
Quorum-Based Perfect Failure Detection Service

Wei Chen∗ Xuezheng Liu† Yunni Xia‡ Lidong Zhou§

Microsoft Research Technical Report

MSR-TR-2009-62

May 2009

Abstract

A failure detection service is perfect if it eventually detects all failures and every detection correctly identifies a failure that
has already occurred. Such a perfect failure detection service serves as a basic building block for many reliable distributed
systems, for example in primary/backup replication protocols and distributed lock services. In this paper, we present a com-
prehensive study on applying quorum systems to the perfect failure detection service in order to enhance the fault tolerance
of the service. We provide the precise system model and specification for a quorum-based failure detection service. We prove
that stable storage is necessary if the server processes may crash and recover in the middle of the service. We present two
novel algorithms that implement the failure detection service and have complementary characteristics. We further develop a
set of quality-of-service (QoS) metrics for quorum-based perfect failure detection services, and apply probabilistic analysis
to quantify the QoS metrics of the two algorithms.

keywords: perfect failure detection service, quorum system, quality of service

∗Microsoft Research Asia, email:weic@microsoft.com
†Microsoft Research Asia, email:xueliu@microsoft.com
‡Chongqing University
§Microsoft Research Asia, email:lidongz@microsoft.com

1



1. Introduction

Failure detectors are a fundamental abstraction in build-
ing fault-tolerant distributed systems. They offer simple se-
mantics that encapsulate timing assumptions. Solutions to
fundamental problems such as consensus and group mem-
bership hinge on the properties of failure detectors used, as
demonstrated in [4].

Failure detectors have already been shown to be theoret-
ically important ([4]), and they can be found in many reli-
able distributed systems. Leader election in Paxos [10] im-
plicitly relies on failure detection for replacing failed lead-
ers. In any primary/backup replication protocol (e.g., the
ones used in Harp [11], Chain Replication [14], and Box-
wood [12]), failure detectors are used to trigger fail-over of
the primary. In distributed lock services (e.g., the ones in
Boxwood [12] and Chubby [3]), failure detectors that are
based on leases [7] are used to detect the failures of the
processes that are holding locks so that the locks can be re-
claimed by other processes waiting for the locks.

For both primary/backup replication and distributed lock
service, mutual exclusion properties are required: in the for-
mer, there cannot be two primaries active at the same time.1

In the latter, there cannot be two processes holding the same
lock at the same time. Such mutual exclusion properties
can be achieved through the use of a perfect failure detec-
tor [4, 6], the key properties of which are (a) all failures are
eventually detected, and (b) if the failure detector considers
a process p faulty, then p must have failed.

Implementing a perfect failure detector in an asyn-
chronous system is impossible. However, with the assump-
tion of bounded clock drift, an often reasonable assumption
in practice, and a suicide mechanism, where a process times
out and transitions into a faulty state voluntarily, perfect
failure detector becomes possible. Such a suicide mecha-
nism was used in ISIS [2] and advocated by Fetzer [6].

In this paper, we advocate the use of a perfect failure de-
tection service. With such a service, no ad-hoc monitoring
or failure detection needs to be implemented (or duplicated)
any more. A system-wide monitoring service with strong
properties is instead used.

A service in a fault-tolerant distributed system must itself
be fault-tolerant. This is especially important for a perfect
failure detection service: due to the use of the suicide mech-
anism, all processes in the system would commit suicide if
the service were to fail. We therefore study a perfect failure
detection service that employ a set of processes. We call
such a service quorum-based because the service remains
available as long as a quorum of processes in the service
are. Although Boxwood uses such a service, no satisfactory
details are given on this particular component. The case
is not covered well by Fetzer [6] either. Chubby [3] uses a

1A similar condition on leaders is not required in Paxos though.

replicated master group for failure detection, which means it
needs a separate and more complicated replication protocol
and its failure detection guarantees depend on the timing as-
sumptions on the synchronization and fail-overs within the
master group.

In this paper, we provide a rigorous study on several im-
portant aspects concerning a quorum-based perfect failure
detection service. We first provide a precise system model
in asynchronous message-passing systems in which a num-
ber of dedicated server processes, called observers, monitor
a process q and service queries from client q. The observers
may crash and recover, which match the practical situation
for a long-lived service. We then present a specification of
a quorum-based perfect failure detection service, which in-
cludes important properties that eliminate trivial and useless
implementations. We prove that to implement such a ser-
vice, observers must write its state infinitely often to some
stable storage that survives observer crashes and recoveries.
We next provide two new algorithms that have complemen-
tary characteristics. One algorithm is based on leases while
the other is based on shared register abstraction.

Furthermore, we study the quality of service (QoS) of
perfect failure detection services. The QoS of failure de-
tectors was originally proposed and studied for heartbeat-
style failure detectors in [5]. In this paper, we propose a
set of QoS metrics that covers important aspects of a per-
fect failure detection service, such as how well the service
is in avoiding suicide, how fast it is in detecting failures, and
how fast it is in responding to client queries. We then use
probabilistic method to analyze the QoS metrics of the two
algorithms. As an example, we study the effect of quorum
size, and find that, unlike the suggestions in [12, 6] to use
majority quorums, an asymmetric quorum setting such that
p’s survival depends on a smaller quorum while q’s query
depends on a larger quorum may provide much better over-
all QoS in a typical system environment.

To summarize, our paper contributes to the study of the
perfect failure detection service through its precise model
and specification, its proof of the necessity of stable stor-
age, its two algorithms, its proposal of QoS metrics, and its
probabilistic analysis of the QoS metrics. We believe that
our work will both enrich the theory of failure detectors and
enhance the practical significance of perfect failure detec-
tion services.

2. System Model

We consider message-passing systems composed of
three type of processes. The first type is processes being
monitored. In this paper, we only need one representative
process p of this type. The second type is server processes
that monitor the status of p. We call these processes ob-
servers, and use set X = {x1, x2, . . . , xn} to denote the set
of n observers. The third type is client processes that query

2



observers to check the status of p. We only need to consider
one client process q in our study. Our results can be eas-
ily generalized to the case of multiple clients and multiple
processes being monitored.

Processes p and q communicate with the observers by
sending and receiving messages over asynchronous bidirec-
tional links. The links cannot create or duplicate messages,
but they may delay or drop messages. Message delay is
always greater than zero and may be arbitrarily large. Ob-
servers do not communicate among themselves, nor do p
and q communicate with each other.

Each process is equipped with a local clock, which can
be used to read clock values and set timers. Local clocks are
drift-free,2 but they are not necessarily synchronized. After
a timer is set with a certain time interval T , it will expire
exactly T time units after setting the timer, unless the timer
is cancelled or reset to a different interval. In reasoning
about process behaviors, we often refer to the global time,
which is continuous and cannot be accessed by processes.

Each process executes a sequence of steps, which are
triggered by message receptions, timer expirations, or in-
terface function invocations. In each step, a process may
change its local state, send messages and operate on timers.
For simplicity, we assume that the time to complete one step
is zero. An observer only takes reactive steps. That is, an
observer x only sends out a message to process y (y being p
or q) in x’s step that processes a message received from x.
Thus, we call a message sent by an observer a reponse to the
message it receives. An observer will not send a message in
a step triggered by a timer expiration event.

Process p may crash involuntarily at any time or it may
commit suicide voluntarily in one of its steps by invoking
a special suicide() interface function. We say that p fails
if it crashes or commits suicide. After p fails, it does not
take any more steps. The suicide() interface may have sev-
eral ways to be implemented in systems, such as using a
hardware watchdog to guarantee immediate termination [6].
We assume that p does not recover, or equivalently recovers
with a different process identifier.

Each Observer may crash at any time and later recover.
An observer may store (part of) its state into stable storage.
The value stored in the stable storage will not be lost af-
ter a crash and recovery. The local clock value is also not
affected by crash and recovery. Except for the local clock
value and the value stored in the stable storage, an observer
loses all other state values after a crash and recovery. In
particular, if an observer starts a timer and then crashes, it
loses the state about this timer.

We assume that client q does not crash, since if it crashes
in the middle of a query, the query automatically fails and
we do not enforce any requirement on q’s query if q fails.

Our specification and algorithms are based on quorum

2Bounded clock drifts can also be easily handled.

systems for the observers. In our setting, a quorum system
Q consists of two non-empty sets Qp and Qq of subsets of
observers X such that for all Q1 ∈ Qp and all Q2 ∈ Qq ,
Q1 and Q2 intersect. Each Q ∈ Qp is called a survival
quorum and each Q ∈ Qq is called a query quorum. Infor-
mally, p’s survival depends on p’s having timely communi-
cations with at least one survival quorum, while q’s success
in querying p’s status depends on q’s having reliable com-
munication with at least one query quorum.

We now make it formal the meaning of a process be-
ing able to communicate with a quorum of observers. The
definitions follow the similar ones in [13]. Let r(y, x) de-
note the round-trip channel from a process y to an observer
x. We say that r(y, x) is reliable at time t if for any mes-
sage m that y would send to x at time t, if x would send
a response to y for m, then y would eventually receive the
response from x. Note that it is a property of the system
requiring all the following conditions to hold: (a) the com-
munication link from y to x would not drop the message
sent by y to x at time t, (b) x would process the message
and would not crash during the processing, and (c) x’s re-
sponse (if any) would not dropped by the link from x to y.
It does not depend on whether or not x and y actually send
messages.

Process p (resp. q) is said to be quorum reliable at
time t if there is a survival (resp. query) quorum Q of ob-
servers such that for all x ∈ Q round-trip channel r(p, x)
(resp. r(q, x)) is reliable at time t. We say that process
y (p or q) is fairly quorum reliable if given any time se-
quence (t1, t2, . . .) that tends to infinity, there exists time ti
at which y is quorum reliable. Intuitively, if y tries to com-
municate with the observers infinitely often, then it should
be successful at least once.

The system has a known parameter ∆ that is used to de-
fine timeliness. We say that r(y, x) is timely at time t if for
any message m that y would send to x at time t, if x would
send a response to y for m, then y would receive a response
from x within ∆ time from t. Process p (resp. q) is said to
be quorum timely at time t if there is a survival (resp. query)
quorum Q of observers such that for all x ∈ Q r(p, x) (resp.
r(q, x)) is timely at time t. We say that process y (p or q) is
always quorum timely if for all time t, y is quorum timely
at time t. We say that y is fairly quorum timely if given any
time sequence (t1, t2, . . .) that tends to infinity, there exists
time ti at which y is quorum timely.

3. Specification of Perfect Failure Detection
Service

In our model, failure detection is provided as a service
by the observers, which are constantly monitoring the sta-
tus of process p. To retrieve the status of p, client q invokes a
query interface check(), which communicates with the ob-

3



servers and returns either Alive or Dead status of p to q.
Client q may enter the system and invoke check() at any
time and may leave the system after the check() returns.
This flexible query model and the failure-detection-as-a-
service architecture differ from the original failure detector
abstraction [4], where processes are assumed to always be
part of the system monitoring each other. As a result, the
specification of our failure detection service covers aspects
not in [4].

The specification includes a number of properties. The
first two properties correspond to the two properties of per-
fect failure detector defined in [4]:

• Strong Completeness: If process p crashes or com-
mits suicide, then there is a time after which if client q
invokes check() and check() returns, the return value
must be Dead .

• Strong Accuracy: If client q invokes check(), which
returns Dead at time t to q, then p must have crashed
or committed suicide before time t.

Since p may commit suicide, there could be a trivial im-
plementation in which p always commits suicide at the be-
ginning and all check() invocations return Dead . This im-
plementation satisfies the above two properties but is use-
less. We provide the following Integrity property to exclude
such trivial implementations. Intuitively, p cannot commit
suicide if p always has timely communications with a quo-
rum of observers, even though the quorum may change over
time.

• Integrity: If p is always quorum timely, then p does
not commit suicide.

Moreover, we also need to avoid trivial implementations
in which check() is blocked forever without returning any
value. The following property is the weaker version requir-
ing that check() should terminate if q is able to achieve at
least one round of timely communication with a quorum of
observers as long as it tries infinitely often.

• Weak Query Termination: If client q is fairly quorum
timely, then every check() invoked by q eventually
returns.

We also give the stronger version in which communi-
cation between q and the observers are not required to be
timely:

• Strong Query Termination: If client q is fairly quorum
reliable, then every check() invoked by q eventually
returns.

We say that a failure detector service is weakly (resp.
strongly) perfect if it satisfies Strong Completeness, Strong
Accuracy, Integrity, and Weak (resp. Strong) Query Termi-
nation properties.

Finally, we address the bootstrap issue of how observers
and clients learn about p so that they can monitor and query
the status of p. We assume that when p starts running, it
must first complete one round of communication with a sur-
vival quorum of observers, and then it can register its exis-
tence (to some directory service). Only after its registration,
other clients may start query its status by invoking check().
This bootstrap requirement matches practical situations.

4. Necessity of stable storage

In this section, we study the necessity of using stable
storage on the observers. In our model, observers may crash
and recover at any time. If the observers do not have stable
storage, their failures will bring them back to an old state,
which may result in q obtaining wrong status about p. In
fact, we show that the observers have to write to stable stor-
age an infinite number of times in any algorithm that claims
to implement the perfect failure detection service. The fol-
lowing theorem and the proof formalize this idea.

We say a failure detection algorithm is finite-write if it
guarantees that in every run, there is only a finite number of
writes to the stable storage on the observers. Note that if p
crashes or commits suicide, it should be easy to guarantee
finite-write, so the property is mainly for the case when p
keeps alive.

Theorem 1 There is no finite-write failure detection algo-
rithm that implements a weakly perfect failure detection ser-
vice. This is true even if all links are timely at all times.

Proof. Suppose, for a contradiction, that there is a finite-
write algorithm A that implements a weakly perfect failure
detection service.

Let ε be a constant such that ∆ > 2ε. We separate the
timeline into disjoint time periods, each of which has length
ε. We use numbers 1, 2, 3, . . . to number the periods, with
the first period being [0, ε), the second period being [ε, 2ε),
and so on.

For every message that p sends to an observer at time
t, if t is in an odd-numbered period, then the message is
scheduled to arrive the observer at the next even-numbered
period; if t is in an even-numbered period, then the mes-
sage is scheduled to arrive the observer at the same even
period. When the observer receives the message, it process
the message immediately, and if there is a reponse sent by
the observer back to p, the response is scheduled to arrive at
p in the same even-numbered period. By the above schedul-
ing, we know that at any time t process p will receive its
response from all observers within at most 2ε < ∆ time,
so p is always quorum timely. Therefore, by the Integrity
property, p will not commit suicide. Moreover, observers
only receive messages from p and send responses back to p
in even-numbered periods.

4



Similarly, we can schedule all messages from q to arrive
at observers in the odd-numbered periods (either the same
period as when q sends the message, or the next period),
and thus q is always quorum timely. By the Weak Query
Termination property, all q’s queries eventually return.

We now construct a run R1 as follows. In this run, pro-
cess p does not crash. Process q periodically issues check()
(the exact timing of the queries is not important). All the
messages are scheduled as described above. At the end of
each period, all observers crash and immediately recover.
Since these crashes and recoveries occur at the end of each
period, they do not interfere with observers’ communication
with p and q.

In run R1, since p does not crash and cannot commit sui-
cide, it keeps alive, and by the Strong Accuracy property, all
the queries of q return Alive eventually. Since the algorithm
is finite-write, there is a time t0 after which no observers
write to stable storage any more after t0. Therefore, at the
end of each period after time t0, after all observers recover,
they always start with the same set of states restored from
their stable storage (of course except for their local clock
values which keep increasing).

We now construct another run R2 based on R1. Let
[t1, t1 + ε) be the first odd-numbered period after time t0
(excluding the period containing t0). R2 behaves exactly
the same as R1 before time t1. At time t1, process p crashes.
After time t1, all observers are kept in the crashed state in all
even-numbered periods, that is, all observers crash at the be-
ginning of every even-numbered period after t1 and recover
at the end of the same even-numbered period. All communi-
cations between q and the observers at all times are the same
as in R1. This is possible because observers only receive
and process messages from q in the odd-numbered periods.
More importantly, observers in the odd-numbered periods
cannot distinguish between runs R1 and R2, because they
recover in the same states, process the same set of messages
with the same clock values in the odd-numbered periods,
and then crash through the entire even-numbered periods.

Therefore, from the point of view of q, the two runs be-
have exactly the same since q only communicate with the
observers in odd-numbered periods. This means that in R2

q’s queries will always return Alive as in run R1. This is a
contradiction, however, since by the Strong Completeness
property, q’s query should eventually return Dead because
p crashes at time t1 in R2. 2

5. Algorithms for Perfect Failure Detection
Service

In this section, we consider two algorithms, the first of
which implements a weakly perfect failure detection service
while the second of which implements a strongly perfect

(a) basic failure detection based on leases

granted
lease
request

lease expired
commit suicide

lease expired
declare p dead

p

q

lease period

lease period

p

x1

x2

x3

q

(b) problem of a naive extension to quorum-based failure detection service

p is still alive

declare p dead

B

A

lease

Figure 1. Illustration of lease-based algorithm

failure detection service. We then compare the two algo-
rithms and show that they have complementary features.

In our pseudocode, we use several primitives to repre-
sent operations related to clocks and timers. In particular,
getClockTime() primitive is for a process to get its current
clock value; setTimer(τ, δ) is for a process to set or reset its
timer τ to be expired at δ time units later from the current
time; clearTimer(τ) is to clear timer τ ; and expireTimer(τ)
is triggered when timer τ expires.

We use the term stable variable to represent the use of
stable storage on the observers. For a stable variable v, ev-
ery write to v completes only after the value is written to
both the memory and the stable storage. When an observer
recovers from a crash failure, it loads the value of v in the
stable storage back to memory, and every reads of v after-
wards are from memory directly.

The correctness proofs of the two algorithms are not very
difficult and are omitted due to space constraint.

5.1. Algorithm I: Lease-based

The first algorithm is based on the lease mechanism [7]
and is extended to quorum systems. In the basic lease-based
failure detector with two processes p and q (as illustrated
in Figure 1(a)), p periodically requests a lease from q. The
lease period on process p starts when p sends a lease request
to q, while the lease period on q starts when q receives the
request from p. The lease periods on p and q have the same
length, and thus q’s lease period always ends later than the

5



corresponding lease period on p. Before one lease period
expires on p, p has to receive a response from q that grants
p a new lease period. If p does not receive this response in
time, its lease expires and for the purpose of perfect failure
detection, it needs to commit suicide. If q does not receive a
new request before its lease period ends, it starts to declare
p as dead. Since q’s lease period ends later, q’s declaration
of p being dead always comes after p crashes or commits
suicide. The basic failure detector is easily extend to a per-
fect failure detection service with a single observer x: We
use x to replace q so that observer x correctly detects the
status of p, and client q only communicates with x to query
the status of p.

However, extending the single observer case to multiple
observers with a quorum system is not so straightforward.
A naive extension is that each observer xi simply behave as
the single observer, and p needs to receive responses from
a quorum of observers in order to extend its lease, while q
needs to collect p’s status from a quorum of observers to
derive the status of p. If all observers in the quorum believe
that p is dead, then q declares p dead; otherwise as long as
one observer in the quorum believes that p is alive, q de-
clares p alive. Figure 1(b) illustrates a problematic scenario
of this naive extension, where we have three observers and
any two observers form a quorum. In this scenario, observer
x2 misses the second message from p and thus after its first
lease period ends it starts to declare p as dead, but p re-
ceives responses from x1 and x3 so p successfully renewed
its lease. Later when x2 receives the third message from p,
it starts a new lease period and declare p alive again, but x3

misses the third message and thus declare p dead after the
second lease period ends. If q obtains p’s status from x2 at
point A and from x3 at point B, both status will say p dead
and thus q will declare p dead. But p is still alive since it
always receives two responses in time. Therefore, Strong
Accuracy property is violated.

If we use the same length for lease period on p and on
observers, the two points A and B could be made arbitrar-
ily close in time, so we have no chance for q to avoid this
scenario. To fix this problem, we let observers use a longer
lease period. Let δp be the length of a lease period on p
and δo be the length of a lease period on the observers. We
require that δo ≥ δp+∆, where ∆ is the timeliness parame-
ter defined in Section 2. With this setting, we guarantee that
points A and B be at least δo−δp time units apart. Then we
require that q has to collect a quorum of responses within
δo − δp time units. If it fails to do so, it has to resend a new
set of messages to observers to collect responses again.

With the above restriction, we eliminate the scenario de-
picted in Figure 1(b). The downside is that q may need
multiple rounds of communication to complete its query. If
q is fairly quorum timely, then eventually q will have a com-
munication round that completes within δo − δp ≥ ∆.

On process p (to be monitored):

1 Variable:
2 counter : initially 0

3 repeat every η time units:
4 counter ← counter + 1
5 send (LEASE-REQUEST, counter) to all observers
6 setTimer(timer [counter ], δp) /* δp ≥ η + ∆ */

7 Upon expireTimer(timer [i])
8 if not received (LEASE-GRANT, j) with j ≥ i + 1 from

a survival quorum of observers then suicide()

On observer x:

9 Variable:
10 latest : stable variable, the latest lease request

number received from p, initially 0
11 deadline: stable variable, the ending time

of x’s current lease, initially 0

12 On receipt of (LEASE-REQUEST, cnt) from p:
13 if cnt > latest then
14 latest ← cnt
15 deadline ← getClockTime() + δo /* δo ≥ δp + ∆ */
16 send (LEASE-GRANT, cnt) to p

17 On receipt of (CHECK, ts) from client q:
18 if getClockTime() < deadline then
19 send (CHECK-ACK, ts, latest ,Alive) to q
20 else send (CHECK-ACK, ts, latest ,Dead) to q

On client q:

21 check() :
22 repeat
23 ts ← getClockTime()
24 send (CHECK, ts) to all observers
25 wait until one of the following conditions holds:

(a) received (CHECK-ACK, ts, cnt , ∗)
from a query quorum of observers;

(b) δo − δp time elapsed;
26 until (a) is true
27 cnt1 ← the largest cnt received in

(CHECK-ACK, ts, cnt ,Dead) or 0
28 cnt2 ← the largest cnt received in

(CHECK-ACK, ts, cnt ,Alive) or 0
29 if cnt1 ≥ cnt2 return Dead else return Alive

Figure 2. Failure Detection Algorithm I: lease-
based

Figure 2 provides the complete pseudocode for the
lease-based algorithm. Process p periodically sends
LEASE-REQUEST messages to all observers (lines 3–6), and
when the current lease expires, it can continue running only
if it receives LEASE-GRANT messages for higher-numbered
lease periods from a survival quorum of observers (line 8).

6



Each observer x maintains two stable variables latest
and deadline: Variable latest keeps the latest lease num-
ber and deadline keeps the ending time of the current lease.
Observer x simply responds p with a LEASE-GRANT mes-
sage, and responds q with its latest lease number and p’s
status based on whether the latest lease has expired or not
(lines 12–20).

Client q continues sending CHECK messages to the ob-
servers until it receives responses from a query quorum of
observers within δo−δp time units (lines 22–26). The com-
putation of the final return value of check() is a little more
sophisticated then described above (lines 27–29). Instead of
returning Alive as long as one observer returns Alive, the
algorithm returns Alive if and only if all responses with the
highest lease number indicates that p is alive. This allows q
to detect the failure of p earlier.

As indicated already, this algorithm works if q is fairly
quorum timely. Therefore, it implements a weakly perfect
failure detection service. The algorithm, however, is not
strongly perfect, because if q cannot obtain timely responses
from a query quorum, check() will not terminate. Our sec-
ond algorithm fixes this problem.

5.2. Algorithm II: Register-based

The second algorithm (Figure 3) takes a different ap-
proach to implement a perfect failure detection service. The
basic idea is for p to write increasing counter values into the
observers to indicate that it is alive, and q reads out these
values. If q cannot read higher values after a significant
amount of time, then q can declare p dead. Since it resem-
bles the use of a shared read-write register [8, 9], we call
this algorithm register-based.

More specifically, p increments its counter variable ev-
ery η time units and writes the value of counter by sending
a (WRITE, counter) message to all observers (lines 3–6).
In the mean time, p starts a timer timer [counter ] that ex-
pires δp time units later. To match this algorithm to the first
algorithm, we set the condition under which p commits sui-
cide (line 8) to be exactly the same as the one in the first
algorithm. The algorithm on p can be viewed as p invok-
ing several concurrent write operations to write increasing
counter values.

The observers’ job is very simple. It stores the highest
value received in the WRITE messages from p, responds to
p with a WRITE-ACK message, and whenever receiving a
READ message from q, responds with a READ-ACK message
with the highest value it stores.

On client q, it implements a simple read() interface
(lines 23–29), in which q periodically sends READ mes-
sages to the observers until it receives responses from a
query quorum of observers for a particular round of READ
message. The return value of read() is the highest value

received in the responses. As long as q is fairly quorum re-
liable, q’s read() eventually returns, and it is guaranteed to
read at least some value that has reached a survival quorum
of observers.

With this read() interface, when q invokes check(), it is-
sues a sequence of read() calls, each of which is separated
δp time units after the previous one returns. This separa-
tion period ensures that if p is still alive, then each read()
must return a value higher than the previously read value.
Therefore, if q sees that any read() does not return a higher
value, it returns Dead . Otherwise, it continues until it com-
pletes a total number of bδp/ηc+ 2 read()’s, then it returns
Alive. We need multiple read()’s because if p is dead, its
last few counter values may not reach a survival quorum of
observers, and thus it takes several reads to exhaust all these
possible values and discover a non-increasing value. The
algorithm is proven to implement a strongly perfect failure
detection service.

We may optimize the algorithm such that when q sends
the READ message, it can piggyback the value v it previ-
ously read into the READ message, which essentially means
that it writes v back to the observers. Furthermore, q can
also indicate that v is outdated when it writes v, because
after δp time units, there must be a value higher than v al-
ready stored on the observers if p is still alive. Then when
q later reads a value v′, v′ must be the highest value among
those that has not be marked as outdated. This optimization
helps subsequent check() to reduce the number of read()’s
when p is dead, but for the first check() it may still need to
go through all bδp/ηc+ 2 number of read()’s, so we do not
include this optimization directly in the pseudocode.

5.3. Comparison between two algorithms

The above two algorithms have some complementary
features that worth a comparison here. The lease-based al-
gorithm has the drawback that the check() may not termi-
nate if q cannot have timely communication with the ob-
servers (i.e., q is not fairly quorum timely). This may not be
an issue if the system is symmetric, that is, q is also being
monitored by other processes. In this case, if q has no timely
communication with the observers, q will commit suicide it-
self, so the termination of check() may not be an issue any
more. But in general, comparing with the register-based
algorithm, the lease-based algorithm does have stronger re-
quirements for query termination.

Moreover, for the lease-based algorithm if the last
LEASE-REQUEST message that p sends out before p crashes
has a long delay, we may have a situation in which the first
check() already returns Dead , but the second check() still
returns Alive, and the time after which check() always re-
turn Dead depends on the delay of p’s messages. If q issues
check() periodically and remembers the query results, this

7



On process p (to be monitored):

1 Variable:
2 counter : initially 0

3 repeat every η time units:
4 counter ← counter + 1
5 send (WRITE, counter) to all observers
6 setTimer(timer [counter ], δp) /* δp ≥ η + ∆ */

7 Upon expireTimer(timer [i])
8 if not received (WRITE-ACK, j) with j ≥ i + 1 from

a survival quorum of observers then suicide()

On observer x:

9 Variable:
10 latest : stable variable, the latest counter value

received from p, initially 0

11 Upon receipt of (WRITE, v) from p
12 if v > latest then latest ← v
13 send WRITE-ACK to p

14 Upon receipt of (READ, ts) from q
15 send (READ-ACK, ts, latest) to q

On client q:

16 check() :
17 v1 = read()
18 repeat bδp/ηc+ 1 times
19 wait for δp time units
20 v2 = read()
21 if v2 ≤ v1 then return Dead else v1 ← v2

22 return Alive

23 Implementation of read():
24 ts ← getClockTime()
25 repeat periodically
26 send (READ, ts) to all observers
27 until [received (READ-ACK, ts, vi) from

a query quorum of observers]
28 v ← the largest vi received in

(READ-ACK, ts, vi)
29 return v

Figure 3. Failure Detection Algorithm II:
register-based

is not an issue, but if q only issues ad-hoc queries and do
not remember query results (or query results are lost due
to failures) then it may take time for q to detect p’s fail-
ure. The register-based algorithm is better in this regard,
because it guarantees that check() always return Dead as
long as it is issued after p crashes. So the detection latency
is not affected by the delay of p’s messages. Of course, it
still depends on the delay of messages between q and the
observers.

The register-based algorithm also has its drawback.
When p is alive, each check() requires a number of read()
calls and each of them has to be separated by δp time units,
making the response time of check() quite long. The lease-
based algorithm, on the other hand, can complete check()
in one round of communication if it is timely. If q issues
check() periodically and can keep its local state, then each
check() only needs to call read() once in the register-based
algorithm and the read cost is amortized among multiple
check()’s. However, in general the register-based algorithm
depends on multiple rounds of communication with the ob-
servers to determine p’s status while in the lease-based al-
gorithm each round of communication is independent.

Overall, we can say that the lease-based algorithm is
good at query response time but rely on timely communica-
tion between q and the observers, while the register-based
algorithm guarantees detection without timeliness assump-
tion. Depending on the actual usage, an application may
choose one algorithm or some combination of the two algo-
rithms.

6. Quality of Service of the Perfect Failure De-
tection Service

In the previous section, we only provide qualitative as-
sessment to the different features of the algorithms. Ap-
plications may want to quantify these features and know
how to tune system parameters to balance different aspects
of a failure detection service. In this section, we address
how to quantify the quality of a failure detection service
using probabilistic analysis. Quality of service (QoS) of
heartbeat-style failure detectors has been studied in [5]. In
this section, we provide a matching study on the QoS of
quorum-based perfect failure detection service. In particu-
lar, we first define a set of QoS metrics for such a service,
and then provide a probabilistic analysis to the two algo-
rithms described in the previous section.

6.1. Definitions of QoS metrics

For the study of QoS, we assume that the system behav-
ior is probabilistic, and it is caused by probabilistic events
in the system such as message delays, the details of which
is provided in Section 6.2. We define a set of metrics that
captures the important QoS aspects of a perfect failure de-
tection service. These QoS metrics are random variables
based on the probabilistic behavior of the system.

The first metric captures how well the service does in
preventing p from committing suicide. We denote it as TTS,
which stands for time to suicide, and define it to be the time
elapsed from the time p starts sending its first message to the
observers to the time p commits suicide, in runs in which p
does not crash.

8



The second metric captures how fast the service detects
failures. After p fails at a time t0, it may take a while for
q’s check() to return Dead . The delay in detection can be
separated into two periods. The first period is for check() to
stabilize its return value to Dead while the second period is
to complete check() operation. More precisely, let t1 be the
earliest time t ≥ t0 such that if q invokes check() at time t
and if the check() returns, it is guaranteed that the check()
returns Dead . Let t2 > t1 be the time at which the check()
invoked at time t1 returns. Thus the first period from t0
to t1 represents the time it takes for the service to stabilize
check() and guarantee the detection of p’s failure, while the
second period from t1 to t2 represents the time it takes for
check() to return a value after it stablizes. The two periods
together indicate how fast the service detects p’s failures.
Therefore, we define our second metric to be the duration
from time t0 to time t2, which we call time to guaranteed
detection and denote as TTGD.

The third and the last metric captures the response time
of check() during the normal operation when p is alive.
More precisely, we define the metric to be the duration from
a random time t1 when q invokes check() to time t2 when
check() returns in runs in which p does not fail. We call this
metric time to normal response and denote it as TTNR.

6.2. QoS analysis

For QoS analysis, we consider that the delay of a mes-
sage follows a general distribution given by function F (x),
where F (x) is a monotonic function such that F (x) = 0
when x ≤ 0, F (+∞) = 1, and F (∆/2) > 0. All mes-
sages follow the same delay distribution F and the delays of
different messages are independent. For simplicity, we do
not consider message losses or observer failures. Message
losses, and to some extent observer failures, can be masked
by repeatedly sending the same messages until the response
is received, and thus they are transformed into message de-
lays. This probabilistic model matches with our definition
of fairly quorum timeliness, since if process p (or q) sends
an infinite number of messages to all observers, because of
the fact that F (∆/2) > 0, with probability one at least one
message will generate timely responses from a quorum of
observers.

We study the following type of general quorum systems.
A survival quorum is any subset of observers with t ob-
servers, and a query quorum is any subset of observers with
n− t + 1 observers, where t is a parameter ranging from 1
to n.

With the above settings, we evaluate the QoS metrics of
the two algorithms given in the previous section, and see
how different parameters affect the QoS of these algorithms.
As an example, we focus on the effect of quorum related
parameters n (the number of observers) and t (the size of

survival quorums).
In the analysis, we frequently use order statistics [1],

which is defined as follows. Given a set of m inde-
pendent and identically distributed (i.i.d) random variables
{X1, X2, . . . , Xm}, we define X(i) to be the i-th order
statistic of {X1, X2, . . . , Xm}, which is the random vari-
able that represents the i-th smallest value among X1,
X2, . . ., and Xm, where i could be 1, 2, . . ., or m. If Xj

has distribution function G, then we can derive the distribu-
tion function of X(i) as

Pr{X(i) ≤ z} =
m∑

j=i

Cj
m ×G(z)j × (1−G(z))m−j

To simplify the analysis, we only consider the case when
η + ∆ < δp < 2η, in which case p’s suicide condition
at different times are independent and only depends on one
set of messages p sent. For other cases when δp > 2η,
p’s suicide condition at different times are not independent,
and more complicated Markov modeling may be necessary,
but it does not provide additional insight comparing to the
simple case.

Evaluation of TTS

The two algorithms have the same metric TTS, because TTS
only depends on the communication pattern between p and
the observers and the suicide condition, which are exactly
the same for both algorithms. The analysis of TTS is pro-
vided below.

Let random variable RTDj denote the round-trip delay
from p sending a message to an observer xj to p receiving
the response to this message from xj . Let D1 and D2 be two
i.i.d. random variables with distribution function F . Then
RTDj = D1 + D2.3

When the timer timer [i] expires on p, p commits suicide
if and only if p has not received responses to its (i + 1)-
th message from a survival quorum of observers. The du-
ration from p sending its (i + 1)-th message to timer [i]
expires is δp − η. Therefore, the probability of p commit-
ting suicide when timer [i] expires can be given as ps =
Pr(RTD(t) > δp − η), where RTD(t) is the t-th order
statistic of {RTD1, . . . ,RTDn}.

Since at different timer expiration points, p depends on
different messages to decide if it commits suicide, the con-
ditions that p commits suicide at different times are inde-
pendent of each other. Let Ns be a random variable rep-
resenting the number i such that p commits suicide when
timer [i] expires. Thus Ns follows a geometric distribution
with probability ps. Considering that a timer expires on p
every η time units with the first expiration time δp, we have

TTS = η · (Ns − 1) + δp. (6.1)

3The distribution of RTDj can be calculated by a convolution integral.
In general, we omit the details of such formulas in the paper.

9



3 4 5 6 7 8 9 10
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Number of observers (n)

E
(T

T
S

)(
da

ys
)

t=1
t=2
t=3
t=[n/2]+1

Figure 4. E(TTS) as the function of the num-
ber of observers.

Then the expected value and the variance of TTS are given
as: E(TTS) = η(1/ps− 1) + δp,Var(TTS) = (1− ps)/p2

s.
For the computation of E(TTS) and later metrics in the

figures to be shown, we use an exponential distribution for
message delay distribution F with mean time delay to be
0.01 second. The values of other parameters are: η = 0.1s,
δp = 0.15s, and δo = 0.2s.

Figure 4 shows the result of E(TTS) when the number n
of observers varies from 3 to 10, with the size t of survival
quorums being 1, 2, 3 or (bn/2c+1) (the majority quorum)
respectively. The results show that when we use constant
survival quorum size, E(TTS) increases exponentially as n
increases or t decreases, because p has more options or re-
lies on less number of observers to survive. As an example,
when n = 5 and t = 2, the mean time to suicide is about
1.4 hours, while if t = 1, it is increased to 138 hours. More-
over, the majority quorum system (with t = bn/2c+1) does
not behave as well and it has the zig-zag behavior, which is
inevitable when t increases with n.

Evaluation of TTNR

The metric TTNR, time to normal response, has different
results for the two algorithms. Henceforth, to distinguish
random variables for the two algorithms when necessary,
we add a super script L to a random variable for the lease-
based algorithm, and add a super script R for the register-
based algorithm.

For the lease-based algorithm, its response time is deter-
mined by the number of rounds that q needs to communicate
with the observers. Each round last for at most δo− δp time
units. The check() query terminates in a round if and only
if it receives responses from a query quorum of observers.

Since the message delays have the same distribution, we
also use RTDj to denote the round trip delay between q
and observer xj . The probability of check() terminates in a

certain round is given by pr = Pr(RTD (n−t+1) ≤ δo−δp),
where RTD(n−t+1) is the (n − t + 1)-th order statistic of
{RTD1, . . . ,RTDn}.

Let Nr be a random variable representing the number of
rounds needed to terminate a check() query. Since rounds
are independent of one another, Nr has a geometric dis-
tribution with probability pr. Let Rr be the random vari-
able representing the duration of the last round in which the
check() terminates. Variable Rr is independent of Nr, and
its distribution is given below as a conditional probability:
Pr(Rr ≤ t) = Pr(RTD(n−t+1) ≤ t | RTD (n−t+1) ≤
δo− δp). With Nr and Rr, we know that the TTNRL for the
lease-based algorithm is given as

TTNRL = (Nr − 1)(δo − δp) + Rr. (6.2)

For the register-based algorithm, under the condition
that p is alive, a check() query must invoke a total of
bδp/ηc + 2 read()’s. Each read() is completed when q re-
ceives responses from a query quorum of observers, and
between two consecutive read()’s there are a constant pe-
riod of length δp. Let RDj be a random variable repre-
senting the duration of the j-th read operation, with j =
1, 2, . . . , bδp/ηc + 2. All RDj’s are i.i.d, with distribution
the same as RTD (n−t+1). Therefore, the TTNRR for the
register-based algorithm can be easily derived as follows:

TTNRR = δp · (bδp/ηc+ 1) +
bδp/ηc+2∑

j=1

RDj . (6.3)

Figure 5 shows the result of E(TTNR) for the two al-
gorithms with 7 observers and survival quorum size varies
from 1 to 7. As expected, the lease-based algorithm has bet-
ter response time than the register-based algorithm, because
the latter requires three reads with significant time apart to
complete a check(). For both algorithms, the response time
is better with larger survival quorums, because it makes the
query quorum smaller and thus it is faster for q to com-
plete the communication with a query quorum. However,
the change in response time is not very significant with dif-
ferent survival quorum sizes.

Evaluation of TTGD

Metric TTGD, time to guaranteed detection, consists of two
periods as explained in its definition. The first period is
from time t0 when p fails to time t1 after which all invoca-
tions of check() is guaranteed to return Dead . We use ran-
dom variable Tg to represent this period. The second period
is from time t1 when a check() is invoked to time t2 when
the check() returns. We use random variable Td to repre-
sent this period. Then TTGD = Tg + Td. We now calculate
TTGD for each of the two algorithms. For simplicity, we
choose to use approximations in some steps of the analysis
to replace accurate but complicated computation.

10



1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Survival quorum size (t)

E
(T

T
N

R
) 

(s
ec

on
ds

)

Register−based
Lease−based

Figure 5. E(TTNR) as the function of survival
quorum size, with n = 7.

Suppose that the last message p sends to the observers is
its i-th message. We use a random variable FL to represent
the duration from p sending its last message to the observers
to the time p fails (crashes or commits suicide). The value
range of FL is [0, η). When the probability that p crashes
during any particular sending interval is very small, and the
probability of p committing suicide is even much smaller
(for which a reasonable implementation should achieve),
the distribution of FL can be closely approximated by a uni-
form distribution, and can be viewed as indepdent of mes-
sage delays.

For the lease-based algorithm, the first period TL
g ends

at time t1 when a survival quorum of observers have re-
ceived the i-th message from p and their last lease periods
for this message ends. This is because after time t1, when-
ever q sends CHECK messages to the observers and receives
responses from a query quorum of observers, at least one
of the response will be Dead with the largest counter value,
so check() can only return Dead , but before t1 q may still
receive reponses from a query quorum of observers that all
indicate p being alive.

Let LDj be the delay of the last message p sends to ob-
server xj . So LDj’s are i.i.d with distribution function F .
The t-th order statistic of {LD1, . . . ,LDn}, LD(t), repre-
sents the duration from p sending its last message to the
time when a survival quorum of observers have received p’s
last message. Therefore, we have TL

g = LD(t) + δo−FL.4

For the lease-based algorithm, its second period TL
d is

the duration of the check() invoked at time t1. Since the
termination of check() is independent of whether check()
returns Dead or Alive, TL

d is simply TTNRL. Since TL
g

only depends on the messages p sent while TL
d only depends

4This is an approximation, because it omits the case when p crashes
after timer [i− 1] expires, in which case LD(t) must be less than δp− η.

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

Survival quorum size (t)

E
(T

T
G

D
) 

(s
ec

on
ds

)

Register−based
Lease−based

Figure 6. E(TTGD) as the function of survival
quorum size, with n = 7.

on the messages between q and the observers, TL
g and TL

d

are independent of each other. Therefore, for the TTGDL

metric, we have

TTGDL = LD (t) + δo − FL + TTNRL. (6.4)
For the register-based algorithm, it guarantees that any

check() invoked after p fails could only return Dead .
Therefore, its first period TR

g is simply 0. The computa-
tion of the second period TR

d is tedious and is omitted due
to space constraint. The basic idea is to compute the prob-
ability that the check() invoked at the time when p fails re-
quires three read()’s and use this probability to compute the
probability distribution and the mean of the duration of the
check().

Figure 6 shows the result of E(TTGD) for the two al-
gorithms. The detection times of the two algorithms are at
the same level, and in general decreases when survival quo-
rum size increases, because the query quorum is smaller.
However, the changes in E(TTGD) is small when survival
quorum size varies.

When choosing a quorum size, we see that a small sur-
vival quorum size dramatically improves time to suicide
while not significantly degrading response time and detec-
tion time, therefore one should prefer using small survival
quorums, as long as leaving enough room for query quo-
rums to tolerate observer failures. This result provides new
insight different from the work in [12, 6], the two closest
studies on perfect failure detection that both suggest using
majority quorums in failure detection.

7. Conclusion

In this paper we have argued for the investigation of
quorum-based perfect failure detection service. We make

11



significant contributions both in theory and in practice.
From a theoretical point of view, we have provided a speci-
fication of the perfect failure detection service as well as an
accurate description of the system model. We further pre-
sented two novel protocols that implement such a perfect
failure detection service and proved their correctness. From
a practical point of view, the specification and the system
model are both inspired by real distributed systems. The
protocols are simple to implement in practice and have in-
deed been used in some of the systems we build. Finally,
QoS metrics we define have direct practical applicability
and allow practitioners to evaluate different protocols eas-
ily. The future work includes studying alternative models
that do not require stable storage, and studying different
application usage of the failure detection service (such as
periodical monitoring rather than random query).

References

[1] N. Balakrishnan and A. C. Cohen. Order Statistics and In-
ference. Academic Press, 1991.

[2] K. P. Birman and R. van Renesse, editors. Reliable Dis-
tributed Computing with the Isis Toolkit. IEEE Computer
Society Press, 1993.

[3] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th Symposium on
Operating System Design and Implementation, Nov. 2006.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, Mar. 1996.

[5] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors. IEEE Transactions on Comput-
ers, 51(5):561–580, May 2002.

[6] C. Fetzer. Perfect failure detection in timed asynchronous
systems. IEEE Transactions on Computers, 52(2):99–112,
Feb. 2003.

[7] C. G. Gray and D. R. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proceedings of the 12th ACM Symposium on Operating Sys-
tems Principles, pages 202–210, Dec. 1989.

[8] L. Lamport. On interprocess communication; part I: Basic
formalism. Distributed Computing, 1(2):77–85, 1986.

[9] L. Lamport. On interprocess communication; part II: Algo-
rithms. Distributed Computing, 1(2):86–101, 1986.

[10] L. Lamport. The part-time parliament. ACM Transactions
on Computer Systems, 16(2):133–169, 1998.

[11] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and
L. Shrira. Replication in the Harp file system. In Pro-
ceedings of the 13th ACM Symposium on Operating Systems
Principles, pages 226–238, Oct. 1991.

[12] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for stor-
age infrastructure. In Proceedings of the 6th Symposium on
Operating System Design and Implementation, Dec. 2004.

[13] D. Malkhi, F. Oprea, and L. Zhou. Omega meets Paxos:
Leader election and stability without eventual timely links.

In Proceedings of the 19th International Symposium on Dis-
tributed Computing, Sept. 2005.

[14] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proceedings
of the 6th Symposium on Operating System Design and Im-
plementation, Dec. 2004.

12


