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Abstract— Datacenter networks have been designed to tolerate
failures of network equipment and provide sufficient bandwidth.
In practice, however, failures and maintenance of networking and
power equipment often make tens to thousands of servers unavail-
able, and network congestion can increase service latency. Unfor-
tunately, there exists an inherent tradeoff between achieving high
fault tolerance and reducing bandwidth usage in network core; spread-
ing servers across fault domains improves fault tolerance, but re-
quires additional bandwidth, while deploying servers together re-
duces bandwidth usage, but also decreases fault tolerance. We
present a detailed analysis of a large-scale Web application and its
communication patterns. Based on that, we propose and evaluate
a novel optimization framework that achieves both high fault tol-
erance and significantly reduces bandwidth usage in the network
core by exploiting the skewness in the observed communication
patterns.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions

Keywords
datacenter networks, fault tolerance, bandwidth

1. INTRODUCTION
Users increasingly rely on online services to manage their com-

putation, storage, and communication requirements. Downtimes
hurt them dearly. In 2010, North American businesses collectively
lost an estimated $26.5 billion in revenue due to partial or com-
plete outage of services [1]. According to [2], unplanned outages
cost $5,000 per minute, on average.

Previous work on designing network topologies [16, 29] and re-
source allocation mechanisms [6,17] focused on tolerating failures
of network components by providing multiple paths between server
pairs and on ensuring predictable network behavior through bet-
ter bisection bandwidth and reservation. However, in practice, de-
spite redundancy, failures and maintenance of network and power
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Figure 1: Simple network topology with two aggregation
switches and four racks illustrating the tradeoff between band-
width usage (pack servers together, (a)) and fault-tolerance
(spread servers across racks, (b)). Grayed boxes indicate parts
of the cluster network each allocation is using. Assuming only
racks as fault domains, (a) has worst-case survival of 0.5 (four
of the eight servers survive a failure of a rack), while (b) has
worst-case survival of 0.75 (six of the eight servers survive).

components cause sections of datacenters with tens to thousands of
servers to become unavailable [4,12,14,15]. At the same time, dat-
acenter networks can get congested, causing spikes in network la-
tencies. In both cases, Internet services become unavailable and/or
unresponsive. Although fault tolerance and bandwidth could be
improved by investing more in power and network infrastructure,
such actions can be performed only at a slow time-scale, typically
during datacenter construction.

In this paper, we present practical solutions that consider the re-
quirements of the underlying applications and help right away in
any network. Given a fixed network topology, our goal is to im-
prove the fault tolerance of the deployed applications and reduce
the bandwidth usage in the core simply by optimizing the alloca-
tion of applications to physical machines.

However, there is conflict between simultaneously improving the
fault tolerance and reducing the bandwidth usage of cloud-based
services. We can improve the fault tolerance by spreading machines
of a particular application across many fault domains, thus reducing
the impact of any single failure on the application. However, this
allocation requires more bandwidth in the core of the network and
thus could be prone to congestion, as illustrated in Figure 1(b). On
the other hand, to reduce communication through oversubscribed
network elements, we can allocate all machines of the application
on the same rack or under one aggregation switch, as proposed
in [6, 17]. This allocation, however, reduces the fault tolerance
of the application; a failure of the top-of-rack (TOR) or aggrega-
tion switch, can make the application unavailable, as illustrated in
Figure 1(a).

Figure 2 demonstrates the perils of trying to independently opti-
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Figure 2: This plot shows the changes in core bandwidth and
average worst-case survival for six different datacenters, after
applying BW-only optimization (minimum k-way cut, crosses)
and FT-only optimization (spreading servers, circles). For both
optimizations, one of the metrics improves significantly, but the
other one actually degrades.

mize for either fault tolerance or bandwidth usage. Using data from
six large-scale production datacenters, we applied both bandwidth-
only optimization (using minimum k-way cut of the communica-
tion graph, similar to [28]1) and also fault tolerance-only optimiza-
tion (described in Section 4). For each service in a datacenter,
we measure fault tolerance using worst-case survival – fraction
of machines of the service that remain available during a single,
worst-case failure. Both algorithms significantly improve the met-
ric they optimize for, but actually degrade the other metric. Thus,
our goal is to design algorithms that produce server allocations
which achieve both high fault tolerance and reduce bandwidth re-
quirements on the core of the network.

Our work is motivated and evaluated on actual empirical data
from large-scale production datacenters running Bing.com, each
running thousands to tens of thousands of servers. The follow-
ing are crucial observations from our study of the communication
patterns of software services in these datacenters:

• The communication matrix between different services is very
sparse – only 2% of all pairs of services in the datacenter
communicate. In addition, the communication pattern is ex-
tremely skewed – the top 1% of all services generate 64% of
all the network traffic.

• The fault domains of power equipment do not necessarily match
the fault domains of networking equipment, thus complicating
the fault-tolerant server allocation.

These observations motivate the formulation of our optimization
framework that provides a principled way to explore the tradeoff
between reducing bandwidth usage and improving fault tolerance.
The problem of improving fault tolerance and the problem of re-
ducing bandwidth usage are both NP-hard and hard to approximate
(see Section 4 for details). With that in mind, we formulate a re-
lated convex optimization problem that incentivizes spreading ma-
chines of individual services across fault domains. In addition, we
add a penalty term for machine reallocations that increase band-
width usage. Intuitively, the combination of these two components
exploits the communication skewness, e.g., spreading machines of
low-communicating services improves their fault tolerance without
significantly affecting bandwidth. Appealingly, the resulting algo-
rithm is easy to integrate and computationally efficient.

Our algorithm achieves 20%− 50% reduction in bandwidth us-
age in the core of the network, while at the same time improving

1We note that [28] does not consider the joint bandwidth-fault tol-
erance optimization.
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Figure 3: CDF of number of servers in individual services and
number of servers in environments.

the average worst-case survival by 40% − 120%. Moreover, be-
cause this algorithm minimizes the number of machine moves, it
can achieve significant improvements by moving only 20% of ma-
chines in the datacenter. Our simulations show that these improve-
ment in fault tolerance can reduce the fraction of services affected
by potential hardware failures by up to a factor of 14. In addition,
we present a solution based on a minimum k-way cut algorithm,
which in many cases achieves reduction in bandwidth by additional
10− 20 percentage points.

The contributions of this paper are three-fold:

• Measurement study. We present detailed analysis of the struc-
ture of a modern, large-scale Web application and the ob-
served communication patterns between the individual ser-
vices comprising this application (Section 2). While there ex-
ist studies on datacenter communication patterns [8, 20], our
study concentrates on the traffic at the application level.

• Algorithms. To the best of our knowledge, the joint fault
tolerance and bandwidth optimization has not been consid-
ered in previous studies. Although fault tolerance and band-
width are typically contradicting objectives, our optimization
framework (Sections 3–4) achieves both high fault tolerance
and significant reduction in bandwidth usage in the core. Our
algorithms exploit the observed skewed communication pat-
tern, scale to large datacenters, and can accommodate arbi-
trary fault domain structure.

• Methodology. We present methodology for stressing server
placement algorithms and evaluating their effectiveness. In
particular, we introduce a novel framework which utilizes em-
pirical measurements for solving the joint optimization of worst-
case survival of software services, machines moves, and band-
width usage.

2. MOTIVATION AND BACKGROUND
In this section we analyze Bing.com, a large-scale Web appli-

cation running in multiple datacenters around the world and use it
to illustrate the issues described in the Introduction. This analysis
is based on data from production clusters with thousands to tens
of thousands of servers and also from a large-scale pre-production
cluster consisting of thousands of machines. While this analysis
is based on a single application, we note that Bing is not simply a
“Web index”, as it contains many components very similar to typi-
cal Web applications. We also highlight the insights we learned and
we extract the key parameters, like skew, that impact the effective-
ness of our algorithms. This enables others to apply our observa-
tions and the proposed solutions to other large scale datacenter and
cloud computing environments.

We describe the application characteristics in Section 2.2, high-
light the sparseness and skewness of communication patterns in 2.3,
and characterize the complexities of datacenter fault domains in 2.4.
Finally, we describe additional scenarios and implications of this
study on our optimization framework.



Term Definition

Logical machine Smallest logical component of a web ap-
plication

Service Service consists of many logical machines
executing the same code

Environment Environment consists of many services

Physical machine Physical server that can run a single logical
machine

Fault domain Set of physical machines that share a single
point of failure; one machine can belong to
multiple domains

Table 1: Definitions

2.1 Definitions
For the purpose of this paper, we assume a datacenter with a

known network topology running one or many independent Web
applications. A general web application is composed of many en-
vironments (or frameworks), such as front-end, back-end, or an of-
fline, data-processing framework. Each environment is composed
of one or more services; for example, the front-end environment
might consist of services such as the web servers, caches and other
logic that is necessary when processing user requests. Another ex-
ample of an environment is a MapReduce-like system, with ser-
vices for job execution or job submission UI. Each service requires
a certain number of logical machines to support the workload and
each logical machine is deployed to a physical machine (or a server)
in the datacenter. We assume only one logical machine per physi-
cal machine and describe an extension to a more general scenario
in Section 6. Reassigning a logical machine between physical ma-
chines is expensive for various reasons. It could take tens of min-
utes for machines to warm up their caches of in-memory data needed
to answer production requests; furthermore, reimaging and making
data sets available to the new logical machine takes time and con-
sumes network resources. We assume the network can be modeled
as a hierarchical tree2; see Section 5 for details. Table 1 summa-
rizes the terms used in this paper.

A fault domain is a set of physical machines that share a single
point of failure, such as a top-of-rack switch or a circuit breaker.
Upon a failure, the servers in the corresponding fault domain be-
come either unavailable or their capacity is reduced. The fault do-
mains can overlap in non-trivial patterns as described in more detail
in Section 2.4.

2.2 Service Characteristics of Bing
Bing is a large-scale Web application deployed in many datacen-

ters around the world, serving mostly interactive user traffic with a
significant offline, data processing workload. The number of ser-
vices in Bing’s datacenters is in the order of a thousand. Figure 3
shows the distributions of the number of servers for individual ser-
vices and entire environments. The services are mostly small – 80%
of them have less than ten logical machines, while a few services
are very large. Similarly, most environments contain less than ten
services, but some environments contain a few tens of services.

2.3 Communication Patterns
In this section, we present the analysis of communication pat-

terns of Bing running in a preproduction environment consisting of
thousands of servers. We trace communication between all pairs of
servers and for each pair of services i and j, we compute the total
number of bytes transmitted between this service pair, Ri,j , and

2We note that even fat-tree-like networks can be modeled as a log-
ical hierarchical tree with higher bandwidth at the root.

link utilization >50% >60% >70% >80%

aggregate months
above utilization

115.7 47.5 18.3 6.2

Table 2: The aggregate time (during a single month) that all
core links spent above certain utilization in one of our produc-
tion datacenters. We cannot reveal the actual utilization of the
links.

Figure 4: Visualization of communication matrix for a small
subset of services using a heat map.

also total traffic generated by individual services, Ti. We refer to
(the collection of) Ri,j as the service communication matrix.
Datacenter network core is highly utilized. As shown in [8], the
links in the network core are the most utilized in a datacenter (com-
pared to aggregation and TOR switches) and will thus benefit the
most from reduction in usage. We have experienced several inci-
dents in our datacenters where a single application was not aware of
its placement in the network topology and started a large data trans-
fer. This overloaded the core of the network and thus impacted the
rest of the datacenter. Table 2 shows the amount of time the core
links in one of our production datacenters spent at various utiliza-
tions during one month. While these statistics are not normalized
by the number of links, there are many links that are highly utilized
for long time intervals. By reducing the bandwidth usage in the
core of the network, our algorithms thus reduce the probability of
congestion and packet loss.
Traffic matrix is very sparse. A section of the communication
matrix is visualized as a heatmap in Figure 4, where each row and
column correspond to a service and color (light to dark) that en-
codes the amount of communication (white meaning no communi-
cation). Notice that the communication matrix Ri,j is extremely
sparse. Our pre-production environment runs on the order of thou-
sand different services, however, out of all the possible service
pairs, only 2% service pairs communicate at all. The remaining
98% of service pairs do not exchange any data.
Communication pattern is very skewed. We observe that the
communication pattern of the 2% service pairs that do communi-
cate is extremely skewed. The dashed line in Figure 5 shows the cu-
mulative traffic generated by certain fraction of service pairs. 0.1%
of the service pairs that communicate (including services talking to
themselves) generate 60% of all traffic and 4.8% of service pairs
generate 99% of all traffic. The solid line in Figure 5 shows the
cumulative traffic generated by individual services. 1% of services
generate 64% of traffic and 18% of services generate 99% of traf-
fic. Services that do not require lot of bandwidth can be spread out
across the datacenter, thus improving their fault tolerance.
Most bytes stay inside environments. In Figure 4, the services are
ordered alphabetically by (environment,service) so that services in
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Figure 5: Cumulative fraction of total traffic (y-axis) generated
by the top X% of services (x-axis, solid line) and top X% of
service pairs (dashed line). The service and service pairs are in
decreasing order of Ti, or Ri,j , respectively.
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Figure 6: CDF of number of services an individual service com-
municates with (i.e., degree of vertex in communication graph)
for the full graph (solid line) and with services of cluster man-
ager environment excluded (dotted line).

same environment appear next to each other. Most of the com-
munication is along the diagonal (service talking to itself or other
services in same environment); the two bigger squares on the diag-
onal represent two different environments. The vertical and hori-
zontal lines correspond to cluster manager communicating with all
machines. The majority of the traffic, 45%, stays within the same
service, while 23% leaves the service but stays within the same en-
vironment, and 32% crosses environments.
Median service talks to nine other services. The communication
matrix can be also represented as a graph, where vertices represent
the services and edges represent the communication between ser-
vice pairs. Figure 6 shows the CDF of the vertex degrees for the
full communication graph (solid line). Approximately 15 services
of the cluster manager environment communicate with almost all
other services (see Figure 4), but this is not application traffic per-
se. We therefore also show the CDF of degrees with cluster man-
ager services excluded (dotted line); median degree is 9.
Communicating services form small and large components. The
complete communication graph has a single connected component,
because the services are linked by common management, logging,
and data analysis systems. However, after keeping only the edges
that together generate 90% of the traffic (representing the most
“chatty" service pairs), this graph falls apart into many discon-
nected components; see Figure 7 which highlights the major com-
munication patterns. The circles correspond to individual services,
and the edges to communication between service pairs. Notice
that there are two large connected components – one with star-
like topology, another with longer dependencies, and many other
smaller components.

2.4 Failure Characteristics
In this paper we consider failures of datacenter hardware equip-

ment that can cause unavailability of many physical servers. Ex-
amples of devices we consider are server enclosures (containing

Figure 7: Communication pattern between individual services
(represented by circles) after keeping only edges that generate
90% of the traffic. The width of the edges is proportional to the
total bytes sent between the corresponding two components.

several servers), TOR and aggregation switches, containers, and
power equipment. However, our approach is not limited to these
failures and can be extended to any additional fault domains3. As
demonstrated above, large-scale web applications are composed of
many connected services and a failure of a critical service can cause
failure of the whole website or significantly impact its functionality
and degrade user experience.
Networking hardware failures can cause significant outages.
The authors of [15] describe a large study of network failures in
several Microsoft datacenters, many of them running Bing. We
summarize their findings that motivate the need to improve ap-
plication fault tolerance. While TOR switches and aggregation
switches are fairly reliable (only 5% and 10% failure rates per year,
respectively), the failures of TORs were responsible for majority
of the observed downtime. While redundancy is often employed
in datacenters for aggregation switches or access routers, [15] ob-
serves that redundancy reduces impact of failures on lost bytes by
only 40% and thus does not prevent impact on applications. Even
if these failures are rare, when large fraction of a service is de-
ployed under the same aggregation switch, that service might be-
come unavailable during a failure or have reduced throughput, with
potentially high impact on user experience. Notice that the im-
pact of maintenance is similar to a large-scale failure, as many
servers might become unavailable. Nonetheless, since maintenance
is scheduled in advance, our algorithms can be executed ahead of
maintenance in order to automatically move applications out of the
affected servers.
Power fault domains create non-trivial patterns. On top of fault
domains created by network equipments, servers are also subject
to failures in power distribution. While some of the power fault
domains match the fault domains of the networking equipment, in
general, the wiring of power to servers can create non-trivial pat-
terns with power fault domains that do not match the domains cre-
ated by switches and routers. For example, servers in multiple racks
(but not all racks under an aggregate switch) can be connected to
the same circuit, effectively putting them in the same fault domain.
Therefore, distributing a service across these racks would not im-
prove its fault tolerance. In some cases, a server and the corre-

3While correlated failures happen in practice, their probability is
much lower than individual failures. We do not consider them in
this paper.



Term Definition

BW Aggregate bandwidth usage on core links

WCS Smallest fraction of machines that remain functional
during a single failure in a datacenter

FT Average WCS across all services

FTC Fault tolerance cost function

NM # of server moves to reach target allocation

Cell Set of physical machines belonging to the same set of
fault domains

Table 3: Definitions for the optimization framework.

sponding TOR and aggregate switches might be connected to the
same power device, while in other cases they might be connected
to three different power devices, again increasing the complexity of
the fault domain mapping. These complexities arise from variation
and evolution of power chassis architecture, container architecture
and datacenter architecture as well as changes in the vendors. Due
to their opaqueness, power fault domains are hard to consider for
application developers and they have to be handled automatically
by the server allocation algorithm.

2.5 Other Practical Considerations
Our core algorithms propose server allocations that reduce band-

width usage in the datacenter and improve application fault toler-
ance. As described in Section 2.1, moving a logical machine to a
new server is an expensive operation. We therefore consider ma-
chine moves as a crucial metric in our optimization framework.

We point out that our solution is orthogonal to previously men-
tioned solutions, such as a different network topology or bandwidth
reservations. In fact, by reducing bandwidth usage we can make
bandwidth available to new services that actually need it and could
avoid costly and disruptive upgrades of network equipment.

There are several additional issues and scenarios that one may
need to consider in practice. For example, services might have ad-
ditional hard constraints on minimum worst-case survival or hard-
ware configuration of the physical servers. We do not evaluate all
such scenarios in this paper, however, our algorithms can be easily
extended to handle such cases, as described in Section 6.

2.6 Implications for Optimization Framework
Our analysis of the communication patterns shows that even for

a single large-scale website, only a small fraction of services com-
municate and the communication pattern of the ones that do is very
skewed. Most of the traffic is generated by a small number of ser-
vices and service pairs. It is therefore feasible to spread a large
fraction of services across the datacenter to improve their fault tol-
erance, without affecting much the bandwidth usage in the core of
the network.

While failures of networking and power equipment are relatively
rare, given a bad allocation of services in a datacenter, even a sin-
gle failure can have significant impact on a website. This motivates
the use of the “worst-case survival” metric for fault tolerance (cf.
Section 3) that captures the impact of the worst single failure on
a service. Our optimization framework has to consider the com-
plex patterns of the power and networking fault domains, instead
of simply spreading the services across several racks to achieve
good fault tolerance.

3. PROBLEM STATEMENT
In this section we provide the description of the problem. See

formal mathematical details in Section 4.

3.1 Metrics
In this paper we consider the following three metrics.

Bandwidth. Core links are links from the root of the network
topology tree to the second-level nodes. We use the sum of rates on
the core links as the overall measure of the bandwidth usage at the
core of network; this measure is denoted by BW.
Fault Tolerance. For every service, we define the Worst-Case Sur-
vival (WCS) to be smallest fraction of machines that remain func-
tional during any single failure in the datacenter. For example, if
the service is uniformly deployed across 3 racks, and we only con-
sider TOR switch failures, its WCS is 2/3. While more general
survivability models have been proposed [26], we prefer this sim-
pler and more practical metric. We use the average WCS across
services as the measure for fault tolerance in the entire datacenter,
and denote this average by FT. We note that the worst-case survival
is directly related to application-level metrics such as throughput or
capacity; e.g., a service with WCS of 0.6 will lose at most 40% of
its capacity during any single failure.
Number of Moves. The number of servers that have to be re-
imaged to get from initial datacenter allocation to the proposed
allocation. We denote this number by NM. Table 3 contains a sum-
mary of our terminology.
Remark. Reducing the bandwidth usage in the core might actually
lead to reduction of the WCS of a high-communication service by
allocating its machines in the same rack. To prevent such situa-
tions for important services, we may extend our basic formulation,
putting hard constraints on WCS for such services, as described in
Section 6. Alternatively, FT of small, high-communication services
can be improved by fully replicating them. The FT of large, high-
communication services is inherently high since they are deployed
across multiple fault domains anyway.

3.2 Optimization
The input for our optimization framework is a network topology

with initial (or current) assignment of machines to services. Unless
otherwise specified, in the remainder of the paper, we consider the
following optimization problem

Maximize FT − α̃BW,

Subject to NM ≤ N0, (1)

where α̃ is a tunable positive parameter4, and N0 is an upper limit
on the number of moves. This formulation accommodates a flexible
tradeoff between BW and FT, manifested through the choice of α̃.
While we focus on (1) for concreteness, we note that our solution
approach could be adapted to other formulations as well, such as
minimizing NM under the constraint of certain improvements of
BW and FT. See Section 6 for more details.

4. ALGORITHMIC SOLUTIONS

4.1 Problem Hardness
Even when considering the optimization of FT or BW in isola-

tion, the resulting optimization problems are NP-hard and hard-to-
approximate. Variants of the BW optimization problem have been
broadly considered, see, e.g., [22] and references therein. These
works obtain approximation algorithms with logarithmic guaran-
tees, yet they restrict attention to balanced cuts (partitions of ap-
proximately equal size). Unfortunately, it is an open problem to
find good approximation algorithms for the unbalanced case, which
represents our setup (network partitions of unequal size). Already

4in inverse units of BW so that the objective function is unit-less.



a simple instance of the FT problem reduces to the maximum inde-
pendent set problem. The known hardness bounds for that problem
imply that no reasonable approximation factors are achievable [19].
On top of that, restricting the number of moves adds another level
of complexity. Therefore, our focus in this paper is on designing
reasonable heuristics that can consider all three metrics simultane-
ously. We note that we are not able to compare performance against
the optimal solution, because the scale of the problem makes ex-
haustive search infeasible. Instead, we use other heuristics that do
not limit the number of moves as performance benchmarks.

4.2 Overview of Solution Approach
In view of the hardness of our optimization problem, our algo-

rithmic approach relies first on designing methods that individually
optimize either BW or FT. We then combine the methods into al-
gorithms that incorporate both objectives. Our solution roadmap is
the following:

• We first introduce the notion of cells, which serve as the basic
physical entities in our optimization framework, and allow for
significant reduction in the size of the optimization problem.

• Instead of maximizing the intractable FT objective, we define
an alternative cost function in Section 4.4, the Fault Tolerance
Cost (FTC), which has “nice" convex structure. We show that
FTC is in practice negatively correlated to FT, hence the min-
imization of FTC improves FT. The convexity of FTC allows
us to iteratively improve the FTC with greedy moves that re-
duce the current value of the cost function, until reaching its
global minimum (or very close to it)5.

• Our basic method for optimizing BW is to perform a mini-
mum k-way cut on the communication graph of the logical
machines.

• CUT+FT+BW is a hybrid algorithm consisting of two-phases.
First, we use a minimum k-way cut algorithm to compute an
initial assignment that minimizes bandwidth at the network
core. Second, we iteratively move machines to improve the
FT. The drawback of this hybrid algorithm is that the graph
cut procedure ignores the number of moves, and thus gener-
ates allocations that require moving almost all machines in
the datacenter, which is undesirable during regular datacenter
operation. Therefore, this algorithm serves mainly as a per-
formance benchmark for the actual algorithm that we use.

• Finally, FT+BW also takes into account the NM metric. The
algorithm does not perform the graph cut, but rather starts
from the current allocation and improves performance through
greedy moves that reduce a weighted sum of BW and FTC.

4.3 Formal Definitions
Cells. To reduce the complexity of our optimization problem due
to overlapping and hierarchical fault domains, we partition the set
of physical machines to cells (i.e., each machine belongs to exactly
a single cell). A cell is a subset of physical machines that belong
to exactly the same fault domains (therefore different cells do not
overlap). For example, the datacenter in Figure 8 has four differ-
ent cells, capturing all combinations of power sources and contain-
ers. Since all machines within a given cell are indistinguishable in
terms of faults, it suffices to describe an assignment of machines

5Convergence to global optimum is guaranteed for the continuous
optimization problem provided that the step size is not too large.
Here we deal with discrete variables, hence theoretically there is no
guarantee to converge to the global optimum. Nevertheless, given
the large scale of the problem, the “integrality gap" is negligible
and the greedy moves are expected to converge to costs which are
nearly optimal.

by the set of variables {xn,k}; the variable xn,k indicates the num-
ber of machines within cell n allocated to service k. We next de-
fine the BW and FT objectives with {xn,k} as the optimization
variables. We emphasize that our cell-based formulation is general
in the sense that it does not require any assumptions on the fault-
domain topology.
Formal definition of BW and FT. To formally define BW, let
I(·, ·) be the indicator function, whose inputs are cell pairs. For
each such pair (n1, n2), I(n1, n2) = 1 if traffic from n1 to n2

(and vice-versa) traverses through a core link, and I(n1, n2) = 0
otherwise. Then BW, which is the total bandwidth consumption at
the core is given by

BW (x) =
∑

n1,n2

∑

k1,k2

I(n1, n2)xn1,k1xn2,k2rk1,k2 , (2)

where rk1,k2 =
Rk1,k2
sk1

sk2
is the required bandwidth between a pair

of machines from services k1 and k2 (sk is the number of machines
required by service k), and

∑
·,· sums each pair only once.

To formally define FT, let zk,j(xk)
�
=

∑
n∈j xn,k be the total

number of machines allocated to service k affected by fault j (xk is
the vector of allocations {xn,k} for service k). Our fault tolerance
objective, FT, is formally given by

FT (x) =
1

K

K∑

k=1

sk −maxj zk,j(xk)

sk
, (3)

where K is the total number of services.

4.4 Basic Building Blocks
FTC and steepest descent moves for FT. As mentioned ear-

lier, instead of maximizing (3), our fault tolerance optimization is
achieved via the minimization of a cost function, termed FTC. This
function is defined as follows:

FTC(x) =
∑

j

wj

∑

k

bk
(
zk,j(xk)

)2
, (4)

where zk,j and xk are defined above, and bk and wj are positive
weights that can be assigned to services and faults, respectively. For
example, one could give higher weights to small services, as faults
might have a relatively higher impact on them. More generally,
these weights can be used to prioritize service placement according
to its importance. The advantage of optimizing over (4) instead of
optimizing directly over FT is that the former is a convex objec-
tive function. Convex functions are appealing, as “local" variable
changes (e.g., swapping the physical machine allocation of two log-
ical machines) that improve current cost, also get us closer to the
optimal value (as opposed to arbitrary cost functions, in which such
moves would converge to a local minimum). Intuitively, a decrease
in FTC should lead to an increase in FT, as squaring the zk,j vari-
ables incentivizes keeping their values small, which is obtained by
spreading the machine assignment across multiple fault domains;
see Figure 8 for a simple example. Figure 9 shows the negative cor-
relation between FTC and FT. While other convex functions could
be used instead of (4), we use the sum-of-squares function, as it
provides efficient and fast calculation of the delta-cost of machine
reallocations, and performs very well in practice.

Our basic method for improving the FTC uses machine swaps,
which simply switch the allocation of two logical machines, thereby
preserving the number of machines assigned to each service (while
increasing the NM count by two). To improve FT, we choose the
swap that most improves FTC (details below). Accordingly, the
swaps can informally be regarded as moves in the “steepest de-
scent" direction.
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Figure 8: A simple example of a “datacenter" with two contain-
ers and two different power sources. In this example, the power
fault domains overlap with the network (container) fault do-
mains. The dotted rectangles represent the resulting cells and
gray squares represent the allocated servers. Configuration A
has a FTC of 128 and a FT of 0; configuration B spreads the
machines across the fault domains, hence has a lower FTC of
64 and a higher FT of 1/2. Note that FTC and FT are negatively
correlated.

Minimum k-way cut for BW. The basic procedure that we apply
for minimizing the BW is based on minimum k-way cut, which
partitions the logical machines into a given number of clusters. We
often refer to this procedure as min cut or just cut for simplicity. In
our setup, each of the clusters corresponds to a VLAN (we note that
the traffic between different VLANs passes through core links). To
utilize the cut for our purposes, we construct the datacenter com-
munication graph as follows. Each node in the graph corresponds
to a logical machine, and the weight of each edge in the graph is set
as the average traffic rate between the two machines. We use Metis’
graph partitioning function (gpmetis, see [21]), which allows us to
define the size of each cluster within the partition. This feature is
important, as the physical clusters need not be of equal size. Gp-
metis outputs the set of logical machines which should belong to
each cluster, while minimizing the total weight of the minimum k-
way cut. Notice that the total weight is exactly BW, the bandwidth
usage in the core under the suggested partition.

4.5 Algorithms to Improve both BW and FT
Based on the above building blocks, we first describe a set of

algorithms that are not constrained by the number of moves. All the
algorithms consist of two phases: in the first phase they minimize
BW, followed by minimizing FTC with the option of penalizing
swaps that increase the core bandwidth.

• CUT+FT : Apply CUT in the first phase, then minimize FTC
in the second phase using machine swaps (no penalty for BW
increase).

• CUT+FT+BW : As above, with the difference that in the sec-
ond phase we add a penalty term for the bandwidth. More pre-
cisely, the delta cost of a swap is ΔFTC + αΔBW , where
α is a weighting factor. By incorporating the penalty term
we lose the convexity property, nevertheless the actual perfor-
mance is not affected much.

Ignoring the number of moves for now, the algorithm CUT+FT+
BW can be viewed as a plausible approach for solving our opti-
mization problem (1): the first phase provides a low-bandwidth al-
location, which is the starting allocation for the second phase. The
second phase aims at reducing the FTC as much as possible, while
being aware of costly bandwidth moves. The weight α specifies
the required tradeoff between FT and BW6. Since the steepest de-
scent direction is chosen, the cost FTC+αBW is reduced using a

6We note, however, that since we are minimizing FTC instead of
maximizing FT, the α specified in the algorithm need not be equiv-
alent to α̃ in the objective (1). However, since α would in any case
be adapted online by the perceived performance, this is not an issue.

relatively small number of moves, which is yet another feature that
prevents significant bandwidth increase.

The above algorithms can be used for the initial allocation of
machines in a datacenter. However, during regular datacenter oper-
ation, these algorithms might not be applicable. This is because cut
is not aware of the current machine assignment, and might therefore
reassign almost all machines (e.g., if there are 100 containers, the
probability that a logical machine will remain in the same container
is 1%). To address this issue, we consider the following NM-aware
algorithm:

• FT+BW : Starting from the initial allocation, do only the
second phase of CUT+FT+BW.

Finally, we introduce an algorithm that directly exploits the skew-
ness of the communication matrix.

• CUT+RANDLOW : Apply cut in the first phase. In the sec-
ond phase, determine the subset of services whose aggregate
bandwidth requirements are lower than others (the size of the
subset is a parameter to the algorithm), then randomly per-
mute the machine allocation of all the services belonging to
the subset.

This algorithm takes the advantage of having services that do not
consume much bandwidth. Consequently, even random “spread-
ing" of these services could lead to significant FT improvements,
without significantly affecting the bandwidth consumption.

4.6 Scaling to Large Datacenters
To scale the algorithms to large datacenters, we describe addi-

tional features of the two building blocks. Because there are many
possible machine swaps, finding the actual best one would take a
long time. Instead, we sample a large number of candidate swaps
and choose the one that most improves FTC.7 Due to the separable
structure of FTC, we compute the improvement in FTC incremen-
tally, allowing us to indeed examine a large number of swaps.

When performing the graph cut, the full graph representation,
where each node represents a logical machine, often leads to an in-
tractable optimization problem for our minimum k-way cut solver.
To address that, we employ a coarsening technique, in which we
group logical machines of the same service into a smaller num-
ber of representative nodes. Accordingly, the edge weight between
each pair of such nodes becomes the sum of inter traffic rates be-
tween the logical machines of the two nodes.

5. EVALUATION
In this section we evaluate the algorithms described in Section 4.

We first evaluate algorithms that optimize for bandwidth or fault
tolerance (Section 5.3), then evaluate algorithms that optimize for
both bandwidth and fault tolerance, but ignore the number of server
moves required to get to the target server configuration (Section 5.4).
In Section 5.5, we evaluate algorithms that also consider the num-
ber of server moves. See Section 6 for discussion on handling ad-
ditional constraints within our framework.

5.1 Overview of Results
CUT+FT+BW performs the best. When ignoring the number of
server moves, CUT+FT+BW achieves the best performance (see
Figure 10). This algorithm achieves 30%−60% reduction in band-
width usage in the core of the network, while at the same time
improving FT by 40% − 120%. The graph cut significantly re-
duces the bandwidth usage and provides a good starting point for

7Although this means that the optimization step is perhaps not the
steepest one, it is enough to move in any descent direction in order
to converge to the global optimum (see, e.g., [9]).



the steepest-descent moves that improve fault tolerance. The results
of this algorithm serve as a benchmark for the other algorithms.
FT+BW is close to CUT+FT+BW. When executing FT+BW un-
til convergence, it achieves results close to CUT+FT+BW, even
without performing the graph cut (falling behind by only 10 − 20
percentage points in BW reduction). This is perhaps surprising be-
cause FT+BW performs only steepest-descent moves, without the
advantage of global optimization through graph cut. In scenarios
where the number of concurrent server moves is limited, we can
use FT+BW to perform incremental improvements (e.g., move 10
servers every hour). This result shows that we can perform incre-
mental updates without getting stuck at bad local minimum.
FT+BW achieves most improvement within few moves. FT+
BW performs the “best” machines swaps right at the beginning and
can thus achieve large improvement with few moves. For example,
when limiting the number of moves to 20% of the servers, it reaches
more than half of the potential benefits.
Random allocation in CUT+RANDLOW works well. Since many
services transfer relatively little data, they can be spread randomly
across the datacenter to achieve high fault tolerance without hurting
bandwidth.

5.2 Methodology
We need the following information to perform the evaluation:

a) network topology of a cluster, b) services running in a cluster
and number of machines required for each service, c) list of fault
domains in the cluster and list of machines belonging to each fault
domain, and d) traffic matrix for services in the cluster. We describe
each below.

Network Topology of a Cluster
We model the network as a hierarchical tree, each level of which
may have a different oversubscription ratio, branching factor, and
redundancy count. This model can represent a wide range of topolo-
gies from a Clos network/fat-tree (the Clos becomes a node with
high branching factor, high redundancy count, and low oversub-
scription) to a hub-and spoke (high branching factor, redundancy
count = 1, and high oversubscription). The topologies vary among
the datacenters we study, including many hybrids such as a Clos
network connecting a large number of sub-topologies, each of which
is a 2-redundant aggregation tree. Given a hierarchical tree repre-
senting the network topology, core links are links from the root of
the tree to the second-level nodes, which in our datacenters typ-
ically represent the VLANs. Accordingly, we use the network
topology to determine whether machine pairs are located in dif-
ferent VLANs, which indicates that their traffic traverses through
the core.

Services in a Cluster
We use four production clusters with thousands to tens of thousands
of servers to obtain the list of services and the number of required
machines in each service. Some statistics on the number of services
and their sizes are presented in Section 2.

Fault Domains
Based on the network topology and physical wiring of the produc-
tion clusters, we identified four types of fault domains: server con-
tainers (containing on the order of thousand servers), top-of-rack
switches, server enclosures (containing three or four servers) and
power domains (containing hundreds of machines).

Traffic Matrix
We obtain the service-to-service traffic matrix by collecting net-
work traces of machine-to-machine communication that contain the
amount of data sent and received. These traces are collected from
a pre-production cluster that runs a full copy of Bing. This cluster
contains thousands of servers, executes fraction of live traffic, and
is used for testing before deploying code to the production datacen-
ters. We do not have such traces for production clusters. Because
machine moves are potentially expensive, we do not respond to
changes in traffic patterns that happen on the order of minutes or
even hours. Instead, we use the traces to compute the long-term, or
steady-state, bandwidth requirements for each service pair.

Because we extract the data for network topology, fault domains
and services from production clusters, we need to map the ser-
vices from the pre-production cluster to services in production clus-
ters. We directly match services with identical names and can
match about 1/3 of the total traffic in the pre-production cluster.
We match the remaining production services (in descending or-
der by number of servers) with remaining pre-production services
(in descending order by required bandwidth). Such mapping in-
creases bandwidth requirements for large services and thus makes
the bandwidth optimization more difficult than other mappings.

Comparing Different Algorithms
All evaluated algorithms produce different server allocations for
different input parameters, and therefore explore the tradeoff space
between improving bandwidth and fault tolerance. The input pa-
rameters are the α (for CUT+FT+BW and FT+BW), number of
server swaps to perform (for CUT+FT and FT+BW), and fraction
of services to allocate randomly (for CUT+RANDLOW). Instead
of comparing the performance of the algorithm on single config-
urations of problem parameters, we compare the entire achievable
tradeoff boundaries for these algorithms. In other words, we run
the algorithm with different values of the parameters and plot the
BW and FT achieved (see Figure 10). The solid line in the figure
clearly represents the best algorithm, since its performance curve
“dominates" the respective curves of the other two algorithms.

We show the changes in BW and FT relative to the current server
allocation in the datacenters. The current allocation algorithm con-
siders communication patterns of only a few services (because this
data is typically not available) and does not systematically consider
all fault domains. In the following figures, three solid circles repre-
sent the FT and BW at starting allocation (at origin), after BW-only
optimization (bottom-left corner), and after FT-only optimization
(top-right corner) to provide context for results of the other algo-
rithms. For each service, the relative improvement in FT corre-
sponds to an increase in the number of available servers during a
single worst-case failure; for example, a service with 20% improve-
ment in FT will have 20% more servers available during such fail-
ure. In our graphs, we depict the average FT improvement across
services.

5.3 Optimizing for Either BW or FT
Here we describe the results of applying algorithms that optimize

either for bandwidth or for fault tolerance, but not both. BW-only
algorithm applies the minimum k-way cut to the communication
graph. The results for this algorithm to six different datacenters of
various sizes (see Figure 2) imply that we can reduce the bandwidth
requirement at the network core by 45% on average (relative to the
current cluster allocation). However, since this algorithm clusters
services in the same partitions (containers, VLANs, . . . ), it also
significantly reduces fault tolerance (by 66%, on average).

FT-only optimization uses the FT+BW algorithm with α set to
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Figure 9: Convergence of FTC (the fault tolerance cost func-
tion, Equation 4) and the corresponding average worst-case
survival for a smaller cluster of several thousand machines.
The FT algorithm improves (reduces) FTC while indirectly im-
proving (increasing) the fault tolerance of the services. Notice
that even small changes in cost (e.g., from 1,300 to 3,000 swaps)
result in significant improvement in fault tolerance. Finding
a swap takes from seconds to a minute, depending on the size
of the cluster and the number of candidate swaps that are ex-
plored (this number is a tunable parameter in our algorithm).
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Figure 10: The achievable trade-off boundary for the CUT+FT,
CUT+FT+BW and CUT+RANDLOW algorithms. For CUT+
FT, each marker on the line represents the state after moving
approximately additional 2% of servers in the cluster. Note
that CUT+RANDLOW outperforms CUT+FT simply by ran-
domly allocating the low-talking services; however, it does not
improve the bandwidth usage of these services nor fault toler-
ance of the high-talkers.

zero. Applying this algorithm improves FT by 83% on average,
but also increases the bandwidth requirement at the core by 7%.
Although we report these changes in relation to the current server
allocation at the clusters, we note that the absolute values for BW
and FT metrics do not depend on the starting allocation. The graph
cut approach completely ignores the starting allocation, and while
the steepest descent in FT starts from a particular allocation, it con-
verges to the globally optimal FT of the cluster.

As explained in Section 4, the FT-only algorithm uses optimiza-
tion over convex FTC to indirectly improve FT. Figure 9 illustrates
the negative correlation of these two metrics – as FTC decreases,
the fault tolerance improves.

5.4 Optimizing for Both BW and FT
In this section we evaluate algorithms that optimize bandwidth

and fault tolerance, but ignore the number of server moves required
to reach the target service allocation (CUT+FT, CUT+FT+BW,
and CUT+RANDLOW). All these algorithms first use the mini-
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Figure 11: Change in fault tolerance and core bandwidth over
time for CUT+FT+BW (left) and FT+BW (right) for three dif-
ferent values of α. Using larger values of α puts more weight
on improving bandwidth at the expense of fault-tolerance.
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Figure 12: The achievable trade-off boundary for the FT+BW
algorithm. Values next to the lines represent the fraction of
the cluster that was moved. The outer-most line represents the
result of the CUT+FT+BW.

mum k-way cut to reduce the bandwidth at the core, followed by
performing gradient descent that improves fault tolerance, gradient
descent that improves fault tolerance and bandwidth, and random-
izing the low-talking services, respectively. We show results for
one of the datacenters in Figures 10 and 11(left), and results for the
remaining three datacenters in Figure 13a. We note that we have
examined ways to incorporate FT optimization directly within the
cut procedure. First, we tried to artificially partition each service to
several subgroups, however this did not lead to satisfactory perfor-
mance. We also tried to augment the cut procedure with “spread-
ing" requirements for services. Unfortunately, this approach does
not scale to large applications with hundreds of services.

CUT+FT

CUT+FT performs the minimum k-way cut (reaching the lower-
left point in Figure 11(left)), followed by the steepest descent al-
gorithm that only considers improvement in fault tolerance. We
executed the algorithm many times, each time allowing it to swap
an increasing number of servers. The resulting BW and FT met-
rics of the obtained server allocations are shown in Figure 10 (in
particular, the CUT+FT curve). The diagonal line in this figure
represents the achievable tradeoff boundary for this algorithm; by
changing the total number of performed swaps, we can control the
tradeoff between BW and FT. This formulation of the problem is
convex, so performing steepest descent until convergence leads to
the global minimum with respect to fault tolerance.

CUT+FT+BW

CUT+FT+BW is similar to CUT+FT, but gradient descent also
considers improvement in bandwidth when selecting a machine
swap. The results of this algorithm depend on the value of α;
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Figure 13: Evaluation of CUT+FT+BW, CUT+RANDLOW, and FT+BW on three additional datacenters.

higher values of α put more weight on improvement of bandwidth
at the cost of not improving fault tolerance as much. Figure 11
shows the progress of this algorithm for three different values of α.
By running the algorithm until convergence with several different
values of α, we obtain the “benchmark boundary" to which other
algorithms can be compared (see the solid line in Figure 10). Be-
cause this algorithm is not optimizing over a convex function, it is
not guaranteed to reach the global optimum. However, it still sig-
nificantly improves both the bandwidth and fault tolerance of the
cluster.

CUT+RANDLOW

CUT+RANDLOW first performs the minimum k-way cut, followed
by randomizing the allocation of the least-communicating services
responsible for total of y% of the total traffic in the cluster. The
achievable tradeoff boundary for this algorithm8 is in Figure 10.
This algorithm achieves performance close to the CUT+FT+BW
algorithm, but it does not optimize the bandwidth of the low-talking
services nor the fault tolerance of the high-talking ones, which ex-
plains the gap between these two algorithms.

5.5 Optimizing for BW, FT, and NM
In this section we evaluate FT+BW, which also considers the

number of server moves. This algorithm starts from the current
server allocation and performs steepest descent moves on the cost
function that considers the fault tolerance and bandwidth. The
progress of this algorithm for different values of α is shown in Fig-
ure 11(right); as in CUT+FT+BW, using larger α skews the opti-
mization towards optimizing bandwidth. In this figure, each marker
corresponds to moving approximately additional 2% of servers.
Notice that improvement is significant at the beginning and then
slows down.

Figure 12 shows the achievable tradeoff boundaries of FT+BW
for different fractions of the cluster that are required to move. For
example, notice that we obtain significant improvements by mov-

8Using y = 0, 25, 50, 60, 70, 80, 85, 90, 95, 98, 99, 99.9, 100.

ing just 5% of the cluster. Moving 29% of the cluster achieves
results similar to moving most of machines using the CUT+FT+
BW algorithm (see the outer double line in Figure 12). Results for
three additional datacenters are presented in Figure 13(b).

Finally, notice that when running FT+BW until convergence
(see Figure 13a), it achieves results close to CUT+FT+BW even
without the global optimization of graph cut. This is significant,
because it means we can use FT+BW incrementally (e.g., move
2% of the servers every day) and still reach similar performance as
CUT+FT+BW that reshuffles the whole datacenter at once.

5.6 Understanding the Improvements
Here we explain the actual allocation changes performed by the

FT+BW algorithm for α values of 1.0 and 0.1 and how they lead
to the improvements in bandwidth and fault tolerance. For α = 1.0,
FT+BW reduced the core bandwidth usage by 47% and improved
the average fault tolerance by 121%. Overall, the contribution of
every single service on the core bandwidth consumption was re-
duced. This happened at the expense of fault tolerance of some ser-
vices as they were packed closer to conserve bandwidth. The fault
tolerance was reduced, stayed the same, and was improved for 7%,
35%, and 58% of services, respectively. Finally, Figure 14(left)
shows the changes of bandwidth and fault tolerance for all services
with reduced fault tolerance. Again, a few services contributed sig-
nificantly to the 47% drop in bandwidth, but paid for it by being
spread across fewer fault domains.

For α = 0.1, FT+BW achieved reduction of bandwidth usage by
26%, but improved the fault tolerance by 140%. In this case, fault
tolerance was reduced only for 2.7% of the services (see the right
plot on Figure 14) and the magnitude of the reduction was much
smaller than for α = 1.0. This demonstrates how the value of α
controls the tradeoff between fault tolerance and bandwidth usage.

To understand the impact of improved fault tolerance on the ser-
vices, we compute the number of services that are affected by a
potential hardware failure. We say that a service is affected by a
potential hardware failure if its worst-case survival is less than a
certain threshold H . We use H = 30% that is used in the alert sys-
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tem for Bing. For FT+BW with α = 1.0 discussed above, the fault
tolerance increased by 121%. Based on simulations, the number of
services potentially affected by hardware failures would drop by a
factor of 14 when using the allocation proposed by FT+BW.

We believe that our approach is general, nevertheless the achieved
improvements depend on communication patterns of the deployed
applications, as we demonstrate below. We stress-test our algo-
rithms using synthetically modified communication matrix to cap-
ture different extremes of communication types. In the first two
experiments, we a) removed all communication between pairs of
services that belong to different environments and, b) removed all
communication between different services (kept only communica-
tion inside the service). The resulting matrices are close to commu-
nication patterns one might observe in a cloud computing environ-
ment with many independent parties. In both cases, we achieved
results very close to using the original traffic matrix. These exper-
iments highlight the robustness of our approach, as it can handle
significantly different communication patterns.

Finally, we experimented with a traffic matrix with uniform com-
munication pattern; in particular, for every pair of logical machines
that belong to services that communicate (based on the original
traffic matrix), we set their bandwidth requirement to a constant
C. Thus, every pair of servers requires bandwidth of either 0 or C.
Notice that the traffic in this matrix is not skewed as the original
matrix. Using this matrix, we were able to achieve the same im-
provement in fault tolerance, since it does not depend on the traffic
matrix. However, none of the algorithms were able to reduce the
bandwidth usage in the core of the network; the best improvement
was on the order of −10−7. This demonstrates that the skewness
of the communication patterns is crucial for our approach.

6. ADDITIONAL SCENARIOS
Besides the main objectives of improving fault tolerance and re-

ducing bandwidth consumption in the core of the network, the de-
ployment of our algorithms may need to consider further practical
issues. We describe some of them here and discuss how our algo-
rithms can be extended to support them.
Hard constraints on fault tolerance and placement. Certain im-
portant services might have hard constraints on the minimum re-
quired fault tolerance. Increasing the weight of a service monotonously
improves its FT. Thus, we could exploit this monotonicity to effi-
ciently find the weight that should be assigned to the service (through
offline simulations). Further, when evaluating a machine swap, we
could check the FT of the involved services and never perform a
swap that would reduce FT below a specified limit. Similarly, if a
logical machine has certain hardware requirements, we could also
check them during swap evaluation.
Optimization of bandwidth across multiple layers. The focus
in this paper is on reducing the bandwidth at the core, but the same

algorithms could be applied at the lower levels of the network, such
as reducing the bandwidth usage on the aggregation switch. Our
optimization framework can address this extension by performing
the cuts hierarchically.
Preparing for maintenance and online recovery. A large number
of machines might become unavailable during maintenance or dur-
ing long-lasting failures. Setting high weight wj for the affected
fault domain j will incentivize our algorithm to move machines
away from that domain, thereby improving FT of applications.
Adapting to changes in traffic patterns. Since services might be
added and removed and their traffic matrix can change over time,
the FT+BW algorithm might be executed every time such a change
is detected. When the change in the algorithm inputs is small, FT+
BW would propose only a small number of machine swaps.
Multiple logical machines on a server. Our optimization frame-
work could be extended to support single physical machine hosting
multiple logical machines. Indeed, the basic idea of preserving a
feasible allocation by swaps may carry over to the more general
case where services could choose between “small", “medium" or
“large" logical machines. Under such extensions, we might restrict
the set of feasible swaps to avoid complicated bin packing issues.
We leave this extension for future work.

In addition to the above scenarios, there are interesting exten-
sions for future work. These include fault tolerance with correlated
failures, non-uniform and time-varying communication patters, and
additional performance metrics for fault tolerance and bandwidth
(such as worst-case core link utilization).

7. RELATED WORK
Datacenter traffic analysis. Datacenter traffic has been studied in
the past. In [8], the authors analyze the communication patterns in
datacenters at the flow- and packet-level, while in [20] they con-
centrate on a particular, MapReduce-like application. In this paper,
we study a complex Web application consisting of a large number
of interconnected services and provide a detailed analysis of their
communication patterns at the application level.
Datacenter resource allocation. Current approaches to resource
allocation in multi-tenant datacenters can be divided into two major
categories. On the one hand, Seawall [33] and NetShare [24] share
the network bandwidth among coexisting tenants based on their
weights. Node allocation is a non-goal for these algorithms. On
the other hand, Oktopus [6] and SecondNet [17] provide guaran-
teed bandwidth to tenant requests. Oktopus uses greedy heuristics
to allocate nodes and bandwidth for two specific types of topolo-
gies. SecondNet provides pairwise bandwidth guarantees between
tenant nodes. Solutions in both categories do not consider appli-
cation availability; since they are tailored for satisfying bandwidth
constraints, it is nontrivial to extend them to include availability.
Virtual network embedding. Allocation of arbitrary virtual net-
work topologies on top of physical networks is a well-studied prob-
lem [10]. Existing solutions include greedy heuristics [38], simu-
lated annealing [27], multi-commodity flow models [34, 37], and
mixed-integer formulations [11]. However, these algorithms do not
consider availability constraints.
Survivable embedding. Survivability from node and link fail-
ures has been extensively investigated for optical and MPLS net-
works [23, 25, 35]. The key objective, however, is to ensure IP
connectivity in presence of failures. Survivable virtual network em-
bedding [31] deals with a similar problem in the context of network
virtualization. These solutions do not consider node allocation, nor
can they work at datacenter scale.
High availability in distributed systems. Resource allocation to
achieve high availability in distributed systems has been studied be-



fore [3,5,7,36]. These projects divide the servers into fault domains
with different failure probabilities, and allocate data and applica-
tion components to maximize some measure of application avail-
ability. However, they do not consider bandwidth usage.
VPN and network testbed allocation. Algorithms for allocating
virtual private networks (VPNs) in a shared provider topology [13,
18, 30] involves finding paths for a collection of source/destination
pairs given a small, pre-defined set of customer nodes. The authors
of [32] consider bandwidth constraints when allocating nodes in
Emulab. Neither of these considers application availability.

8. CONCLUSION
Fault tolerance and reduction of bandwidth usage are often con-

tradictory objectives – one requires spreading machines across the
datacenter, the other placing them together. Indeed, simulations on
large-scale Web application demonstrate that optimizing for one of
these metrics independently improves it significantly, but it actu-
ally degrades the other metric. In this paper, we propose an opti-
mization framework that provides a principled way to explore the
tradeoff between improving fault tolerance and reducing bandwidth
usage. The essentials of this framework are motivated by a detailed
analysis of the application’s communication patterns. In particular,
our analysis shows that the communication volume between pairs
of services has long tail, with the majority of traffic being gener-
ated by small fraction of service pairs. This allows our optimiza-
tion algorithms to spread most of the services across fault domains
without significantly increasing the bandwidth usage in the core.
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