlp(S2, Q))

wlp(havoc x,Q) := ∀x . Q
wlp(assert ϕ,Q) := ϕ ∧Q

wlp(assume ϕ,Q) := ϕ→ Q

wlp((while E do S), Q) := inv(w) ∧

∀w .

(
((inv(w) ∧ E) → wlp(S, inv(w)))
∧ ((inv(w) ∧ ¬E) → Q)

)



wlp(y := p(E), Q) := ppre(E) ∧ (∀r . p(E, r) → Q[r/y])

wlp(goto `,Q) := `(w) ∧Q
wlp(` : S,Q) := wlp(S,Q) ∧ (∀w . `(w)→ wlp(S,Q))

The rule for � duplicates the formula Q, and when applied directly can
cause the resulting formula to be exponentially larger than the original program.
Efficient handling of join-points has been the attention of a substantial amount of
research around large block encodings [10] and optimized verification condition
generation [28, 50, 5, 33]. The gist is to determine when to introduce auxiliary
predicates for join-points to find a sweet spot between formula size and ease of
solvability. Auxiliary predicates can be introduced as follows:

wlp((S1�S2), Q) := wlp(S1, p(w)) ∧ wlp(S2, p(w)) ∧ ∀w . (p(w)→ Q)

Procedures can be encoded as clauses in the following way: A procedure
p(x) is summarized as a relation p(x, ret), where x is the value passed into the
procedure and the return value is ret .

Proposition 7. Let prog be a program. The formula ToHorn(prog) is NNF
Horn.

Proof. By induction on the definition of wlp.

Example 3. When we apply ToHorn to the program in Fig. 2 we obtain a set of
Horn clauses:

main(x)← >
ϕ1(y)← main(x), init(x), p(x, z), p(z, y)

ppre(x)← main(x), init(x)

ppre(z)← main(x), init(x), p(x, z)

p(x, y) ∧ ϕ2(y)← ppre(x), q(x, z), q(z, y)

qpre(x)← ppre(x)

qpre(z)← ppre(x), q(x, z)

q(x, y)← qpre(x), ψ(x, y)

Error flag propagation The SeaHorn verification system [34] uses a special
parameter to track errors. It takes as starting point programs where asserts have
been replaced by procedure calls to a designated error handler error . That is,
assert ϕ statements are replaced by if ¬ϕ then error(). Furthermore, it assumes
that each procedure is described by a set of control-flow edges, i.e., statements
of the form `in : S; goto `out, where S is restricted to a sequential composition
of assignments, assumptions, and function calls.

To translate procedure declarations of the form def p(x) { S }, SeaHorn uses
procedure summaries of the form

p(x, ret , ei, eo),



where ret is the return value, and the flags ei, eo track the error status at entry
and the error status at exit. If ei is true, then the error status is transferred.
Thus, for every procedure, we have the fact:

p(x, ret,>,>)← > .

In addition, for the error procedure, we have:

error(ei, eo)← eo .

We will use wlp to give meaning to basic statements here as well, using the duality
of wlp and pre-image. To translate procedure calls that now take additional
arguments we require to change the definition of wlp as follows:

wlp(y := p(E), Q) := ∀r, err . p(E, r, ei, err)→ Q[r/y, err/ei].

where err is a new global variable that tracks the value of the error flag.
Procedures are translated one control flow edge at a time. Each label ` is

associated with a predicate `(x0,w, eo). Additionally, the entry of a procedure p
is labeled by the predicate pinit(x0,w, eo) and the exit of a procedure is labeled
by a predicate pexit(x0, ret , eo). An edge links its entry `in(x0,w, eo) with its exit
`out(x0,w

′, e′o), which is an entry point into successor edges. The rules associated
with the edges are formulated as follows:

pinit(x0,w,⊥)← x = x0 where x occurs in w

pexit(x0, ret ,>)← `(x0,w,>) for each label `, and ret occurs in w

p(x, ret ,⊥,⊥)← pexit(x, ret ,⊥)

p(x, ret ,⊥,>)← pexit(x, ret ,>)

`out(x0,w
′, eo)← `in(x0,w, ei) ∧ ¬ei ∧ ¬wlp(S,¬(ei = eo ∧w = w′))

A program is safe if the clauses compiled from the program together with:

⊥ ← Mainexit(x, ret ,>)

are satisfiable.

Example 4. When we create clauses directly from program in Fig. 2 we get the
following set of clauses:

⊥ ← main(⊥,>)

main(ei, eo)← init(x), p(x, z, ei, e
′
o), p(y, z, e

′
o, e
′′
o),¬ϕ1(y), error(e′′o , eo)

main(ei, eo)← init(x), p(x, y, ei, e
′
o), p(y, z, e

′
o, eo), ϕ1(y)

p(x, ret, ei, eo)← q(x, z, ei, e
′
o), q(z, ret, e

′
o, e
′′
o),¬ϕ2(ret), error(e′′o , eo)

p(x, ret, ei, eo)← q(x, z, ei, e
′
o), q(z, ret, e

′
o, eo), ϕ2(ret)

q(x, ret, ei, eo)← ψ(x, ret), ei = eo

p(x, ret,>,>)← >
q(x, ret,>,>)← >

main(>,>)← >
error(ei, eo)← eo



Transition Summaries The HSF tool [32] uses summary predicates that cap-
ture relations between the program variables at initial locations of procedures
and their values at a program locations within the same calling context. Transi-
tion summaries are useful for establishing termination properties. Their encoding
captures the well-known RHS (Reps-Horwitz-Sagiv) algorithm [60, 3] that relies
on top-down propagation with tabling (for use of tabling in logic programming,
see for instance [68]). Thus, let w be the variables x, ret , local variables v and
program location π for a procedure p. Then the translation into Horn clauses
uses predicates of the form:

p(w,w′).

To translate a procedure call ` : y := q(E); `′ within a procedure p, create
the clauses:

p(w0,w4)← p(w0,w1), call(w1,w2), q(w2,w3), return(w1,w3,w4)

q(w2,w2)← p(w0,w1), call(w1,w2)

call(w,w′)← π = `, x′ = E, π′ = `qinit

return(w,w′,w′′)← π′ = `qexit ,w
′′ = w[ret′/y, `′/π]

The first clause establishes that a state w4 is reachable from initial state w0 if
there is a state w1 that reaches a procedure call to q and following the return of
q the state variables have been updated to w4. The second clause summarizes
the starting points of procedure q. So, if p can start at state w0 For assertion
statements ` : assert ϕ; `′, produce the clauses:

ϕ(w)← p(w0,w), π = `

p(w0,w[`′/π])← p(w0,w), π = `, ϕ(w)

Other statements are broken into basic blocks similar to the error flag encoding.
For each basic block ` : S; `′ in procedure p create the clause:

p(w0,w
′′)← p(w0,w), π0 = `, π′′ = `′,¬wlp(S, (w 6= w′′))

Finally, add the following clause for the initial states:

main(w,w)← π = `maininit
.

Note that transition summaries are essentially the same as what we get from
ToHorn. The main difference is that one encoding uses program labels as state
variables, the other uses predicates. Otherwise, one can extract the pre-condition
for a procedure from the states that satisfy p(w,w), and similarly the post-
condition as the states that satisfy p(w,w′) ∧ π′ = `exit. Conversely, given so-
lutions to ppre and p, and the predicates summarizing intermediary locations
within p one can define a summary predicate for p by introducing program lo-
cations.



3.3 Proof Rules

The translations from programs to Horn clauses can be used when the purpose
is to to check assertions of sequential programs. This methodology, however is
insufficient for dealing with concurrent programs with recursive procedures, and
there are other scenarios where Horn clauses are a by-product of establishing pro-
gram properties. The perspective laid out in [32] is that Horn clauses are really a
way to write down search for intermediary assertions in proof rules as constraint
satisfaction problems. For example, many proof rules for establishing termina-
tion, temporal properties, for refinement type checking, or for rely-guarantee
reasoning can be encoded also as Horn clauses.

As an example, consider the rules (6) for establishing invariants of state
machines. If we can establish that each reachable step is well-founded, we can
also establish termination of the state machine. That is, we may ask to solve for
the additional constraints:

round(v, v′)← inv(v) ∧ step(v, v′). wellFounded(round). (7)

The well-foundedness constraint on round can be enforced by restricting the
search space of solutions for the predicate to only well-founded relations.

Note that in general a proof rule may not necessarily be complete for estab-
lishing a class of properties. This means that the Horn clauses that are created
as a side-effect of translating proof rules to clauses may be unsatisfiable while
the original property still holds.

4 Solving Horn Clauses

A number of sophisticated methods have recently been developed for solving
Horn clauses. These are described in depth in several papers, including [43, 32,
38, 27, 63, 54, 48, 24, 23, 11]. We will not attempt any detailed survey of these
methods here, but just mention that most methods can be classified according
to some main criteria first mentioned in Section 2.2:

1. Top-down derivations. In the spirit of SLD resolution, start with a goal and
resolve the goals with clauses. Derivations are cut off by using cyclic induc-
tion or interpolants. If the methods for cutting off all derivation attempts,
one can extract models from the failed derivation attempts. Examples of
tools based on top-down derivation are [38, 54, 48].

2. Bottom-up derivations start with clauses that don’t have uninterpreted pred-
icates in the bodies. They then derive consequences until sufficiently strong
consequences have been established to satisfy the clauses. Examples of tools
based on bottom-up derivation are [32].

3. Transformations change the set of clauses in various ways that are neither
top-down nor bottom-up directed.



We devote our attention in this section to treat a few clausal transformation tech-
niques. Transformation techniques are often sufficiently strong to solve clauses
directly, but they can also be used as pre-processing or in-processing techniques
in other methods. As pre-processing techniques, they can significantly simplify
Horn clauses generated from tools [8] and they can be used to bring clauses into
a useful form that enables inferring useful consequences [46].

4.1 Magic Sets

The query-answer transformation [30, 46], a variant of the Magic-set transfor-
mation [68], takes a set of horn clauses Π and converts it into another set Πqa

such that bottom-up evaluation in Πqa simulates top down evaluation of of Π.
This can be an advantage in declarative data-bases as the bottom-up evaluation
of the transformed program avoids filling intermediary tables with elements that
are irrelevant to a given query. In the context of solving Horn clauses, the ad-
vantage of the transformation is that the transformation captures some of the
calling context dependencies making bottom-up analysis more precise.

The transformation first replaces each clause of the form ϕ ← B in Π by a
clause g ← B,¬ϕ, where g is a fresh uninterpreted goal predicate. It then adds
the goal clauses gq ← >, ⊥ ← ga for each goal predicate g. We use the super-
scripts a and q in order to create two fresh symbols for each symbol. Finally, for
p(x)← P1, . . . , Pn, ϕ in Π the transformation adds the following clauses in Πqa:

– Answer clause: pa(x)← pq(x), P a1 , . . . , P
a
n , ϕ

– Query clauses: P qj ← pq(x), P a1 , . . . , P
a
j−1, ϕ for j = 1, . . . , n.

Where, by P1, . . . , Pn are predicates p1, . . . , pn applied to their arguments. Given
a set of clauses Π, we call the clauses that result from the transformation just
described Πqa.

A symbolic solution to the resulting set of clauses Πqa can be converted into
a symbolic solution for the original clause Π and conversely.

Proposition 8. Given a symbolic solution ϕq, ϕa, ψq1, ψ
a
1 , . . . , ψ

q
n, ψ

a
n, to the

predicates p, p1, . . . , pn, then p(x) := ϕq → ϕa, P1 := ψq1 → ψa1 , . . . , Pn :=
ψqn → ψan solves p(x) ← P1, . . . , Pn, ϕ. Conversely, any solution to the original
clauses can be converted into a solution of the Magic clauses by setting the query
predicates to > and using the solution for the answer predicates.

Note how the Magic set transformation essentially inserts pre-conditions into
procedure calls very much in the same fashion that the ToHorn and the transition
invariant translation incorporates pre-conditions to procedure calls.

Remark 2. Section 4.3 describes transformations that eliminate pre-conditions
from procedure calls. In some way, the Magic set transformation acts inversely
to eliminating pre-conditions.



4.2 Fold/unfold

The fold/unfold transformation [18, 65, 66] is also actively used in systems that
check satisfiability of Horn clauses [57, 36] as well as in the partial evaluation
literature [45].

The unfold transformation resolves each positive occurrence of a predicate
with all negative occurrences. For example, it takes a system of the form

q(y)← B1

q(y)← B2

p(x)← q(y), C
into

p(x)← B1, C
p(x)← B2, C

(8)

To define this transformation precisely, we will use the notation φ|ι to mean
the sub-formula of φ at syntactic position ι and φ[ψ]ι to mean φ with ψ sub-
stituted at syntactic position ι. Now suppose we have two NNF clauses C1 =
H1 ← B1 and C2 = p(x) ← B2 such that for some syntactic position ι in
B1, B1|ι = p(t). Assume (without loss of generality) that the variables occur-
ring in C1 and C2 are disjoint. The resolvent of C1 and C2 at position ι is
H1 ← B1[B2σ]ι, where σ maps x to ti. We denote this C1〈C2〉ι. The unfolding
of C2 in C1 is C1〈C2〉ι1 · · · 〈C2〉ιk where ι1 . . . ιK are the positions in B1 of the
form p(t). That is, unfolding means simultaneously resolving all occurrences of p.

The unfold transformation on p replaces each clause C1 with the set of clauses
obtained by unfolding all the p-clauses in C1. The unfold transformation is a very
frequently used pre-processing rule and we will use it later on in Section 4.3. It
simplifies the set of clauses but does not change the search space for symbolic
models. As we will see in many cases, we can use the tool of Craig interpola-
tion [22] to characterize model preservation.

Proposition 9. The unfold transformation preserves A-definable models if A
admits interpolation.

Proof. Take for instance a symbolic model that contains the definition p(x) := ϕ
and satisfies the clauses on the right of (8) together with other clauses. Assume
that the symbolic model also contains definitions r1(x) := ψ1, . . . , rm(x) := ψm
corresponding to other uninterpreted predicate symbols in B1, B2, C and in other
clauses. Then ((B1∨B2)→ (C → p(x)))[ϕ/p, ψ1/r1, . . . , ψm/rm] is valid and we
can assume the two sides of the implication only share the variable y. From our
assumptions, there is an interpolant q(y).

We can do a little better than this in the case where there is exactly one p-
clause C : p(x)← B. We say the reinforced resolvent of C with respect to clause
H ← B′ at position ι (under the same conditions as above) isH ← B′[p(t)∧Bσ]ι.
Instead of replacing the predicate p(t) with its definition, we conjoin it with the
definition. This is valid when there is exactly one p-clause. In this case the
original clauses and the reinforced clauses have the same initial models (which
can be seen by unfolding once the corresponding recursive definition for p).
Reinforced resolution induces a corresponding notion of reinforced unfolding.



The reinforced unfold transformation on p applies only if there is exactly one p-
clause. It replaces each clause C with the clause obtained by reinforced unfolding
the unique p-clause in C. As an example:

p(y)← B
q(x)← p(y), φ

unfolds into
p(y)← B
q(x)← p(y), B, φ

(9)

Proposition 10. The reinforced unfold transformation preserves A-definable
models if A admits interpolation.

Proof. Consider the example of (9), and suppose we have a solution I for the
unfolded system (the right-hand side). Let p′(y) be an interpolant for the valid
implication BI → (p(y) ∧ φ → q(x))I. Taking the conjunction of p′ with I(p),
we obtain a solution for the original (left-hand side) system. This construction
can be generalized to any number of reinforced resolutions on p by using the
conjunction of all the interpolants (but only under the assumption that there is
just one p-clause).

The fold transformation takes a rule q(x) ← B and replaces B everywhere
in other rules by q(x). For example it takes a system of the form:

q(x)← B
p(x)← B,C
r(x)← B,C ′

into
q(x)← B
p(x)← q(x), C
r(x)← q(x), C ′

(10)

To create opportunities for the fold transformation, rules for simplification
and creating new definitions should also be used. For example, the rule q(x)← B
is introduced for a fresh predicate q when there are multiple occurrences of B in
the existing Horn clauses.

Remark 3. The fold/unfold transformations do not refer to goal, sub-goals or fact
clauses. Thus, they can be applied to simplify and solve Horn clauses independent
of top-down and bottom-up strategies.

K-induction and reinforced unfold K-induction [64] is a powerful technique
to prove invariants. It exploits the fact that many invariants become inductive
when they are checked across more than one step. To establish that an invariant
safe is 2-inductive for a transition system with initial state init and transition
step it suffices to show:

init(v)→ safe(v)

init(v) ∧ step(v,v′)→ safe(v′) (11)

safe(v) ∧ step(v,v′) ∧ safe(v′) ∧ step(v′,v′′)→ safe(v′′)

Formally, 2-induction can be seen as simply applying the reinforced unfold
transformation on safe. That is, in NNF we have:

safe(v′)← init(v′) ∨ (safe(v) ∧ step(v,v′))



which unfolds to:

safe(v′′)← init(v′′)∨(safe(v′)∧(init(v′)∨(safe(v)∧step(v,v′))∧step(v′,v′′)))

which is equivalent to the clauses above. We can achieve K-induction for arbi-
trary K by simply unfolding the original definition of safe K − 1 times in itself.
Checking that any given predicate φ is K-inductive amounts to plugging it in
for safe and checking validity. Interestingly, given a certificate π of K-induction
of φ and feasible interpolation [58], the proof of Proposition 10 gives us a way
to solve the original clause set. This gives us an ordinary safety invariant whose
size is polynomial in π (though for propositional logic it may be exponential in
the size of the original problem and φ).

4.3 A Program Transformation for Inlining Assertions

To improve the performance of software model checking tools Gurfinkel, Wei
and Chechik [35] used a transformation called mixed semantics that eliminated
call stacks from program locations with assertions. It is used also in Corral,
as described by Lal and Qadeer [49], as a pre-processing technique that works
with sequential and multi-threaded programs. The SeaHorn verification tool [34]
uses this technique for transforming intermediary representations. In this way,
the LLVM infrastructure can also leverage the transformed programs. The tech-
nique transforms a program into another program while preserving the set of
assertions that are provable. We will here be giving a logical account for the
transformation and recast it at the level of Horn clauses. We will use Horn
clauses that are created from the ToHorn transformation and we will then use
Horn clauses created from the error flag encoding. We show in both cases that
call stacks around assertions can be eliminated, but the steps are different. They
highlight a duality between the two translation techniques: Boogie inserts predi-
cates to encode safe pre-conditions to procedures. SeaHorn generates predicates
to encode unsafe post-conditions of procedures. Either transformation eliminates
the safe pre-condition or the unsafe post-condition.

Optimizing ToHorn Recall the Horn clauses from Example 3 that were ex-
tracted from Fig. 2. The clauses are satisfiable if and only if:

ϕ2(y)← init(x), ψ(x, z), ψ(z, y)

ϕ1(y)← init(x), ψ(x, z1), ψ(z1, z), ψ(z, z2), ψ(z2, y)

is true. There are two main issues with direct inlining: (1) the result of inlining
can cause an exponential blowup, (2) generally, when a program uses recursion
and loops, finite inlining is impossible.

As a sweet spot one can inline stacks down to assertions in order to create
easier constraint systems. The transformation proposed in [35, 49] converts the
original program into the program in Fig. 3.



def main (x) {
assume init(x) ;
z := p(x) � goto pe ;
y := p(z) � x := z; goto pe ;
assert ϕ1(y) ;
assume ⊥ ;

pe :
z := q(x) � goto qe ;
y := q(z) � x := z; goto qe ;
assert ϕ2(y) ;
assume ⊥ ;

qe :
assume ψ(x, y) ;
assume ⊥ ;

}

def p(x) {
z := q(x);
ret := q(z);
assume ϕ2(y) ;

}

def q (x) {
assume ψ(x, ret) ;

}

Fig. 3. Program with partially inlined procedures

It has the effect of replacing the original Horn clauses by the set

ϕ1(y)← init(x), p(x, z), p(z, y) (12)

ϕ2(z) ∧ ppre(z)← init(x), q(x, z1), q(z1, z)

ϕ2(y)← init(x), p(x, z), q(z, z1), q(z1, y)

ppre(x)← init(x)

p(x, y)← ppre(x), q(x, z), q(z, y), ϕ2(y)

q(x, y)← ψ(x, y)

Part of this transformation corresponds to simple inlining of the calling con-
texts, but the transformation has another effect that is not justified by resolution
alone: The formula ϕ2(y) is used as an assumption in the second to last rule.
The transformation that adds ϕ2 as an assumption is justified by the following
proposition:

Proposition 11. The following clauses are equivalent:

ϕ ← B
P ← B

ϕ ← B
P ← B,ϕ

We could in fact have baked in this transformation already when generating
Horn clauses by pretending that every assert is followed by a matching assume,
or by defining:

wlp(assert ϕ,Q) := ϕ ∧ (ϕ→ Q)

Furthermore, the clauses from our running example are equi-satisfiable to:

ϕ1(y)← init(x), p(x, z), p(z, y) (13)



ϕ2(z)← init(x), q(x, z1), q(z1, z)

ϕ2(y)← init(x), p(x, z), q(z, z1), q(z1, y)

p(x, y)← q(x, z), q(z, y), ϕ2(y)

q(x, y)← ψ(x, y)

These clauses don’t contain ppre. The place where ppre was used is in the rule
that defines p. To justify this transformation let us refer to a general set of Horn
clauses Π, and

– Let P : C1, C2, . . . be the clauses where P occurs negatively at least once.

– Let R : Q ← D1, Q← D2, . . . be the clauses where Q occurs positively and
assume Q does not occur negatively in these clauses.

Proposition 12. Let P ← Q ∧ B be a clause in Π. Then Π is equivalent to
{P ← B} ∪Π if the following condition holds: For every clause C ∈ P let C ′ be
the result of resolving all occurrences of P with P ← Q ∧B, then there exists a
sequence of resolvents for Q from R, such that each resolvent subsumes C ′.

The intuition is of course that each pre-condition can be discharged by consid-
ering the calling context. We skip the tedious proof and instead give an example
tracing how the proposition applies.

Example 5. Consider the clause q(x, y) ← qpre(x), ψ(x, y) from (3). We wish to
show that qpre(x) can be removed from the premise. Thus, take for example
the clause qpre(z) ← ppre(x), q(x, z) where q occurs negatively. Then resolving
with q produces C ′: qpre(z) ← ppre(x), qpre(x), ψ(x, y). The pre-condition is re-
moved by resolving with qpre(x) ← ppre(x), producing the subsuming clause
qpre(z) ← ppre(x), ppre(x), ψ(x, y). A somewhat more involved example is the
clause p(x, y) ← ppre(x), q(x, z), q(z, y). We will have to resolve against q in
both positions. For the first resolvent, we can eliminate qpre as we did before.
Resolving against the second occurrence of q produces

p(x, y)← ppre(x), q(x, z), qpre(z), ψ(z, y).

This time resolve with the clause qpre(z)← ppre(x), q(x, z) producing

p(x, y)← ppre(x), q(x, z), q(x′, z), ppre(x
′), ψ(z, y),

which is equivalent to p(x, y)← ppre(x), q(x, z), ψ(z, y).

The resulting Horn clauses are easier to solve: the burden to solve for ppre
has been removed, and the clauses that constrain P have been weakened with
an additional assumption. However, similar to other transformations, we claim
we can retrieve a solution for ppre if A admits interpolation.



Error flag specialization We can arrive to the same result using specializa-
tion of the Horn clauses generated from Section 3.2 followed by inlining. The
specialization step is to create fresh copies of clauses by grounding the values of
the Booleans ei and eo.

Consider the clauses from Example 4. We specialize the clauses with re-
spect to ei, eo by instantiating the clauses according to the four combinations of
the ei, eo arguments. This reduction could potentially cause an exponential in-
crease in number of clauses, but we can do much better: neither p(x, y,>,⊥) nor
q(x, y,>,⊥) are derivable. This reduces the number of instantiations significantly
from exponential to at most a linear overhead in the size of the largest clause.
To reduce clutter, let pfail(x, y) be shorthand for p(x, y,⊥,>) and pok(x, y) be
shorthand for p(x, y,⊥,⊥).

⊥ ← mainfail (14)

mainfail ← init(x), pfail(x, y)

mainfail ← init(x), pok(x, y), pfail(y, z)

mainfail ← init(x), pok(x, y), pok(y, z),¬ϕ1(y)

pfail(x, ret)← qfail(x, z)

pfail(x, ret)← qok(x, z), qfail(z, ret)

pfail(x, ret)← qok(x, z), qok(z, ret),¬ϕ2(ret)

pok(x, ret)← qok(x, z), qok(z, ret), ϕ2(ret)

qok(x, ret)← ψ(x, ret)

In the end we get by unfolding the post-conditions for failure mainfail, pfail
and qfail:

⊥ ← init(x), qok(x, z), qok(z, y),¬ϕ2(y) (15)

⊥ ← init(x), pok(x, y), qok(y, u), qok(u, z),¬ϕ2(z)

⊥ ← init(x), pok(x, y), pok(y, z),¬ϕ1(y)

pok(x, ret)← qok(x, z), qok(z, ret), ϕ2(ret)

qok(x, ret)← ψ(x, ret)

which are semantically the same clauses as (13).

5 Conclusions and Continuations

We have described a framework for checking properties of programs by check-
ing satisfiability of (Horn) clauses. We described main approaches for mapping
sequential programs into Horn clauses and some main techniques for transform-
ing Horn clauses. We demonstrated how many concepts developed in symbolic
model checking can be phrased in terms of Horn clause solving. There are many
extensions we did not describe here, and some are the focus of active research.
Let us briefly mention a few areas here.



Games Winning strategies in infinite games use alternations between least and
greatest fixed-points. Horn clauses are insufficient and instead [9] encodes games
using EHC, which by Proposition 5 amounts to solving general universally quan-
tified formulas.

Theories We left the assertion language A mostly unspecified. Current Horn
clause solvers are mainly tuned for real and linear integer arithmetic and Boolean
domains, but several other domains are highly desirable, including strings, bit-
vectors, arrays, algebraic data-types, theories with quantifiers (EPR, the Bernays
Schoenfinkel class). In general A can be defined over a set of templates or syn-
tactically as formulas over a grammar for a limited language. For example, the
sub-language of arithmetic where each inequality has two variables with coeffi-
cients±1 is amenable to specialized solving. Finally, one can also treat separation
logic as a theory [56].

Consequences and abstraction interpretation in CLP While the strongest
set of consequences from a set of Horn clauses is a least fixed-point over A, one
can use abstract domains to over-approximate the set of consequences. Thus,
given a set of Horn clauses Π over assertion language A compute the strongest
consequences over assertion language A′ ⊆ A.

Classification There are several special cases of Horn clauses that can be solved
using dedicated algorithms [63]. An example of “easier” clauses is linear Horn
clauses that only contain at most one uninterpreted predicate in the bodies. Nat-
urally, recursion-free Horn clauses can be solved whenever A is decidable. Horn
clauses obtained from QBF problems with large blocks of quantified variables are
solved more efficiently if one realizes that clauses can be rewritten corresponding
to re-ordering variables.

Higher-order programs The interpreter approach for assigning meanings to
programs can be extended to closures in a straight-forward way. Closures encode
function pointers and state and they can be encoded when A supports algebraic
data-types [13]. This allows establishing properties of functional programs where
all closures are defined within the program. The more general setting was given
a custom proof system in [31], and modern approaches to proving properties
of higher-order rewriting systems use a finite state abstraction as higher-order
Boolean programs [59]. A different approach extracts Horn clauses from refine-
ment based type systems for higher-order programs [62, 44].

Beyond A-definable satisfiability Our emphasis on A-definable models is
partially biased based on the methods developed by the authors, but note that
methods based on superposition, infinite descent and fold/unfold can establish
satisfiability of Horn clauses without producing a A-definable model. Some other
clausal transformation techniques we have not described are based on accelerat-
ing transitive relations [27, 39, 1].



Aggregates and Optimality Suppose we would like to say that a program
has at most a 2 · n reachable states for a parameter n. We can capture and
solve such constraints by introducing cardinality operators that summarize the
number of reachable states. Note that upper bounds constraints on cardinalities
preserve least fixed-points: If there is a solution not exceeding a bound, then any
conjunction of solutions also will not exceed a bound. Lower-bound constraints,
on the other hand, are more subtle to capture. Rybalchenko et al. use a symbolic
version of Barvinok’s algorithm [7] to solve cardinality constraints. Instead of
proving bounds, we may also be interested in finding solutions that optimize
objective functions.

We would like to thank Dejan Jovanovich and two peer reviewers for extensive
feedback on an earlier version of the manuscript.
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