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Abstract

Recently, the generative modeling approach to video seg-
mentation has been gaining popularity in the computer vi-
sion community. For example, the flexible sprites framework
has been studied in, among other references, [11,13,14,24].
In general, detailed generative models are vulnerable to in-
tractability of inference and local minima problems when ap-
proximations are made (see, e.g., [25]). Recent approaches
to dealing with these problems focused on inference tech-
niques for increasingly more expressive models. Simpler
models, on the other hand, while less precise, are often not
just faster, but less prone to local minima. In addition, while
many different models may be based on similar hidden vari-
ables, some models may be more amenable to inference of
some of the shared variables, while other models lead to
efficient and accurate inference of other components of the
hierarchical data description. In this paper, we empirically
illustrate that forcing multiple models to share the poste-
rior distribution leads to inference less prone to local min-
ima. We define a set of key hidden variables that describe
aspects of the data that we care about. The relationships
among these key variables are defined through multiple con-
ditional distribution models on the same pairs of variables,
controlled by switch variables. The posterior distribution
over the key hidden variables is shared, and inference of the
switch variables serves as a mechanism for combinatorial
model selection. The key observation here is that while the
most expressive model often ends up a winner by the end of
the iterative learning of model parameters, early iterations
are dominated by simpler model components, and upon con-
vergence, the free energy is lower than the ones reached by
switching on all the most complex components from the be-
ginning of the learning. We illustrate the performance of this
approach on the unsupervised video segmentation task.

1. Introduction

Generative models, due to their hierarchical nature, and
the ease of incorporating known structure of the data in their

design, have provided popular tools for analysis of natural
signals, e.g., images, video, audio, gene expression data, se-
quence data, etc. Through probabilistic inference, the gen-
erative modeling paradigm provides a way of teasing apart
a variety of hidden causes of data variability. However, in-
ference in most interesting models of natural phenomena is
intractable, and so recent research in the area has focused on
a variety of approximate inference and learning techniques,
such as structured variational methods [5, 6], (loopy) belief
propagation, sampling, etc. We argue in this paper that in-
stead of focusing on inference in the most expressive model
of the data, it is often possible to build a (redundant) struc-
tured model that is amenable to simple inference techniques.
Such a model can be constructed out of the sets of alterna-
tive conditionals for each of the hidden and observed vari-
ables. Some of the alternative conditionals use simplified
parameterizations and/or dependence structures in order to
regularize learning, replace more complex but failing expla-
nations, and, most importantly, avoid local minima to which
approximate inference is particularly prone. On the other
hand, the more expressive forms of the conditionals pro-
vide detailed explanations for the variability in the data. We
show empirically that during variational inference in such
models, for most random initializations, simple components
are automatically chosen in early iterations, while the more
expressive components prevail in later iterations, once the
model parameters have sufficiently evolved away from infe-
rior local minima.

Combinations of models or experts have been proposed
before. For example, [1–3] propose mixing simple experts,
usually in a supervised framework. Defining the probability
distribution over data as a normalized product of individ-
ual distributions was proposed in [4]. In these approaches,
the experts are independent and do not share the results of
their internal inference. Variational Bayesian model selec-
tion, e.g., [7], provides a way to share the posterior distri-
bution over models, but the models typically have identical
parameterizations with only varying complexity. Further-
more, this paradigm allows for selection of a single model
over all variables, while we want to be able to select for
parts of the model, leading to combinatorial model selec-



tion. We note that the earlier work on structure learning,
e.g., the structural EM in [8], has this property not in the set
up, but in a way the search for the structure is conducted.
However, the goal in structure learning is to properly evalu-
ate the posterior distribution over the models, while we are
interested in optimizing the likelihood of the data. Optimiz-
ing the likelihood of the data typically leads to selecting the
most complex structure among the ones provided, but in our
recipe, that structure is usually known a priori to be the best,
and finding it is not the main goal. Instead, our goal is to use
other models to steer the learning away from local minima
of the likelihood under the best model. In addition, a hierar-
chical combination of models can be more expressive as was
the case in other switching models, e.g., [10], which switch
between the models to adapt better to various data samples,
rather than to discover a single model for the entire dataset.

To illustrate how the hierarchical model selection during
iterations of general EM helps avoid local minima, we fo-
cus on one of the unsolved computer vision problems, the
unsupervised segmentation of video into moving and possi-
bly occluding objects. In [11], it is argued argued that the
solution to this problem would have to involve joint model-
ing of several most important causes of variability, such as
appearance variability, object motion and segmentation vari-
ables, and a new framework for video segmentation, dubbed
“flexible sprites”, was derived starting from the determinis-
tic setup of [12]. The flexible sprites are meant to be used in
a fully unsupervised manner, without separating the training
and testing procedures. The input to the algorithm is simply
a video sequence, and the output are the appearance mod-
els of individual objects, and their particular positions and
segmentation in various frames. However, each of the hid-
den variables in the model can be modeled in several ways.
For example, appearance models of individual objects can
be based on per-pixel mean and variance maps as in [11],
or they could be made more expressive as in [15] or sig-
nificantly simplified as in [20]. Among these techniques,
the more complex ones can capture object structure in more
detail, but the simplest ones can deal with large deviations
from the basic object structure and lead to faster conver-
gence. Adapting the model of the appearance from frame to
frame has also been attempted, e.g., [9], but the robustness of
online techniques is usually highly dependent on the amount
of frame-to-frame change in motion and appearance, and
precludes re-registering to the objects when they reappear in
the scene. Sprite mask models and motion models reported
in literature are equally diverse [11, 13–16,18, 21, 24]

In the next section we setup a general framework for us-
ing various representations of model parts in concert during
learning, switching between them in a way that optimizes the
free energy of the hierarchical model. Then, in Section 3, we
illustrate the framework on the task of video segmentation,
using two different representations (conditional distribution

forms) for appearance and two different representations for
object mask. Finally, in Section 4 we describe various alter-
native components that we have included in a large hierarchi-
cal switching model capable of capturing object appearance
and deformation changes that are considerably harder than
the ones tackled by graphical models in the past.

2. Hierarchical switching of conditionals

Consider a model with three multidimensional hidden
variablesh1, h2, h3 and one multidimensional observed vari-
able x, Fig. 1(A). Suppose that we believe that the model

p1(x, h1, h2, h3) = p1(h1)p1(h2|h1)p1(h3|h2)p1(x|h2, h3),

and particular parameterized forms of the condi-
tionals p1(h1; θ1,1), p1(h2|h1, θ2,1), p1(h3|h2, θ3,1),
p1(x|h2, h3, θx,1) are considered to capture well all or at
least most of the data. The subscript 1 indicates that this
is the first variant of the model we consider, as we will
shortly introduce others. To estimate the parameters θ
of the model from the data x1, x2, ..., xt, ..., we can use
the EM algorithm, or if that is intractable, we can use
variational learning, or some other approximate technique.
In any case, the exact maximization of the likelihood of the
data is typically not guaranteed to be achieved within the
computational resources allocated to the task, and some
algorithms, esp. a single run of the EM or variational
learning only guarantee local optimality regardless of the
amount of computation performed. Also, the chances of
getting stuck in a local minimum of the free energy is
empirically known to increase with the complexity of the
model.

However, a number of simpler models potentially less
prone to local minima problems, but also less precise, may
be easily expressible. In fact, each of the hidden vari-
ables can be generated in multiple ways using different
conditional distributions. For instance, variable h2 may
only slightly depend on h3, and so it can also be gener-
ated (although sometimes incorrectly) by another distribu-
tion, p2(h2; θ2,2). Alternatively, we can generate h2 from
a conditional distribution dependent on h1 but of a simpli-
fied form p3(h2|h1, θ2,3). Variable h3 may be generated not
from h1, but from h2 through p2(h3|h2, θ3,2). Or, h3 can be
independently generated from p3(h3; θ3,3). Finally, we can
describe generation of the data x in multiple ways, too, e.g.,
p2(x|h2, θx,2), or p3(x|h1, θx,3).

To select among the conditionals, we introduce switch
variables s1, s2, s3, sx, so that, for example, condi-
tional distribution over h3 becomes p(h3|h1, h2, s3) =
p1(h3|h1, θ3,1)[s3=1]p2(h3|h2, θ3,2)[s3=2]p3(h2; θ3,3)[s3=3],
or simply p(h3|h1, h2, s3) = ps3(h3|h1, h2, θ3,s3), and the



joint distribution is

p(x, h1, h2, h3, s1, s2, s3) =
p(s1, s2, s3, sx)ps1(h1; θ1,s1)ps2(h2|h1, θ2,s2) ×
ps3(h3|h2, h1, θ3,s3)psx(x|h1, h2, h3, θ0,sx), (2)

where the prior p(s1, s2, s3, sx) puts zero mass to configura-
tions where s1 �= 1, since in this example we have assumed
only one form of the distribution on h1. The nine possible
configurations of the switch variables define nine possible
models.

In general, a graphical model that switches among differ-
ent forms of each conditional can be written as:

p(x = h0, {hk, sk}) = p({sk})
∏
k

psk
(hk|pa(hk), θk,sk

), (3)

where we allow dual notation for the data x = h0
when needed for simplification. For different val-
ues of sk ∈ {1, ..., Sk}, the individual conditionals
psk

(hk|pa(hk), θk,sk
) may have different dependence struc-

tures (the dependence on different subsets of pa(h)), or com-
pletely different forms and parameterizations, even when the
dependence structures are the same. Some of these models
of hk are simple, while others are complex and they are de-
fined by parameters θk,sk

, which, in general, we aim to learn
from the data.

Variational inference minimizes the free energy F =∫
q log q−∫

q log p, with respect to the posterior q, where the
integral denotes both integration over continuous variables
and summation over discrete variables. In addition, given a
set of observations {xt}, we can estimate the model param-
eters. For example, if the data points xt are independently
generated, then

F =
∑

t

∫
qt log qt − (4)

−
∫

qt log p({st
k})

∏
k

pst
k
(ht

k|pa(ht
k), θk,sk

),

and iterative minimization of F with respect to the qt dis-
tributions and model parameters θ leads to approximate pa-
rameter learning. The q distribution over hidden variables
{hk}K

k=1, {sk}K
k=0 can have any form as long as it is normal-

ized, but choosing certain factorized forms leads to faster al-
gorithms, and the ability to use switches to adapt the model
structures differently to different data points is likely to be
useful in many applications. We will focus on the case where

qt({ht
k}K

k=1, {st
k}K

k=0) = q({ht
k}K

k=1)q({st
k}K

k=0) (5)

There is a combinatorial explosion of possible mod-
els achievable by independently selecting conditionals,
and if the switch variables are assumed to be iden-
tical for all data points, then computing the posterior

q({st
k}K

k=0) = p({st
k}K

k=0|x1, x2, ...xt) while learning the
parameters would be equivalent to the structure learning task
in [8]. Using different switch variable configurations for dif-
ferent data points would be a generalization of the previously
proposed adaptation to different regimes, for example, [10].
The key property that we are after, however, is the sharing of
the posterior among different models, which is considered
an approximation in variational inference, e.g., [7], but actu-
ally helps avoid local minima of generalized EM, as shown in
the next section. Note also that approximating the posterior
distribution, e.g. as q({st

k}K
k=0) =

∏
k q(sk), leads to more

efficient adaptation than in [7], regardless of whether the
goal is structure posterior estimation or regime adaptation.

An interesting empirical observation, which we wish to
emphasize in this paper, is the following. Suppose that a
single model structure is by far the best, e.g. sk = 1, for all
k. This structure is either the true model, i.e. the data was
indeed generated from it, or at least it is the best among the
alternatives, so that variational optimization of (5) using the
factorized posterior yields upon convergence in parameters
θ the deterministic posterior1 over models q({st

k}K
k=0) =∏

k[sk = 1], where [] is an indicator function. Plugging this
posterior back into (5), we get

F = T × p({sk} = 1)+
∑

t

∫
q({ht

k}K
k=1) log q({ht

k}K
k=1)

−
∫

q({ht
k}K

k=0) log
∏
k

p1(ht
k|pa(ht

k), θk,1), (6)

where p({sk} = 1) denotes the prior probability of the
model where each sk = 1, i.e., p(s0 = 1, s1 = 1, ..., sK =
1). Apart from the constant additive term T ×p({sk} = 1)2,
this is exactly the free energy of the single best model.
However, direct iterative variational optimization of this
free energy for the single best model may consistently re-
sult in higher free energy than indirect optimization of (5),
even when optimizing the latter leads upon convergence to
q({st

k}K
k=0) =

∏
k[sk = 1]. In other words, the use of other

models during the early iterations of variational optimization
sets the algorithm in the direction towards better local min-
ima. Optimization of (5), however, may not be significantly
more expensive, as severe approximations of q({ht

k}K
k=1),

with appropriate factorizations of q({st
k}K

k=0), can lead to
algorithms whose complexity increases only marginally.

3. A quantitative analysis of flexible sprite
learning by conditional switching

In this section we give a practical example of the above
claim. As indicated in the introduction, we focus on learning

1If we have an appropriate prior over the model structures p({sk}),
then the posterior may not be able to reach a deterministic distribution, but
will often get fairly close.

2T is the number of training samples here.



flexible sprites from video [11], but for simplicity limit our-
selves to the case of just foreground and background layers.
This simplification yields four (possibly multidimensional)
hidden variables f, b, m, T for each frame x in a sequence.
In this section we also assume that the frames are indepen-
dently generated. The mask image m = {mi} is a set of
binary variables mi, one for each pixel i in the foreground
image f . The variable mi indicates if pixel i is opaque and
thus contributes to the image x, or is (fully) transparent, in
which case the appropriate pixel in the background image b
makes a contribution. The foreground image f undergoes
a transformation before contributing to the frame x, and for
simplicity we focus (in this section only), on translations as
the only allowable transformations. Then the conditional
distribution over the data pixels can be written as

p1(x|f, b, m, T ) =∏
i

N (xi; fi−T , σ2)[mi−T =1]N (xi; bi, σ
2)[mi−T =0] (7)

The prior over all possible discrete shifts T is set to be uni-
form p1(T ) = const, and as indicated above the transforma-
tion only transforms the foreground and the mask, but leaves
the background unaffected. The distribution over the static
background image b is given by the same Gaussian sprite
model as in [11], i.e., p1(b) =

∏
i N (bi; µb

i , φ
b
i ). For the

purposes of this section, the above defined models are the
only versions of the appropriate conditionals. However, we
allow two different ways of specifying the distribution over
the foreground image f , and two different different ways of
specifying the distribution over the mask m.

The first model for the foreground image f is again based
on the set of position-specific Gaussians as in, for example,
[11, 13, 14],

p1(f) =
∏

i

N (fi; µ
f
i , φf

i ),

but the second one assumes position-independent mixture
model,

p2(f) =
∏

i

C∑
c=1

λcN (fi; µf,c, φf,c).

The latter is akin to histograms often used as simplified tools
for sorting through images by using global color similarity
and ignoring the actual structure of the object. This model
can represent much more variability in object appearance
at the cost of over-generalizing and thus providing little ap-
pearance separation from the background.

The first model for the mask is also position-specific, as
in [11, 13, 14],

p1(m) =
∏

i

p1(mi),

where p1(mi = 1) is the probability that the i-the pixel in the
foreground is opaque (i.e., it occludes the background pixel
it happens to be in front). The second model for the mask
ties the masking probabilities for all pixels to the coordinates

of the object center η, and the elliptical shape described by
the projection matrix R

p2(m) =∏
i

e−(ε+‖R(i−η)‖2)[mi=1](1 − e−(ε+‖R(i−η)‖2))[mi=0],

where ε is a fixed small constant that ensures that no pixel in
the foreground will be fixed as opaque. R is the orthogonal,
but not orthonormal, matrix that controls the orientation and
an aspect of an ellipse centered at η, and the amplitude of its
rows determine how quickly the probability of opaqueness
drops from the object’s center η along the ellipse’s axes. It
is clear how this model can serve to regularize the learn-
ing – most objects have a localized spatial content which
can roughly be approximated with a probabilistic elliptical
shape. While this model has little chance of fully explaining
complex objects, it is less likely to lock onto local minima in
which several disconnected parts of a scene are associated
with the foreground.

Finally, hidden switch variables sf ∈ {1, 2} and
sm ∈ {1, 2}, choose the particular forms of the alterna-
tive conditionals for each frame. This leads to a model
of the form (3), which we trained on the data illus-
trated in Fig. 1, approximating the true posterior condi-
tioned on all frames {xt} by a fully factored form qt =
q(st

f )q(st
m)q(T t)

∏
i q(bt

i)q(f
t
i )q(m

t
i), with Gaussian dis-

tributions for q(fi) and q(bi), and discrete distributions for
q(mi) and q(T ). We minimized the free energy (5) for sev-
eral sets of constraints on q(st

f ), q(st
m), always using the

same update schedule for the unconstrained parts of q. These
sets of the constraints are as follows:

• Ellipse/histogram – q(st
m) = [st

m = 2], q(st
f ) = [st

f =
2], for all t

• Mask/histogram – q(st
m) = [st

m = 1], q(st
f ) = [st

f =
2], for all t

• Ellipse/Sprite – q(st
m) = [st

m = 2], q(st
f ) = [st

f = 1],
for all t

• Mask/Sprite – q(st
f ) = [st

f = 1], q(st
m) = [st

f = 1]
for all t

• All equal – q(st
f ) = 0.5, q(st

m) = 0.5 for all t

• Adaptive – no constraints on discrete distributions
q(st

f ), q(st
m)

We generated 15 random uninformative initalizations for
model parameters and q distributions. The means of the
posterior distributions, and the means of the background
and foreground prior are set to the mean intensity of the
dataset with added random noise of small intensity, and the
variances are set to unity. Color histogram (mixture) model
is set to the histogram of the whole dataset. Mask ellipse



center η is chosen randomly in the image, and the shape
matrix R is set to be wide, and so on. In the case of the
adaptive model, which is free to vary the structure during
learning so as to best optimize (5) in each step, we initialize
the structure posterior to uniform q(st

m) = q(st
f ) = 0.5. For

each of generated random initializations, and for each of the
above sets of constraints on the structure posterior, we run
the same variational learning algorithm which iterates up-
dates on model parameters and q functions in the same order
(except that in the non-adaptive cases, q(st

m) and q(st
f ) are

not updated).

The results are summarized in Fig. 1(B), where we show
the average over 15 runs of the log likelihood bound (negative
free energy −F ) after each iteration and for each of the
model structures above. One iteration consists of one pass
through updating q distributions, and then updating all model
parameters once, corresponding to one variational E step
and one M step of a generalized EM algorithm. It should
come as no surprise that for this data the mask/sprite model
outperforms other fixed model combinations. However, the
adaptive model which allows updating of the model structure
in each iteration, as described in the previous section, reaches
an even higher average bound (and perceptually always near-
perfect segmentation of the foreground object). This is true
even though in all fifteen runs, the estimated q(st

m) and q(st
f )

distributions end up being the same as for the mask/sprite
model (choosing the first variant of each conditional in each
frame). This is due to the help the adaptive model has from
the simplified models, more suitable to inference with only
slightly evolved parameters in the early iterations of learning.

During the first iteration of variational learning, the adap-
tive model puts most of the probability mass into the elliptical
shape model, i.e. q(st

m) = 2, as well as into the histogram
model of appearance q(st

f ) = 2, for many frames in the
sequence. After the second or third iteration, the ellipti-
cal shape model is typically turned off, and almost all the
mass goes to the fully expressive mask model. The fully ex-
pressive sprite model replaces the histogram for most data
points by the fifth iteration, and by the end of learning no
single frame is explained by the simpler conditionals. Given
the data that fits, and the overwhelmingly stronger modeling
power of the mask/sprite model, without any punishment for
model complexity, it is not surprising that this model pre-
vails at the end of joint structure and parameter optimization.
However, it is an important observation that an opportunity
to use simpler descriptions of the data in early iterations of
learning, while parameters are still imperfect, leads to es-
caping local minima more efficiently than random restarts.

Intelligent initializations for complex models, annealing
or other types of direct intervenion on the outputs of each
EM iteration, have all been used to nudge EM out of local
minima. We believe that the use of switching conditionals is
a cleaner, more automatic, and powerful way of escaping lo-

cal minima, as this framework guarantees convergence and
local optimality of the result, since each iteration reduces
the free energy. Furthermore, the switching models inter-
act in a much more sophisticated and adaptive way during
variational learning than is true in most heuristic implemen-
tations. Finally, the modularity of variational algorithms
allows easy combination of existing variational inference
engines by passing q distributions and expectations under q
distributions between modules [17].

To further illustrate this qualitatively, in addition to the
above small scale quantitative study, we combine in the next
section several ways of representing a video sequence and
run the variational hierarchical switching model learning on
it, achieving a reasonable unsupervised extraction of a video
object undergoing considerably harder shape and appearance
changes against a much more confusing background clutter
than the previous cited graphical models could cope with.

4. Flexible sprite learning using hierarchical
switching among many conditionals

In this section, we describe a hierarchical generative
model which uses the same basic hidden variables as the
flexible sprite model [11] limited to two moving sprites (fore-
ground/backround), but describes relationships among them
through many different conditional distributions, automati-
cally selected so as to maximally minimize the free energy
in each step of learning. These different modeling strate-
gies lead to automatic mining of various image cues, such as
consistency in motion, the extent of color variability within
a sprite in a single frame, global color consistency of the
sprite, shape consistency across frames, and shape contigu-
ity within a frame.

As before, the basic variables include foreground sprite
f , background sprite b, discrete mask m, and transformation
T . The transformation model is enriched to include scale in
addition to shift, so instead of notation i − T , we will use
T (i) to denote the change in coordinate due to transforma-
tion. The global appearance histogram model in the previous
section is replaced by a local (per-frame appearance model),

p2(f t) =
∏

i

C∑
c=1

λc,tN (f t
i ; µ

f,c,t, φf,c,t), (11)

to allow palette change as in the PIM model of [19]. Further-
more, the background model b also has the same variants as
the foreground model, and has its own transformation vari-
able Tb. In addition to per-pixel mask prior and the elliptical
model of the previous section, the mask distribution for each
frame is also expressed by

p3(mt+1|mt, T t, T t+1) =∏
i

ε

[
mt+1 �=mt

T t+1(T t)−1(i)

]
(1 − ε)

[
mt+1=mt

T t+1(T t)−1(i)

]
,



which creates an expectation that the inferred masks in
neighboring frames should be similar (T−1 denotes the in-
verse transformation).

We also use an alternative MRF mask prior p4(m|f)
which favors short segmentation boundaries aligned with
intensity gradients in the image. In addition to extending
the number of conditionals, we also introduce new hid-
den variables for each frame, which we adopt from the
over-segmentation model of [23]. This model was found
to be amenable to variational inference of dense optical
flow, but insufficient for grouping the segments into coher-
ent objects. The added variables include the pixel displace-
ment (flow) field {di}, the image oversegmentation {gi},
gi ∈ {1, ..., K} into a large number of segments that have
coherent motion and color within a frame, and the matching
variables {hk}K

k=1, where hk is the index of the segment in
the next frame that corresponds to the segment k. The over-
segmentation is treated as an alternative model p2 to gen-
eration of frame pixels in (7), where each pixel observation
xi is treated here as a combination of color ci and position
ri = i, and generation of a pixel is assumed to follow

p2(xi = {ci, ri}|gi) = N (ci; ξgi , Σgi)N (ri; ζgi , ∆gi),

where gi denotes the segment to which pixel i belongs, and
the ξ, and ζ are the color and spatial means of the segments,
similar to [21] which used many fewer segments (in our
experiments we use several hundred segments per image).
Then the alternative conditional to (7) is

p2(x|g) =
∏

i

p2(xi = {ci, ri}|gi). (12)

The segmentation gi is similar to the foreground-background
segmentation mi, except that mi is binary, and the number of
possible segments K is large. We would expect that group-
ing of segments leads to inference of mask m and object
extraction, and so the oversegmentation g provides the fifth
way of generating the mask. Each segment k has associated
probability of its pixels being opaque p5(mi|i belongs to k)
and these can be used as an alternative way of generating
masks: p5(m|g, T ) =

∏
i

p5(mi|gT −1(i)) (13)

In addition, by looking at the segment mapping one or more
frames into the future or into the past can provide additional
conditional distributions like the ones above. (In our exper-
iment, we use the entire segment track).

The segments’color means are generated by either a broad
Gaussian distribution, or a Gaussian process p(ξt+1

hk
|ξt

k)
based on mapping variables hk.

One of the conditionals on segmentation is simply flat
p1(gi) = const, while the other copies the segmentation
from the previous frame using the displacement field di

p2(gt+1
i |di, g

t) = ρ

[
gt+1

i =hgt
i−dt

i

]
(1 − ρ)

[
gt+1

i �=hgt
i−dt

i

]

Parameter ρ, like the parameter ε in the mask case, controls
the strength of the influence of the previous frame’s segmen-
tation on the current segmentation.

The displacement field is defined by several conditional
distributions in the hierarchical model. The first of them is
the analogue of equation (7),

p1(d|df , db, m, T ) =∏
i

N (di; d
f
T (i), σ

2)[mT (i)=1]N (di; db
i , σ

2)[mT (i)=0] (15)

which introduces hidden foreground and background dis-
placement fields df , db, generated by the same set of mul-
tiple conditional forms as their appearance equivalents, just
replacing 3-D color with 2-D flow vectors.

In addition, the displacement field variables are connected
into an MRF p2(d), and also into a model p3(d|g, h) which
enforces that each pixel’s flow is equal to one of the segment
displacements [23],

p3(d|g, h) =
∏

i

(
1 −

∏
k∈εi

(
1 − [di = ζk − ζhk

]
))

, (16)

where εi denotes the segment assignments of the neighbor-
ing pixels, and includes gi.

As before, switch variables, one per the above described
hidden variables with alternative conditionals, complete the
hierarchical model. Because of the presence of normalized
MRF-s as conditionals, some parameters of the model cannot
be estimated in the M step of generalized EM so as to guaran-
tee reduction in free energy. These parameters, namely the
ones controlling the MRFs, can apparently be varied without
significant impact on the learning of the other more important
parameters, so we set the MRF parameters by hand and do
not update them. Using a fully factorized variational poste-
rior, we iterated free energy minimization until convergence
on the video whose few frames are shown in Fig. 2. This
resulted in a fully unsupervised segmentation of the person
in video, without any manual input into the algorithm, as
illustrated in Fig. 2 and in the videos available in the sup-
plemental material. The video finalcolor.avi illustrates both
the input video and the final inferred segmentation mask
m: the color in the background regions (where m = 0)
is suppressed, while the foreground layer (where m = 1)
has its original color. The video segOutSmall.avi, illustrates
some intermediate variables. Boundaries in the fine seg-
mentation map described by the variables g are shown by
white lines, and each segment is colored in the mean seg-
ment color ξ. The segmentation tends to be consistent for
at least several frames due to local constraints in the model
(equations 9-11), but not consistent enough to lead directly
to foreground-background segmentation on its own.3

3The match variables h describe motion tracks consisting of matched
segments. About 30% of these tracks are longer than 20 frames.



As can be seen in the figure and the videos, the foreground
object exhibits significant variability in illumination, pose
(both rigid and articulated), position, scale, and nonuniform
deformation. The sunny conditions caused the shirt of the
subject to change color from saturated white to dark blue
in the video, and the overall color distribution on the body
is complex, including skin and hair hues. The background
scene is even more complex and includes several objects in
motion, and equally complex changes in illumination. Fi-
nally, the camera is in motion, making both layers non-static.
In fact, in this case, even the most highly parameterized com-
bination of the conditionals described above may not be ca-
pable of discerning the foreground from the background in
all frames. However, the hiearachical model switching al-
lows for automatic individual model component adaptations
to different frames, while polling of simpler models helps
avoid local minima in early iterations of the variational EM
(iterative reduction of free energy with respect to posterior
and model parameters). The algorithm automatically uses
multiple descriptions of the scene which differently express
general video characteristics, such as smoothness of motion,
slow change of color and loose consistency of object appear-
ance across frames, or slow evolution of object shape.

The resulting segmentation goes beyond what graphical
models reported in literature can accomplish in unsupervised
settings. (Note that the object was not segmented out in the
first frame as in some tracking setups, nor was any model
parameter initialized in an informative way). In this case,
the hierarchical switching not only helped in avoiding local
minima, but also provided additional expressive power, as
some of the frames in the video are much better expressed by
the added alternatives to the basic flexible sprite description.

5. Conclusions

We provide an approach for inference in detailed graph-
ical models, which does not improve on techniques for ap-
proximating posterior distributions, but rather proposes in-
clusion of switchable additional conditionals in various parts
of the basic model. The ability to switch some of these mod-
els on during early iterations of variational learning then
helps to avoid local minima even when simple variational
approximations are used. Furthermore, as in some previous
specialized cases of switching models, some alternative con-
ditionals may be necessary to improve the overall modeling
power. We find that this approach dramatically improves the
performance on a very hard unsupervised video segmenta-
tion task, while essentially using similar individual condi-
tional models to the one previously studied in isolation in the
literature. It may be possible to extend the switching model
of the last section not only to improve segmentation, but also
so that it can be used for recognition of recurring objects in
long sequences or multiple sequences.
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Figure 1. (print or view in color) (A)The graphical model example from Section 2 extended with multiple conditionals and switching variables
so that setting s1 = s2 = s3 = 1 reduces it back to the original model, while the additional possible models obtained combinatorially for
three settings of s2 and three settings for s3 can help reduce local minima prolems in variational parameter learning. (B) A comparison of
different settings of switch variables in Section 3 on the performance of unsupervised extraction of the scissors in the video whose one frame
is shown above. The scissors move translationally from left to right and back. The Y coordinate in the plots denotes the negative of the free
energy (log likelihood bound), and the X coordinate is the iteration number (from 3 to 12). A closeup of the curves after 10th iteration is
also shown with an indicated two deviations spans for the top two models - adaptive and mask/sprite. The two deviation marks for all curves
are drawn in dashed lines. Learned parameters after typical runs are shown for four models for qualitative comparison of the results. To
make task more difficult, the models worked with gray-level frames. The metal scissors reflect light in variable directions creating difficult
appearance variability.

Figure 2. (print or view in color)A few frames from a 180-frame long video sequence with a foreground object undergoing severe deformations
in appearance and shape due to nonrigid motion and illumination effects on a sunny day. The background itself contains complex motion
and illumination changes. The middle column shows the mode of the posterior distribution over pixel masks and the right column shows
the resulting segmentation. (See also the supplemental videos at www.research.microsoft.com/∼jojic/mm.html)


