
Scaling Peer-to-Peer Games in Low-Bandwidth Environments

Jeffrey Pang
Carnegie Mellon University

Frank Uyeda
U. C. San Diego

Jacob R. Lorch
Microsoft Research

Abstract— In peer-to-peer multiplayer games, each
peer must send periodic updates of its objects to other
peers. Since typical broadband users have little upload
bandwidth, updates to each player will be infrequent
when there are many players in the game. This
leads to choppy and unsatisfying gameplay. Therefore,
we propose three techniques to compensate for low
upload bandwidth in peer-to-peer games:focus sets,
pairwise rapid agreement, and guidable AI. To test
these techniques, we implement them and conduct
a user study that evaluates the resulting game. We
find that our techniques make a game played with
low bandwidth significantly more fun than existing
techniques, and nearly as much fun as one played
on a LAN. Thus, they enable an order of magnitude
more players than existing techniques.

I. I NTRODUCTION

Online multiplayer games have become an important
part of the computing landscape. There is a growing
desire to serve these games using the machines of par-
ticipants themselves rather than with dedicated servers.
Using participant machines reduces subscription costs,
eliminates dependency on centralized infrastructure, and
automatically scales to an arbitrary number of clients.
Moreover, one common concern about this approach —
the increased risk of cheating — is mitigated by several
recently proposed techniques [7].

In proposed peer-to-peer (P2P) architectures [8, 12],
each peer is responsible for a subset of all game objects,
and sends updates about those objects to peers interested
in them. Thus, each peer requires enough upload ca-
pacity to send updates to all interested peers. However,
residential upload rates are typically quite limited, e.g.,
only hundreds of kb/s in the United States [1]. This is
insufficient to support games with dozens or hundreds
of interacting players. Area-of-interest filtering can help,
but cannot eliminate the problem; e.g., if updates require
16 kbps and a player with 128 kbps is in sight of more
than 8 other players, his peer simply does not have enough
bandwidth to send updates as often as the game requires.
For this reason, we are developing a new architecture,
called Donnybrook, to enable large-scale P2P games even
in environments with highly constrained bandwidth.

In this paper, we discuss the techniques we use in Don-
nybrook to improve game playability in low-bandwidth
conditions. The main insight that enables our approach is
that human attention is bounded by a constant. Thus, the
amount of attention in a game grows only linearly with

the number of players, not quadratically. Our techniques
enable each peer to send frequent updates only to those
players focusing attention on its objects, while preserving
timely and consistent interaction and realistic movement
for all objects.

To evaluate our techniques, we modify Quake III,
a popular first-person shooter (FPS) game, to run on
Donnybrook. We present the results of a large user study,
which show that Donnybrook substantially increases the
enjoyment of P2P Quake III in a low-bandwidth en-
vironment. Moreover, our results show that players are
nearly as satisfied in a low-bandwidth environment with
Donnybrook as they are in a high-bandwidth environment,
such as a LAN. Based on this study, we estimate that
Donnybrook increases the number of players that can be
in a game by an order of magnitude.

II. BACKGROUND

In P2P architectures for FPS games, like Colyseus [8],
each player’s peer is responsible for a subset of all
game objects. The peer responsible for an object runs the
primary of the object, and each other peer interested in it
maintains areplica. The responsible peer sends updates to
replicating peers eachframe, which typically occurs every
50 ms. An update encodes the object’s changes since the
last frame. For example, Bob’s peer may be responsible
for Bob’s avatar and missiles that he fires. When Alice
can see one of these objects, her peer creates a replica
of it. Bob’s peer sends Alice’s peer periodic updates so
Alice always sees an up-to-date version.

When the sender has insufficient bandwidth to send
updates every frame, it must skip some. Due to the fast-
paced nature of FPS games, if the rate drops even slightly
below the nominal 20 updates per second, transitions
between updates appear “choppy.” For example, because
dead-reckoning [14] cannot handle delays longer than a
few hundred milliseconds in FPS games, player avatars
will appear to warp between positions instead of running
smoothly between them.

Existing architectures use area-of-interest filtering to
limit the number of updates a peer must send. With such
filtering, when two players cannot see each other, their
peers need not exchange updates. However, in many game
maps, all players are always visible. Even in maps that
are partitioned, the popularity of different areas followsa
power-law distribution [8], so some areas will have many
players visible to each other. Therefore, additional tech-
niques to compensate for low-bandwidth environments are
essential. Donnybrook employs several such techniques.

III. D ONNYBROOK

Donnybrook’s design is based on three principles, each
of which suggests one of our three techniques:

Players have bounded attention.A human has a fixed
“attention budget” and, hence, can only focus on a con-
stant number of objects at the same time [10, 15]. For
example, even in a large firefight, a player will tend
to focus on his or her current target. This principle
implies that the aggregate amount of attention in the
game grows only linearly with the number of players, not
quadratically. As a consequence, there is always sufficient
capacity, within a constant factor, to maintain update rates
proportional to player attention. Thus, an object’s update
rate to a player should vary based on his or her attention
on the object. Ourfocus set technique implements this
differentiation in update rates.

Interaction must be timely and consistent.The focus
of online games is player interaction, so it is critical
that interactions occur in a timely and consistent fashion.
For example, when a player kills another, both players
should observe the death immediately. Players expect
targets of lethal shots to die within milliseconds, so even
small delays are jarring. Moreover, if an interaction is not
observed consistently, then out-of-band channels such as
chat may reveal the inconsistency. This principle suggests
prioritizing interactions, i.e., inter-object writes, over other
updates. Ourpairwise rapid agreement technique achieves
this prioritization.

Realism should not be sacrificed for accuracy.An
out-of-focus object that violates game realism is more
likely to be noticed than one that is portrayed with small
inconsistencies. For example, it is more important to
ensure that the change of a replica’s position obeys game
physics than to minimize its error with respect to the
primary. Ourguidable AI technique achieves this realism.
Guidable AI makes replicas act in a realistic manner
between updates, unlike traditional replicas which only
perform dead-reckoning of position between updates.

The following subsections discuss each of these three
techniques in detail.

A. Focus Sets

Since player attention is limited, we vary update rates
based on estimated player attention. More formally, let
Aij be an attention-value representing the amount of
attention peeri estimates that playeri has on playerj.
Peer i occasionally computes and sendsAij to peer j,
piggybacking on updates.

Peerj uses the received attention values to decide how
often to send updates to peers. It sends updates to peers
with the highest attention-values every frame, and to the
rest at whatever frequency is possible given the remaining
bandwidth. We call the set of peers receiving per-frame
updates thefocus set. The frequency of updates to peers
not in the focus set is the best-effort rate.

A fixed fraction of bandwidthFα is assigned to the
focus set. During each frame, peerj computes the number
of bytes it can send that frame, multiplies this byFα, then
divides by the update size. This givesn, the allowable
size of the focus set for that frame. That frame’s focus
set contains then peers with highestAij values. After
sending updates to those peers, peerj uses the remaining
bandwidth to send updates to the peers updated least
recently.

We compute the attention-value as the weighted sum
of metrics that we believe are correlated with player
attention. In other words,Aij =

∑m
k=1 wkF

(k)
ij , where

F (1), F (2), . . . , F (m) are our m metrics, andwk is the
weight for metricF (k). We currently use three metrics:

Proximity. Players are more likely to pay attention to
close objects. Thus, we use the following proximity met-
ric:

F
(1)
ij = max{(1 − dist(i, j)/Dmax)1.5 , 0},

where Dmax is about 1/2 the diameter of a map. The
exponent 1.5 is based on the rate at which objects become
visually “smaller” as distance increases.

Aim. Players are more likely to pay attention to objects
they are aiming at. Let theaim deviation aij from player
i to player j be the angle between playeri’s forward
vector and the vector from playeri to player j. Since
instantaneous aim can be erratic, our aim metric uses
the more stablêaij , an exponentially weighted moving
average ofaij . Our aim metric is

F
(2)
ij = max{(1 − âij/45◦)1.5·log(dist(i,j)) , 0}.

We assume players are paying little attention to objects
beyond the90◦ visible cone. We multiply the fall-off rate
by log(dist(i, j)) because more objects are visible at larger
distances and they appear smaller; thus, a player must aim
more carefully to discriminate between them.

Interaction Recency. Since interaction is the most im-
portant aspect of multiplayer games, players who recently
interacted should be paying attention to each other. Our
metric computes

F
(3)
ij =

{

e−tij/1 sec if tij ≤ 3 sec
0 otherwise

wheretij is the time since an interaction between players
i andj as defined in§III-B. FPS games are fast-paced so
we bound the influence of interactions to a few seconds
and make it fall off quickly.

Different metrics are more important in different situa-
tions, so we vary the weights{wk} based on player state.
Normally, we weight interaction recency about 1.5 times
more than proximity and aim, but we raise the weight
of proximity when wielding a melee weapon and raise
the weight of aim when wielding a sniper weapon. Our
weights and metrics yield good playability despite limited
tuning effort on our part.

B. Pairwise Rapid Agreement

When one objectW modifies another objectT , we call
this an interaction, with W the writer and T the target.
For example, if one player shoots another, the shooter
acts as a writer because he decrements the target’s health
field. Our policy is that upon an interaction, the writer’s
peer immediately communicates with the target so they
can quickly agree on the state of the changed object. We
call this pairwise rapid agreement (PRA).

A PRA consists of an asynchronous RPC from the
writer’s peer to the target’s peer. The target’s peer ap-
plies the write to its primary copy and replies with the
new target state. Sometimes the resulting state change is
predictable, so the reply can be only a few bits or even
completely elided. Note that the writer’s replica of the
target may be inconsistent, and the write may turn out to
be impermissible. For instance, a player may try to pick up
an important item that has already been taken by another
player. In this case, the target simply responds that the
write did not happen.

PRAs are feasible because they do not appreciably
diminish the bandwidth budget for updates. Interactions
occur at human timescales, so they are infrequent com-
pared to updates. Also, PRAs involve only one-to-one, not
broadcast, communication.

We found only four interaction types in Quake III: one
player damages another, one player dies and increments
another’s score, a player picks up an item, and a player
opens a door.

To enable PRAs for weapon damage, we assume that
a peer knows who gets hit by weapons fired by the local
player. In other words, the shooter decides whom his fire
hits, based on his or her possibly inaccurate view of the
target’s location. Basing this decision on the shooter’s
worldview is common in FPS games, since players with
high-latency network connections find it unrealistic to fire
directly at a player and miss [6].

C. Guidable AI

A player replica whose peer is not in the focus set
of its primary receives infrequent updates. As noted
earlier, simply using dead-reckoning between infrequent
state snapshots would make replicas appear “choppy” and
unrealistic. Therefore, instead of sending state snapshots,
the primary sends such replicasguidance about how the
replica should act until the next update. The replica,
in turn, uses aguidable AI to simulate the primary.
This AI ensures that movements appear realistic, while
attempting to coarsely approximate the primary’s state via
the guidance. The guidance a primary sends to replicas
consists of aprediction and a set ofaction counters, which
we now describe.

A prediction is the primary’s estimate of its statet
seconds in the future, wheret is the expected time
between consecutive best-effort updates to the same peer.
In Donnybrook, we predict two fields: position and facing

direction. To predict position, we simulate where the
player will be in t seconds if his or her input does not
change; we found this to be sufficiently accurate whent ≤
1 sec. Facing direction is expressed as the angle between
a player’s actual aim and his or her estimated target. The
target is estimated as the other player who minimizesâij

as defined in§III-A. We predict facing direction relative
to another player rather than as an absolute direction so
that despite inconsistencies in the locations of replicas,
the directions they face relative to other replicas will look
fairly correct.

Actions the replica should replay, like firing shots,
death, and respawning, are not continuous like the pre-
vious two properties. To accommodate these, guidance
includes counters of how many times each action occurred
so that the replica can replay them the correct number of
times. However, note that a replica is not permitted to
modify other objects. So, for instance, if it replays shots
fired, these shots must be “blanks.”

Most modern FPS games contain AI routines for
computer-controlled players known as bots. Since bot AI
code attempts to emulate real player behavior, it is well
suited for our purpose of making replicas act realistically.
So, to implement guidable AI we do not have to write
new AI routines; we can use ones already present in the
game. For instance, a peer receiving guidance can use
the bots’ AI path-finding routine to have its replica move
to the predicted position and turn to face the predicted
target with the estimated deviation. It can use other bot
AI routines to perform actions required by action counters.

Although guidable AI makes replicas move realistically,
it can lead to high inaccuracy. Thus, it is only used for
players not in focus. When a player focuses on another
player, its peer begins receiving frequent updates from
that player’s primary, causing the replica of that player to
converge to the correct state, as follows.

When a replica begins receiving state snapshots from a
primary, applying them directly might require unrealistic
warping from its inaccurate position to the correct posi-
tion. Thus, the primary continues to send guidance along
with the state snapshots. Since guidance arrives frequently,
the replica will soon converge to the correct state. We
consider it converged when it is within a player object
diameter of the correct position; other properties do not
matter because they can be interpolated quickly without
jarring effects. When the replica has converged, it tells the
primary to stop sending guidance, and it starts applying
state snapshots directly.

IV. EVALUATION

The ultimate goal of games is user satisfaction. If a
game can support many players with little upload band-
width but is not fun, then the capability is meaningless.
Therefore, we evaluate Donnybrook’s support for such
conditions based on how fun it is under those conditions.

0
100
200
300
400
500
600
700
800
900

1000

LoBW LoBW-
Donny

HiBW LoBW LoBW-
Donny

HiBW

S
ec

on
ds

Time until first vote Time until second vote

0
100
200
300
400
500
600
700
800
900

1000

LoBW LoBW-
Donny

LoBW-
Donny

HiBW

S
ec

on
ds

LoBW vs. LoBW-Donny LoBW-Donny vs. HiBW

1
2
3
4
5
6
7
8
9

10

LoBW LoBW-
Donny

LoBW-
Donny

HiBW

S
co

re
 (

1
to

 1
0

sc
al

e)

LoBW-Donny vs. HiBWLoBW vs. LoBW-Donny

Fig. 1. User satisfaction experiment results. From left to right, these show (a) time until the votes to switch, (b)
total time spent on each version, and (c) self-reported scores. Error bars show 95% confidence intervals.

Our evaluation of Donnybrook answers two main ques-
tions. First, how much more enjoyable is Quake III in a
low-bandwidth setting with Donnybrook than with current
techniques? Second, is a game with Donnybrook in a low-
bandwidth setting comparably enjoyable to a game in an
ideal setting, like a LAN? To answer the first question,
we compareLoBW-Donny, a low-bandwidth setting using
Donnybrook, to LoBW, a low-bandwidth setting using
current techniques. To answer the second, we compare
LoBW-Donny to HiBW, a high-bandwidth setting.

We perform these evaluations using a modified version
of Quake III, a popular FPS game. This modified version
can be configured to use either Donnybrook or the current
state-of-the-art, i.e., dead reckoning. Quake III is not
normally a P2P game, so our modified version is a
simulation of a P2P game. Each peer is emulated with
a virtual Quake III server with its own copy of the game
state. The virtual servers run in a single process, which
emulates a network between the peers.

A. User Satisfaction

First, we study overall user satisfaction.

Methodology. A real-life scenario in which players ex-
press a preference between versions of the same game
is when they select a public server to play on. Players
typically choose from a list of servers; if they become
dissatisfied with a server, they leave and try another. Our
user study emulates this scenario, as follows.

Pairs of volunteers sign up to play a game of Quake III.
They are told that there are two Quake III servers with
different network characteristics they can choose from.
In each experiment, these servers either useLoBW-Donny
and LoBW, or LoBW-Donny and HiBW, but we do not
tell them how the servers differ. They begin playing on
one server and can vote to switch. They switch versions
when both players vote to do so, and they switch back and
forth as often as they wish. Player scores are transferred
from one version to the next, so there is no incentive
for the losing player to switch. Also, to avoid bias from
the order that versions are played, for each of the two
experiment types half of the pairs begin on one version
and half begin on the other. After playing 15 minutes
total on both versions, they play a new 5-minute game on
the least-used server so they have enough experience to
compare the two.

To simulate a large game, we use 30 bots in addition to
the two human players. Each bot or player is treated as a
separate peer in the virtual network, but all bots execute
on a single virtual server due to limited computational
resources. This means bots never see inconsistencies, but
we do not believe that this substantially affects our results
since it does not change the update volume that is sent
between peers and we only measure the experience of
humans.

We take several steps to encourage human interaction.
We make human avatars easily distinguishable from bots.
We make it practically impossible to win by killing only
bots, by making killing a human worth ten times more
points. We give the winner a token prize. Finally, we
encourage players to communicate verbally as if voice
chat were enabled.

In LoBW andLoBW-Donny, each peer has 108 kbps of
outbound bandwidth. We choose this capacity because it
enables a focus set size of four and a best-effort rate of
one update per second, settings that we found satisfactory
during our own play-testing.HiBW has no bandwidth
limit. In all scenarios, the RTT between each pair of peers
is 20 ms. All games use the popular mapq3dm17, in
which all players can see one another.

We conduct 12 trials ofLoBW vs. LoBW-Donny and
32 trials of LoBW-Donny vs. HiBW, using a total of 88
different participants. In general, participants are very
familiar with FPS games, with 62% reporting that they
played FPS games every day at some point in their life
and 87% reporting at least once per week. Nonetheless,
we give all players 8 minutes to practice playing Quake III
before our experiment using theHiBW scenario.

Results.We use four metrics, described below, to measure
user satisfaction. Results given by all four metrics support
two main conclusions. First, players have a much more
favorable impression of low-bandwidth games with Don-
nybrook than without. Second, with Donnybrook, players
are about as satisfied with a low-bandwidth game as they
are with an unlimited-bandwidth game.

Time until switch. Players likely leave an unsatisfactory
version sooner than a satisfactory one. Fig. 1(a) shows the
time until the first player in each trial votes to switch from
the initial version and the time until both players vote to
switch, on average. Clearly, players are dissatisfied with
LoBW very quickly — on average, the first vote comes

LoBW-
Donny

HiBW

No Pref.
17%

31%
52%

LoBW-Donny vs. HiBW

LoBW-
Donny

LoBW

96%

4%

LoBW-Donny vs. LoBW

Fig. 2. Self-reported version preference.

at 40 seconds. In contrast, players vote to leaveLoBW-
Donny after about the same time as they would have left
HiBW, on average.

Total time spent. Players likely play longer in a game
that they find more enjoyable. Fig. 1(b) shows the average
amount of time spent on each version in the two different
experiment types. Given the choice betweenLoBW and
LoBW-Donny, players overwhelmingly choose to spend
time on LoBW-Donny. When choosing betweenLoBW-
Donny and HiBW, players spend slightly more time on
HiBW, though this difference is statistically insignificant
given our small sample size.

Self-reported score. After the experiment, players rate
their enjoyment of the two versions on a 1–10 scale.
Fig. 1(c) shows the average scores given to each version in
the two different comparisons. On average,LoBW-Donny
is preferred by 4.5 points overLoBW, whereas the differ-
enceLoBW-Donny andHiBW is statistically insignificant.

Self-reported preference. Finally, each player is asked
which version they like better. Fig. 2 shows user pref-
erences in the two different comparisons. Again, these
results corroborate our two conclusions. One anomaly is
the single player who prefersLoBW to LoBW-Donny. This
is because, in his words, “It brings back my memory of
playing Quake I over a 28.8k modem.”

B. Fairness

In this section, we evaluate how Donnybrook performs
on one game aspect that contributes to user satisfaction.
This aspect isfairness, i.e., how well game outcome re-
flects player skill. Low update rates can lead to unfairness
because inconsistency in a player’s replica can prevent it
from accurately reflecting the player’s actual actions.

Methodology. The relative scores of different players
usually reflect their relative skills. Thus, to evaluate
Donnybrook’s effect on fairness, we study how well it
preserves relative scores. Since it would take too long
to obtain sufficient gameplay samples from humans, we
use Quake III bots. Quake III provides 32 different bot
models, each available at five skill levels. Each model
has different characteristics, such as weapon preference.
Different skill levels of a model have different refinements
of these characteristics; e.g., higher skill levels often
correspond to better aim.

In our experiment, bots with random models and skill
levels play a game for 24 hours usingHiBW. The scores
at the end of this game are theexpected scores. Then,
the same bots play one game usingLoBW-Donny and one
usingLoBW. For each hour of these games, we compute

0

0.2

0.4

0.6

0.8

1

Rank Scores Rank Scores

A
vg

. c
or

re
la

tio
n

co
ef

fic
ie

nt

Random bots All bots level 5

HiBW

LoBW-
Donny

LoBW

Fig. 3. Average hourly correlation coefficient between
expected scores and actual scores under various condi-
tions. Error bars show 95% confidence intervals.

the correlation of the scores and the expected scores. The
average hourly correlation in each game is our fairness
metric. To illustrate how high a measure is reasonable to
expect, we report the same metric for theHiBW run. The
difference between this value and 1.0 shows the deviation
that random effects can produce.

We compute two correlation measures: Spearman’s rank
correlation coefficient and Pearson’s correlation coeffi-
cient. The former considers relative rankings, while the
latter considers absolute score values. In both, a value of
-1 indicates perfect negative correlation (worst case), 0 no
correlation, and +1 perfect positive correlation (best case).

In this experiment, unlike that of§IV-A, we are con-
cerned with bot interaction. Therefore, we run each bot in
a separate virtual server so they can see inconsistencies.
Limited computational resources restricts this setup to 16
bots. Our user satisfaction study indicates that players
enjoy Donnybrook with a focus set size of four and best-
effort update rate of 1 per second, so we set upload
bandwidth andFα accordingly inLoBW-Donny and use
the same upload bandwidth inLoBW. We also use the
sameq3dm17 map.

Results.TheRandom bots part of Fig. 3 shows the results
of this experiment. We see that theLoBW-Donny and
LoBW correlation coefficients are very high, with 0.96 for
ranks and 0.94 for scores. Thus, it seems fairness is not
substantially reduced by low update rates, whether or not
Donnybrook is used.

However, upon further investigation, we discover that
the reason for the high fairness is that scores tend to be
ordered by skill level in all scenarios. Thus, we perform
the experiment again using bots with random models but
all at skill level 5. TheAll bots level 5 part of Fig. 3
shows the coefficients in this experiment, which are much
lower for LoBW and LoBW-Donny, but still positive. In
addition, the difference betweenLoBW andLoBW-Donny
coefficients are statistically insignificant.

We conclude that Donnybrook preserves fairness at
a coarse level, but may cause unfairness in matches
between players with similar skill levels. Donnybrook has
similar fairness to existing architectures in low-bandwidth
conditions, so guidable AI does not seem to cause a
reduction in fairness. We discuss avenues we are pursuing
to improve Donnybrook’s fairness in§VI.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000 1200 1400 1600

N
um

be
r

of
 p

la
ye

rs

Upload bandwidth per player (kbps)

With Donnybrook

Without Donnybrook

Fig. 4. Projected scalability of Donnybrook

C. Discussion

Our user satisfaction experiment suggests that with
Donnybrook, a game is enjoyable if there is sufficient
bandwidth for a focus set size of four and a best-effort
rate of one update per second. On the other hand, without
Donnybrook, each peer needs enough bandwidth to broad-
cast updates every frame. Fig. 4 shows a projection of the
number of players supported as a function of available
upload bandwidth per peer. It shows that Donnybrook can
enable an order of magnitude more players in a game.

This projection assumes all players can see each other.
If not, and peers use distributed area-of-interest filter-
ing [8] to only send updates to peers who can see them,
the number of players is the number in an area of interest.

V. RELATED WORK

The classic approaches to dealing with limited com-
munication bandwidth in games are dead reckoning and
interest management. There has been much research both
in evaluating dead reckoning schemes [13, 14, 17] and in
improving them with techniques such as timestamping [4],
error equalization [5], or use of position history instead
of instantaneous velocity [16].

Interest management means sending updates only to
those players who have interest in the object in question.
Prior research in interest management includes separation
of relevance based on game state from relevance based
on network conditions [2], multi-tier interest management
with successively increased resolution [3], and publish-
subscribe architectures for area-based interests [8, 11].
Our focus set approach is a refinement of interest manage-
ment, where update frequency is varied based on attention.

A consequence of guidable AI is that different players
see different views of the world. This is also the case
in Rendezvous [9], a highly optimistic, P2P consistency
mechanism for high-latency environments. Unlike Ren-
dezvous, guidable AI causes objects that are focused on
to converge to their true states.

VI. SUMMARY AND FUTURE WORK

This paper presents techniques to compensate for lim-
ited upload bandwidth in large-scale peer-to-peer games.
Our results demonstrate that users prefer Donnybrook to
existing techniques for compensating for low bandwidth,
and that Donnybrook makes low-bandwidth games nearly
as much fun as games with unconstrained bandwidth.
Consequently, Donnybrook enables far more players in
a peer-to-peer game.

One avenue of future work is to improve Donnybrook’s
fairness. We may be able to leverage machine learning
techniques to improve each guidable AI’s representation
of a player. In addition, we can refine PRA; e.g., we
have a scalable technique that lets the target of a missile,
rather than the shooter, decide whether a hit occurs, so
that missile dodging skills are preserved.

Another avenue of future work is to handle skewed
distributions of player attention. Fixed-size focus sets do
not work well when many players are paying attention to
a single player, as can happen in a capture-the-flag game.
Fortunately, since the aggregate amount of attention in
the game is constant, in this situation there must be some
peers with little attention on them and, thus, have spare
upload capacity. We are working on an overlay multicast
scheme to let peers to share their upload capacity in a
latency-sensitive manner, which would solve this problem.

VII. A CKNOWLEDGEMENTS

We are deeply indebted to John Douceur for his ex-
cellent ideas and support. We also thank Bryan Parno for
helping us “test” Donnybrook, the players in our experi-
ments for participating in our study, and the anonymous
reviewers for their helpful suggestions.

REFERENCES

[1] Survey of http://www.broadbandreports.com, Oct. 2006.
[2] A ARHUS, L. ET AL . Generalized two-tier relevance filtering of

computer game update events. InNetGames (2002).
[3] A BRAMS, H. ET AL . Three-tiered interest management for large-

scale virtual environments. InVirtual Reality Software and
Technology (VRST) (1998).

[4] AGGARWAL, S. ET AL . Accuracy in dead-reckoning based
distributed multi-player games. InNetGames (2004).

[5] AGGARWAL, S. ET AL . Fairness in dead-reckoning based dis-
tributed multi-player games. InNetGames (2005).

[6] BERNIER, Y. W. Latency compensating methods in client/server
in-game protocol design and optimization. InGame Developers
Conference (2001).

[7] BHARAMBE , A. Scalable and Secure Architectures for Online
Multiplayer Games. Thesis Proposal, Apr. 2006.

[8] BHARAMBE , A. ET AL . Colyseus: A distributed architecture for
online multiplayer games. InNSDI (May 2006).

[9] CHANDLER, A. ET AL . On the effects of loose causal consistency
in mobile multiplayer games. InNetGames (2005).

[10] COWAN, N. The magical number 4 in short-term memory: A
reconsideration of mental storage capacity.Behavioral and Brain
Sciences 24, 1 (2001).

[11] FIEDLER, S. ET AL . A communication architecture for massive
multiplayer games. InNetGames (2002).

[12] KNUTSSON, B. ET AL . Peer-to-peer support for massively
multiplayer games. InINFOCOM (July 2004).

[13] PALANT , W. ET AL . Evaluating dead reckoning variations with
a multi-player game simulator. InNOSSDAV (2006).

[14] PANTEL , L. ET AL . On the suitability of dead reckoning schemes
for games. InNetGames (2002).

[15] ROBSON, J.G. ET AL . Probability summation and regional
variation in contrast sensitivity across the visual field.Vision
Research 21, 3 (1981).

[16] SINGHAL , S. K. ET AL . Exploiting position history for efficient
remote rendering in networked virtual reality.Presence 4, 2
(1995).

[17] YASUI, T. ET AL . Influence of network latency and packet loss
on consistency in networked racing games. InNetGames (2005).

