

An Analytical Framework and Its Applications

for Studying Brick Storage Reliability

Ming Chen
+
, Wei Chen

+
, Likun Liu

*
, and Zheng Zhang

+

Microsoft Research Asia
+

Tsinghua University
*

{mingche
+
, weic

+
, zzhang

+
}@microsoft.com, llk04

*
@mails.tsinghua.edu.cn

Abstract

The reliability of a large-scale storage system is in-

fluenced by a complex set of inter-dependent factors.

This paper presents a comprehensive and extensible

analytical framework that offers quantitative answers

to many design tradeoffs. We apply the framework to a

number of important design strategies that a designer

and/or administrator must face in reality, including

topology-aware replica placement, proactive replica-

tion that uses small background network bandwidth

and unused disk space to create additional copies. We

also quantify the impact of slow (but potentially more

accurate) failure detection and lazy replacement of

failed disks. We use detailed simulation to verify and

refine our analytical model. These results demonstrate

the versatility of the framework and serve as a solid

step towards more quantitative studies of fundamental

system tradeoffs between reliability, performance, and

cost in large-scale distributed storage systems.

1. Introduction

Storage solution using clustered "smart bricks"

connected with local area network is becoming an in-

creasingly attractive alternative to the more expensive

storage-area network (SAN) solution. Some of the

exemplary systems include NASD [10], GFS [9], FAB

[19], Repstore [24], and Boxwood [13]. A smart brick

is essentially a stripped down PC with a CPU, memory,

network card, and a large disk. The smart-brick solu-

tion is cost-effective and can be scaled up to thousands

of bricks. Another important trend in storage systems

is the increasing demand for storing reference data,

data that are rarely changed but need to be stored for a

long period of time [1]. As more and more information

being digitized, the storage demand for documents,

images, audios, videos and other reference data will

soon become the dominant storage requirement for

enterprises and large internet services [1]. Large scale

brick storage fits the requirement for reference data

quite well, because it is low-cost, simple, and has good

scalability and availability. However, for brick storage

systems, providing strong data reliability (i.e., no data

loss) as required by reference data storage is con-

fronted with new challenges, because inexpensive

commodity disks are prone to permanent failures and

failures are far more frequent in large systems. In this

paper, we study the reliability of brick storage that

stores reference data, or immutable data.

To guard against permanent loss of data, replication

is often employed. If some but not all replicas of an

object are lost due to brick failures, new replicas can

be regenerated before further failures to maintain the

same level of reliability. New bricks may also be add-

ed to replace failed bricks and data may be migrated

from old bricks to new bricks to keep global balance

among bricks. We call the process of regenerating lost

replicas after brick failures data repair, and the

process of migrating data to the new replacement

bricks data rebalance. These two processes are the

primary maintenance operations involved in a produc-

tion system.

The reliability of the system is influenced by many

parameters and policies embedded in the above two

processes. What complicates the analysis is the fact

that those factors can have mutual dependencies. For

instance, cheaper disks (e.g. SATA vs. SCSI) are less

reliable but they give more headroom of using more

replicas. Larger replication degree in turn demands

more switch bandwidth. Yet, a more carefully de-

signed replication strategy could avoid the burst traffic

by proactively creating replicas in the background.

Efficient bandwidth utilization depends on both the

given (i.e. switch hierarchy) and the design (i.e.

placement strategy). Object size also turns out to be a

non-trivial parameter as well. Moreover, faster failure

detection and faster replacement of failed bricks can

provide better data reliability, but they incur increased

system cost and operation cost. While it is easy to see

how all these factors qualitatively impact the data re-

liability, it is important for system designers and ad-

ministrators to understand the quantitative impact, so

that they are able to adjust the system parameters and

design strategies to balance the tradeoffs between cost,

performance, and reliability.

This work makes two contributions. First, as a sig-

nificant extension to an earlier work [12], it provides

an analytical framework based on Markov model to

study data reliability of brick storage systems where

random replica placement (as in [9][12][18]) is used.

The basic model, described in Section 2, covers data

repair and rebalance and considers some fundamental

factors such as object size and bounded system band-

width, while further extensions of the model cover

more advanced factors such as proactive replication,

failure detection delay and brick replacement delay.

While in most cases we cannot derive a closed form

solution, the framework provides a computation pro-

cedure and it is “scalable” in the sense that it can pre-

dict reliability at a system scale not easily affordable

by detailed simulation.

Next, given this analytical framework, we show

several applications of the framework to study some of

the most important issues when building a working

system.

First, in Section 3, we study the impact of switch

topology. Existing models typically assume a flat, one-

level hierarchy. In reality, a scalable storage system is

invariably connected in a tree-like topology and thus

replica placement strategies need to be topology-aware.

We demonstrate that network topology has a large

impact on system reliability. We propose a policy

where objects are randomly placed among all bricks

while data repair are only carried out within the same

local switch. The more efficient use of bandwidth re-

sults in significant improvement of the system reliabili-

ty, in some cases more than two orders of magnitude.

Second, in Section 4, we study the impact of proac-

tive replication, which uses a limited bandwidth budget

to generate additional replicas in the background even

without brick failures [21]. With the increasing capaci-

ty of disks, trading unused storage space for better

reliability becomes attractive. Nevertheless, there is a

lack of quantitative understanding of the effectiveness.

Our result shows that in a 3-way replication system,

even with 1% of total replication maintenance band-

width to proactively generate one more replica for

each object, we can dramatically improve reliability.

Generating two extra replicas with 0.5% bandwidth

budget, the reliability exceeds the reliability of a 4-way

replication system.

Third, in Section 5, we study the impact of delaying

failure detection and delaying the replacement of failed

bricks. In reality, failure detection is never accom-

plished instantly. A longer detection time requires less

detection messages and thus saves system bandwidth.

More importantly, it tolerates more transient failures

and avoids incurring the heavy data repair and rebal-

ance cost prematurely. We show how our model can

be extended to study the sensitivity to failure detection.

In our system settings, detecting brick failures can be

delayed to a couple of minutes without significantly

reducing data reliability. For brick replacement, it is

impractical to assume an infinite supply of backup

bricks. The common practice is to replace failed bricks

periodically. This policy is driven by the need to re-

duce human maintenance cost. We show that delaying

replacement does not have a strong impact to data re-

liability. In the setting that we studied, brick replace-

ment can be delayed for days or weeks.

We offer detailed simulation results in Section 6

and related work in Section 7. We conclude with fu-

ture work in Section 8.

2. Analytical framework

We analyze the brick storage reliability in terms of

the mean time to data loss of the system, denoted as

MTTDLsys. That is, after the system is loaded with de-

sired number of replicas of the objects, the expected

time when the first data object is lost by the system.

The analysis has two major steps. In the first step,

we fix one arbitrary object, and analyze the mean time

to data loss of this particular object, denoted as

MTTDLobj. In the second step, we estimate the number

of independent objects (in terms of data loss behavior),

and denote it as . Then the mean time to data loss of

the system is given as: MTTDLsys=MTTDLobj/.

2.1. Markov model for MTTDLobj

To analyze MTTDLobj, we use a discrete-state con-

tinuous-time Markov process as depicted in Figure 1(b)

to model the dynamics of the system. The Markov

process is illustrative and simple enough, so we do not

use more advanced stochastic modeling tools such as

SPNP [2] to avoid distracting readers with the details

of the tools.

A state in the Markov process is defined by (n, k),

where n is the number of online bricks, and k is the

current number of replicas of the observed object

among the online bricks. A brick is online if it is func-

tional and it achieves the balanced load (stores an av-

erage amount of data). Initially the system is in state

(N, K), where N is the total number of bricks and K is

the replication degree, the desired number of replicas

for the observed object. The model has one absorbing

state, stop, which is the state when all replicas of the

object are lost before any repair is successful. Data

loss occurs when the system transitions into the stop

state. MTTDLobj is computed as the mean time from the

initial state (N,K) to the stop state.

(N, K)
(N-1,

K)

Stop

(N-2,

K)

(N-1,

K-1)

(N-2,

K-1)

(N-2,

K-2)

... ...(N-K,

K)

(N-K,

K-1)

(N-K,

K-2)

(N-K,

1)

...

(N-

K+1,

K)

(N-

K+1,

K-1)

(N-

K+1,

K-2)

(N-

K+1, 1)

...

(K, K)

(K, K-

1)

(K, K-

2)

(K, 1)

...

(n, k) (n-1, k)

(n,

k+1)

(n+1,

k)

(n-1, k-

1)

(n+1,

k+1)

μ3

μ1

λ2

μ2

λ1

(a) (b)

Figure 1. Model 0: Markov process of system

replicas maintenance process (states with

less than K online bricks are omitted for a

large system with online bricks less than K

can be approximately considered broken)
To compute this value, we need to provide transi-

tion rates between all states. Our computation always

refers to the replicas of the observed object. We as-

sume that each individual brick has an independent

failure rate of . There are five transitions leaving the

state (n,k) (Figure 1(a)). 1 is the rate of the transition

moving to (n-1,k), the case where a new brick fails but

it does not contain a replica. Since there are (n-k) such

bricks, 1 = (n-k). 2 is the rate of the transition mov-

ing to (n-1,k-1), in which case the failed brick contains

a replica and thus 2 = k.

Transition rates 1, 2, and 3 are the rates for re-

pair and rebalance transitions1. When the system is in

state (n,k), data repair is the process to regenerate all

lost replicas in the failed N-n bricks among the remain-

ing n bricks, and it should do so as fast as possible. If

all n bricks participate in the repair process, data repair

can be done in parallel and can be very fast. In the

mean time, data rebalance is carried out to regenerate

all lost replicas on the N-n new bricks that are installed

to replace the failed bricks. Data rebalance is the

process to replace failed bricks with new bricks, and

fill the new bricks with the replicas lost by the failed

bricks until each of the new bricks stores an average

amount of data, so that they are then brought online for

1 Transition times are approximately considered to follow

exponential distribution for network traffic fluctuates.

service. When both data repair and data rebalance

complete, the replicas lost on the failed bricks have all

been recovered on the new replacement bricks, so the

replicas generated on the surviving bricks in the repair

process will be deleted to keep the desired replication

degree K. We assume that the repair and rebalance

processes are reliable in that no replicas are lost during

data repair or rebalance.

In the basic model we assume that brick failures are

detected instantaneously and new bricks are installed

immediately to replace failed bricks. In Section 5 we

extend our model to consider failure detection delays

and brick replacement delays.

Transition rate 1 is the rate of data repair from

state (n,k) to (n,k+1). In state (n,k), the data repair

process regenerates (K-k) replicas among the remain-

ing n bricks in parallel. Let i=1,2,…K-k be the (K-k)

bricks receiving these replicas. For each brick i, let dr,i

be the amount of data it receives for data repair, and

br,i be the bandwidth it is allocated for repair. Then

br,i/dr,i is the rate brick i completes the repair of a repli-

ca. Since all (K-k) replica repairs are in parallel, the

overall repair rate 





kK

i irir db
1 ,,1 / .

 Transition rates 2 and 3 are for rebalance transi-

tions filling the N-n new disks. In particular, 2 is the

rate of completing the rebalance of the first new brick

that contains a new replica (to state (n+1,k+1)), while

3 is the rate of completing the rebalance of the first

new brick not containing a replica (to state (n+1,k)).

For each of the N-n new bricks, let dl be the amount of

data to be loaded, and bl the available bandwidth for

copying data. Thus the rate for each new brick to com-

plete rebalance is bl/dl. Therefore 2=(K-k)*bl/dl and

3 = ((N-n)-(K-k))*bl/dl, since (K-k) new bricks con-

tain replicas of the object and (N-n)-(K-k) bricks do

not.

The values of dr,i, br,i, dl, bl depend on placement

and repair strategies as well as system configuration

such as backbone bandwidth, brick bandwidth, etc. and

they are determined in Section 2.2 for random place-

ment and repair strategy.

When all transition rates are known, MTTDLobj is

computed with the following procedure [4]. We num-

ber all the states except the stop state to be state 1, 2,

3, …, with state 1 being the initial state (N, K). Let Q
*

= (qi,j) be the transition matrix, where qi,j is the transi-

tion rate from state i to state j. We then calculate ma-

trix M = (I-Q
*
)

-1
. Finally, we have MTTDLobj = i m1,i,

where m1,i is the element of M at the first row and the

i-th column. It is also possible to calculate MTTDLobj

using a system of linear equations as proposed by

Muppala et.al [14]. When the number of states is not

very large, the calculation of matrix inversion is simple

and feasible.

We now briefly justify why we choose to use the

model in Figure 1. At each state, data repair for the

particular object is affected by the available system

bandwidth and the amount of data to be repaired.

These quantities are determined by the total number of

bricks remaining in the system. So we need parameter

n in the state. We also need parameter k in the state to

denote how many copies of the particular object have

left and when the object is lost. Explicit use of replica

number k in the state is also useful when we extend the

model to consider other replication strategies, such as

proactive replication in Section 4.

2.2. Parameters for random placement

and repair strategy

In this paper, we consider random placement and

repair strategy, which appeared in a number of studies

([9][12][18]). With this strategy, all replicas of any

given object are randomly placed among all bricks in

the system. When a replica is lost, a new replica is

randomly generated among all remaining bricks in the

data repair process.

Table 1. Parameters
Parameter Explanation Default

N Number of total bricks 1024


=1/MTTF

Death rate of a brick 1/3

(1/year)

K Replication degree, i.e.,

Desired number of replicas per

object

3

D Total amount of unique user data 1PB

s Object size 4MB

B Switch bandwidth for replica

maintenance

3GB/s

b Brick IO bandwidth 20MB/s

p Fraction of B and b allocated for

repair; (1-p) for rebalance

90%

F Total number of objects in the

system

D/s

x (approximate) number of failed

bricks whose data still need to be

repaired

1

A Total number of remaining bricks

that can participate in data repair

and data rebalance and serve as the

data source

min(n,

FKx/(n+

x))

Table 1 shows the system parameters and their de-

fault values used in our calculation of all the figures.

The default values are based on an exemplary peta-

byte data storage that could be built in a few years, for

example B=3GB/s is 10% of bi-sectional bandwidth of

a 10Gbps 48 port switch, b=20MB/s is the mixed se-

quential and random disk access bandwidth, and =

1/3yr corresponds to a cheap brick (disk) with 3 year

mean time to failure. Several reports ([20][11]) pro-

vide lower failure rates about disk failures, but they are

based on aggregate failure rates of a number of disks

during their initial use period (the first year), and it is

well known that failure rate increases as a disk ages, so

we choose to use a higher failure rate to be conserva-

tive, and it also matches typical disk warranty length.

Between data repair and rebalance, we allocate most

bandwidth (p=90%) for data repair, since we want the

lost replicas to be regenerated as fast as possible to

support high data reliability. We now further explain

parameters x and A in the table.

When the system is in state S = (n, k), part of the

data on the N-n failed bricks have been repaired before

the system transitions into the state. However, we do

not have direct information from the state to derive the

exact amount of data still need to be repaired. If we

add extra parameters to the state to record this infor-

mation, the state space will be too large and make our

computation infeasible. Therefore, we use an approxi-

mation parameter x in the calculation of dr,i. Parameter

x denotes the (approximate) number of failed bricks

whose data still need to be repaired, and it takes values

from 1 to N-n. In other words, when the system is in

state S with n online bricks, we assume that in a pre-

vious state S’ with n+x online bricks, the system has

(almost) done its data repair, and only the data in the

last x failed bricks need to be repaired in state S.

When x = N-n, the approximation is the most con-

servative, and it ignores data repaired in all previous

states. Without any further information, one can use

x=N-n to make a conservative estimate of MTTDLsys.

In general, the value of x is determined by the failure

rate of the bricks and the repair speed: the lower the

failure rate and the higher the repair speed, the smaller

the value of x. For our setting, we use our simulation

results (shown in Section 6) to tune the parameter, and

we find that x=1 is sufficient for our setting, which

means the data needed to be repaired are mostly the

data in the last failed brick and other data are mostly

repaired already. This is reasonable given our low fail-

ure rate (about 1 failure per day) and relatively high

repair speed (a few tens of minutes to repair one failed

brick in parallel). Henceforth, we use x=1 in all the

calculations of our analytical results.
Table 2. Formulas for the key quantities in ran-

dom placement
br,i),/min(bpABp ,

same for all i

Bp/A is the root switch

bandwidth allocated for

repair for one online brick

participated in repair; bp

is the brick IO bandwidth

allocated for repair.

dr,i

Axn

xKD





)(

,

same for all i

Parameter x is the number

of failed bricks whose data

still need to be repaired.

(D*K)/(n+x) is the amount

of data on one brick. With

x failed bricks to repair,

their data are evenly dis-

tributed among the A re-

maining bricks as repair

source.
bl

)),/()1(

),/()1(min(

bnNpB

nNApb



 b(1-p)*A is the total

bandwidth with which A

online bricks can contri-

bute for rebalance, and it

is evenly distributed for

(N-n) new bricks; B(1-p)

is the root switch band-

width allocated for rebal-

ance, and it is also allo-

cated evenly for (N-n) new

bricks; b is the brick IO

bandwidth one new brick

can use for rebalance.
dl

N

KD 

Average amount of data

one brick should maintain.

Quantity A denotes the total number of remaining

bricks that can participate in data repair and data re-

balance and serve as the data source, and it is calcu-

lated as follows. Let F be the total number of objects

stored in the system, then F = D/s, where s is the aver-

age size of object. In state S with n online bricks, the

total number of lost replicas is given by FKx/(n+x),

since by our assumption in a previous state S’ with n+x

online bricks all data are repaired so each brick has

FK/(n+x) replicas and from state S’ to S all data on the

last x failed bricks are lost and need repair. Then we

have A = min(n, FKx/(n+x)). This is because, when

FKx/(n+x) > n, all lost replicas can be equally distri-

buted among n remaining bricks as data source for

repair and rebalance; when FKx/(n+x) < n, at most

FKx/(n+x) bricks can serve as data source for lost rep-

licas.

Table 2 shows the formulas for dr,i, br,i, dl, and bl

and their explanations. We provide extra explanation

for dr,i below. Since in state (n, k) the data on the last x

failed bricks need repair, and each brick contains

DK/(n+x) amount of data, so the total amount of data

to repair is DKx/(n+x). These data are eventually dis-

tributed among A participating repair sources, so each

brick has DKx/[(n+x)A] amount of data to repair.

2.3. Estimate , the number of indepen-

dent objects for random placement

and repair

It is difficult to estimate the number of independent

objects, since replicas of different objects may be part-

ly co-located in same nodes and thus these overlapping

objects are not completely independent.

To solve this problem, we consider an ideal model

in which we can calculate the exact quantity , and use

it as our estimate for  in our model. In the ideal model,

time is divided into discrete slots, each of which with

length Δ. Within each slot, each machine has an inde-

pendent probability P to fail. At the end of each slot,

data repair and data rebalance are completed instanta-

neously. In this model, we can derive the exact formu-

las for MTTDLobj and MTTDLsys, and thus we can ob-

tain MTTDLobj / MTTDLsys. We then let Δ tend to zero

(so P tends to zero), and we use the quantity

sys

obj

P MTTDL

MTTDL

0
lim


))/11(1(FK
N

K
N CC 

)1(
/ K

NCFK

N eC




as our estimate of . In real systems data repair and

rebalance can usually be done in a much smaller time

scale (hours) comparing with the life time of a brick

(years). Thus assuming instant data repair and rebal-

ance in the ideal model would give a close estimate of

.

Some typical values of the above approximation are

as follows. When K

NCF  , it is F; when K

NCF  ,

it is
K

NC . In other words, if there are too few objects,

then their failures can be regarded as independent; and

if there are many objects, then any combination of K

bricks can be considered as one independent pattern.

Also, when
K

NCF  , it becomes)1(1 eC K

N .

2.4. Sample results

Figure 2. MTTDL in random placement

Figure 2 shows the reliability of the system with re-

spect to the size of the objects in the system. The result

shows that data reliability is low when the object size

is small, because the huge number of randomly placed

objects uses up all replica placement combina-

tions
K

NC , and any K concurrent brick failures will

wipe out some objects. On the other hand, when the

object size is too large, the reliability also decreases

because there are not enough parallel repair degree to

speed up data repair. Therefore, increasing parallel

repair bandwidth and decreasing the number of inde-

pendent objects are two important ways to improve

data reliability. Moreover, there is an optimal object

size for system reliability, where the number of inde-

pendent objects  is reduced to a point when the sys-

tem bandwidth is just about fully utilized for parallel

repair process. This result is consistent with the results

in [12]. The figure also indicates that a 4-way replica-

tion system with low reliability bricks (average brick

life time is 3 years) can achieve much better reliability

than a 3-way replication system with high reliability

bricks (average brick life time is 20 years). This shows

that highly reliable bricks can be traded with lowly

reliable (and thus cheaper) bricks with extra disk ca-

pacity, and increasing individual brick reliability is

less effective than increasing replication degrees of

data objects.

In the following sections, we will apply our analyti-

cal framework to analyze a number of issues that are

related to data reliability in distributed brick storage

systems.

3. Topology-aware placement and repair

As indicated in the previous section, increasing

available parallel repair bandwidth and reducing the

number of independent objects are important for im-

proving data reliability. In this section we apply our

analytical framework to analyze and compare different

placement and repair strategies that utilize network

switch topology.

We assume a typical switch topology with multiple

levels of switches forming a tree topology. We refer to

the set of bricks attached to the same leaf level switch

as a cluster. Traffic within a cluster only traverses

through the leaf switch, while traffic between the clus-

ters has to traverse through parent switches. Given the

tree topology, we have three different replica place-

ment and repair strategies, based on the choices of

initial placement (where to put object replicas initially)

and repair placement (where to put new object repli-

cas during data repair):

1. Both initial and repair placement are fully

random across the whole system, in which case poten-

tial repair bandwidth is bounded by the root switch

bandwidth. We refer to this as global placement with

global repair (GPGR).

2. Both initial and repair placement are random

within each cluster. Essentially each cluster acts as a

complete system and data are partitioned among clus-

ters. In this case, potential parallel repair bandwidth is

bounded by the aggregate bandwidth of those leaf

switches under which there are failed bricks. We refer

to this as local placement with local repair (LPLR).

3. Initial placement is random across the whole

system, but repair replacement is within the same clus-

ters as the repair source. This approach significantly

improves data repair bandwidth, since it could aggre-

gate the bandwidth of all leaf switches for repair. Data

rebalance still consumes root switch bandwidth. We

refer to this as global placement with local repair

(GPLR).

We consider all switches having the same band-

width B as given in Table 1. GPGR calculation is al-

ready given in Table 2. For LPLR, each cluster can be

considered as an independent system to compute its

MTTDLc, and then the MTTDLsys is MTTDLc divided

by the number of clusters. GPLR has the same dr,i, dl,

bl, and  as the GPGR method, but it has a different

(and larger) repair bandwidth

))),//(/(min(, bpcNABpb ir  , where c is the cluster

size. The formula means that for the A bricks that may

participate in data repair, they are evenly distributed

among N/c clusters, and each cluster can provide Bp

switch bandwidth for repair. Therefore, each repair

destination can obtain Bp/(A/(N/c)) bandwidth from its

leaf switch for data repair.

Figure 3. Reliability with different placement

and repair strategies that utilize switch topol-

ogy. Cluster size c=48.
Figure 3 shows the reliability of the three different

placement and repair strategies. First, GPLR is several

orders of magnitude better than GPGR in most cases,

because they have the same number of independent

objects while GPLR can aggregate a much larger

bandwidth for data repair. Only when the object size is

very large, in which case there is not enough paral-

lelism in repair and repair is bounded by brick band-

width, does the two strategies have the same reliability.

Second, comparing GPGR with LPLR, GPGR has

much worse reliability when the object size is small,

because its placement is not restricted and it has a

much larger number of independent objects. When the

object size is large, GPGR has better reliability, be-

cause in this range there is still enough repair paral-

lelism such that GPGR can fully utilize the root switch

bandwidth, but in LPLR repair is limited within a clus-

ter of size 48, and thus cannot fully utilize the leaf

switch bandwidth for parallel repair.

Third, comparing GPLR with LPLR, GPLR is

usually better than LPLR unless the object size gets

very small or very large. This means that the aggre-

gated bandwidth in GPLR plays a significant role in

speeding up parallel repair, until the number of inde-

pendent objects gets too large or the parallel repair

degree gets too low such that the gain of aggregated

bandwidth in repair is cancelled out.

With this analysis, we reach an important conclu-

sion concerning the utilization of switch topology: If

the system can choose the object size appropriately

(perhaps by grouping small objects together), random-

ly placing replicas uniformly among all bricks while

carrying out parallel repair locally within the same

switch provides by far the best data reliability.

4. Proactive replication

Proactive replication [21] exploits free storage

space and volatile network bandwidth to improve re-

liability by continuously generating additional replicas

besides the desired number K in the constraint of fixed

allocated bandwidth. When using proactive replication

together with reactive data repair strategy (i.e., a mixed

repair strategy), the actual repair bandwidth consumed

when failures occur is smoothed by proactive replica-

tion and thus big bursts of repair traffic can be avoided.

When configured properly, the mixed strategy may

achieve better reliability with a smaller bandwidth

budget and extra disk space. In this section, we study

the impact of proactive replication to data reliability in

the setting of GPGR.

As in Section 2, we still focus on an object and re-

fer to this object by default. When the number of repli-

cas of this object drops below the desired degree K,

the system tries to repair the number of replicas to K

using reactive repair. And the system also uses reactive

rebalance to fill new empty bricks. Once the number of

replicas reaches K, the system switches to proactive

replication to generate additional replicas for this ob-

ject.

We extend the model in Section 2 to cover proac-

tive replication by adding states (N, K+1), (N-1,

K+1), …, (N, K+2), (N-1, K+2), …, until (N, K+Kp),

(N-1, K+Kp), to the model in Figure 1, where Kp is the

maximal number of replicas generated by proactive

replication. The calculation of transition rates is given

below.

First, for every state (n,k), the two failure transi-

tions 1 and 2 leaving state (n,k) have the same formu-

las 1 = (n-k) and 2 = k as before, because state (n,k)

by definition has n online bricks and k of them have

replicas of the object. Second, we consider the repair

and rebalance transitions 1, 2 and 3 leaving state

(n,k). Because reactive repair, rebalance, and proactive

replication all evenly reproduce data among bricks, we

could logically divide data on a brick into two catego-

ries for the purpose of analysis: data maintained by

reactive repair and rebalance, called reactive replicas,

and those generated by proactive replication, called

proactive replicas. Such a classification does not dis-

tort the working of the modeled system and simplifies

the analysis.

For the state (n,k) with k < K, we have one transi-

tion to (n, k+1) for reactive repair, and two transitions

to (n+1,k+1) and (n+1,k) for rebalance. Since by our

classification reactive repair and rebalance do not need

to regenerate proactive replicas, the computation of the

transition rates is exactly like in Sections 2.1 and 2.2,

except that now we need a new bandwidth allocation.

The switch bandwidth and brick bandwidth are divided

into three components: pr for reactive repair, pl for

rebalance, and pp for proactive replication, and

pr+pl+pp=1. That is, we restrict proactive replication

bandwidth to be pp percent of total bandwidth, and it is

usually small (e.g., 1%). With this allocation, we only

need to change the calculations in Table 2 such that p

is replaced with pr and (1-p) is replaced with pl. The

rest calculation of 1 2 and 3 remains the same for

state (n,k) with k < K.

We now consider proactive replication and rebal-

ance transitions for state (n,k) with k  K. We still use

1, 2 and 3 as the transition rates denoted in Figure 1

(b), but they have different meanings now. First, 2 = 0,

because rebalance does not generate proactive replicas

for this object. Thus transition to (n+1,k) is the only

transition for rebalance, and 3 = (N-n)*bl/dl ̧where bl

and dl are the same as in Table 2 with pl replacing (1-

p).

Finally, we consider the proactive replication tran-

sition from (n,k) to (n,k+1) when k  K and its rate 1.

To calculate 1, we need to calculate quantities dp and

bp, where dp is the amount of data for proactive repli-

cation in state (n,k), and bp is the bandwidth allocated

for proactive replication, all for one online brick.

However, state (n,k) does not provide enough informa-

tion to derive dp directly. To avoid introducing another

parameter into the state and causing state space explo-

sion, we estimate dp by calculating the mean number of

online bricks, L. Parameter L is calculated in the model

using only reactive repair (with pr bandwidth) and re-

balance (with pl bandwidth). Let Ap = min(n, FKp(N-

L)/N), which denotes the total number of online bricks

that can participate in proactive replication. Then we

calculate dp = DKp(N-L)/(NAp), because (DKp)/N is the

amount of data on one brick that are generated by

proactive replication, there are (N-L) bricks that lose

data by proactive replication, and all these data can be

regenerated in parallel by Ap online bricks. The calcu-

lation of Ap and dp does not include a parameter x used

in A and dr,i, because proactive replication uses much

smaller bandwidth than data repair and thus we cannot

assume that most of the lost proactive replicas have

been regenerated. For bp, we have bp = min(Bpp/Ap, bpp)

similar to the counterpart with k<K. Now we can cal-

culate the transition rate 1=(Kp+K-k)bp/dp, because

there are (Kp+K-k) proactive replicas for the object to

be regenerated, and each has the rate bp/dp.

Figure 4. Comparison between pure reactive

repair and mixed repair with a limited proac-

tive replication bandwidth. File size=4M.

Bandwidth budget for rebalance pl= 10%. The

notion “x+y” means K=x, Kp = y.
Figure 4 compares the reliability achieved by reac-

tive repair and mixed repair with varied bandwidth

budget allocated for proactive replication. It also

shows different combinations of reactive replica num-

ber K and proactive replica number Kp. Figure 4 de-

monstrates the following results.

First, with increasing bandwidth budget allocated

for proactive replication, the reliability of mixed repair

is significantly improved, though it is still lower than

pure reactive repair with same number of replicas. For

example, when proactive replication bandwidth in-

creases from 0.05% to 10%, the reliability of mixed

repair with “3+1” combination improves two orders of

magnitude, but is still lower than that of reactive repair

with 4 replicas (by an order of magnitude). Mixed re-

pair with “2+2” also shows similar trends.

Second, mixed repair provides the potential to dra-

matically improve reliability using extra disk space

without spending more bandwidth budget. Comparing

the mixed repair strategies “3+2” with “3+1”, we see

that “3+2” has much better reliability under the same

bandwidth budget for proactive replication. That is,

without increasing bandwidth budget, “3+2” provides

much better reliability by use some extra disk capacity.

Comparing “3+2” with reactive repair “4+0”, when the

bandwidth budget for proactive replication is above

0.5%, “3+2” provides the same level of reliability as

“4+0” (larger bandwidth budget results are not shown

because the matrix I-Q
*

is close to singular and its in-

version cannot be obtained). Therefore, by using extra

disk space, we can dramatically improve data reliabili-

ty without incurring much burden on system bandwidth.

5. The delay of failure detection and re-

placement of failed bricks

The model developed in Section 2, called Model 0,

assumes that the system detects brick failure and starts

the repair and rebalance process instantaneously. In

reality, a system usually takes some time, referred to as

failure detection delay, to detect brick failures. In this

section, we extend Model 0 to Model 1 to capture fail-

ure detection delay and study its impact on MTTDL. In

real systems, failure detection techniques range from

simple multi-round heart-beat detection to sophisti-

cated failure detectors. Distributions of detection delay

vary in these systems. For simplicity, we assume that

the detection delay obeys exponential distribution. In

simulation, we will evaluate the impaction of this as-

sumption by using constant detect latency.

(n-1, k,

0)

(n,

k+1, 1)

(n+1,

k, 1)

(n-1, k-

1, 0)

λ2

λ1
(n, k,

0)

δ: detection

μ3

μ2

(n, k,

1)

μ1

λ1

λ2

(n+1,

k+1, 1)

Figure 5. Model 1: consider failure detection

delay
One way to extend Model 0 is to split state (n, k) in-

to states (n, k, d), where d denotes the number of failed

bricks that have been detected and therefore ranges

from 0 to (N-n). The problem is that the state space is

exploded to O(KN
2
). To control the state space, we

make a simple approximation by allowing only 0 and 1

for value d: d=0 means that the system has not de-

tected any failures and will do nothing, and d=1 means

that the system has detected all failures and will start

the repair and rebalance process (Figure 5). As long as

the detection delay is far less than the interval of two

consecutive brick failures---an assumption holds for

most of real systems, the approximation is reasonable.

We call the model in Figure 5 Model 1.

The transition rates of Model 1 are calculated as

follows. After a failure occurs, state (n, k, d) transits to

state (n-1, k, 0) at rate 1 if no replica is lost or state

(n-1, k-1, 0) at rate 2 if one replica is lost. To be con-

servative a state is always transited to an undetected

state (d=0) after a failure. The calculation of rates 1

and 2 are the same as in Model 0. The transition from

state (n, k, 0) to state (n, k, 1) represents failure detec-

tion, the rate of which is denoted  (1/ is the mean

detection delay). In state (n, k, 0) there is no transition

for data repair and rebalance because failures have not

been detected yet. State (n, k, 1) could transit to (n,

k+1, 1), (n+1, k+1, 1), or (n+1, k, 1) with respective

rates 1, 2, and 3, representing data repair and rebal-

ance transitions. The calculations of 1, 2, and 3 are

the same as in Model 0.

Figure 6. Impact on MTTDL by failure detec-

tion delay.
Figure 6 shows the MTTDLsys with respect to vari-

ous mean detection delays. The result demonstrates

that a failure detection delay of 60 seconds has only

small impact to MTTDLsys (14% reduction), while a

delay of 120 seconds has moderate impact (33% re-

duction). Such quantitative results can provide guide-

line on the speed of failure detection and helps the

design of failure detectors.

We further extend the model to study the impact

caused by delay of replacement of failed bricks. We

found that replacement delay from 1 day to 4 weeks

does not lower the reliability significantly. This is be-

cause replacement delay only slows down data rebal-

ance but not data repair, and data repair is much more

important to data reliability. With this result, we can

conclude that (in environments similar to our settings)

data reliability is not an important concern in deter-

mining brick replacement frequency. System adminis-

trators can choose long replacement delay to reduce

maintenance cost, or determine the delay frequency

based on other more important factors such as perfor-

mance.

6. Verification and Tuning with Simula-

tion

Figure 7. MTTDL of simulation and theoretical

analysis. 95% confidence intervals for the si-

mulation results are included.
We verify our analytical results with event-driven

simulations. Due to space limitation, we present only a

few of them. The simulation results are also used to

tune parameter x (the number of failed bricks that ac-

count for repair data). The event-driven simulation is

down to the details of each individual objects. It in-

cludes more realistic situations that have been simpli-

fied in the analysis, and is able to verify the analysis in

a short period of time without setting up an extra sys-

tem and running it for years.

The simulation runs as follows. Initially, objects are

distributed uniformly at random across bricks, which

are all connected to a switch. Brick life time follows

exponential distributions, but data transfer time, detec-

tion delay, and replacement delay are constants, which

are closer to the situations in practice. Once a brick

fails, a scheduler randomly select source-destination

pairs for both data repair and rebalance. The simula-

tion is stopped once some object loses all its replicas.

Since our simulation needs to simulate the behavior

of each individual object in the system, we cannot

achieve the same large scale as our analytical frame-

work. Thus, we scale down our parameters so that the

simulation can complete in a reasonable amount of

time (two to three days using one machine with two

AMD 2.8GHz Opteron 280 processors and 16GB

memory). In particular, we run the simulations with

150 bricks, 4 Terabyte of unique data, 125MB/s back-

bone bandwidth, 12.5MB/s brick bandwidth, 20%

bandwidth allocated for rebalance, and 3 replicas for

each object, and the mean life time of a brick is 0.1

year. Each data point is the average of 10 simulation

runs.

Figure 7 compares the results of the simulation

against the theoretical calculations in the basic model.

We can see that the simulation results match very well

with the trend (as object size increases) predicted by

our analytical framework. Since the simulation is at the

individual object level, it naturally accounts for partial

repair and rebalance, which means that the data repair

and rebalance effort spent in one state will not be lost

when the system transitions to another state. This helps

us to tune parameter x in Section 2.2, which denotes

the approximate number of failed bricks whose data

still need to be repaired when the system has lost N-n

bricks. The conservative approximation of x=N-n does

lower the reliability prediction (sometimes to an order

of magnitude), but when x=1, the theoretical prediction

aligns with the simulation results quite well (most data

points fall into the 95% confidence interval). Since the

failure rate in our simulation setting (0.1 year brick life

time with 150 bricks) is higher than our analytical set-

ting (3 year brick life time with 1024 bricks) while the

repair bandwidth in our simulation is much lower

(125MB/s vs. 3GB/s), we therefore use x=1 in our

analytical results under our sample setting.

Figure 8 compares simulation results with the theo-

retical prediction when we consider failure detection

delay (Model 1). The results again show that when we

use x=N-n we obtain a conservative prediction while

when we use x=1 we obtain a theoretical prediction

that is both close in trend and in values to the simula-

tion results.

We also can see that results predicted by our analyt-

ical framework assuming that data transfer time and

detection delay follow exponential distributions match

reasonably well to the simulation results that are pro-

duced with constants latency instead.

Figure 8. Simulation and analytical results

with detection delays. 95% confidence inter-

vals for the simulation results are included.

Overall, our simulation results both verify the cor-

rectness of our analytical framework and help to tune a

parameter so that we can obtain fairly accurate predic-

tion from our analytical framework.

7. Related Work

Reliability is critical to storage systems, and it has

been intensively studied. In [5] [22], researchers stu-

died the reliabilities of RAID systems in term of

MTTDL, using Markov models with independent and

exponentially distributed disk failures. Our model

could be viewed as an extension of these models to

distributed bricks storage systems, which have

bounded network bandwidth and different repair strat-

egies.

Many researches [3][9][24][13] studied similar

brick storage systems, focusing on replica placement

issues for various reasons other than data reliability. In

Farsite [3], Douceur and Wattenhofer studied dynamic

replica placement strategies that improved the overall

availability of files [7][8]. Renesse and Schneider in

[17][18] studied support for high throughput and

availability by chain replication and pseudo-random

placement. GFS [9] used random placement to im-

prove data repair performance, but did not provide a

study on the resulted reliability.

In [12], Lian et.al studied the tradeoff of reliability

between sequential and random placement using a

Markov model, and proposed the stripe placement

strategy that groups small objects together to improve

data reliability. Our current work significantly extends

the work in [12] in the following aspects. First, we

extend the Markov model to consider data rebalance,

and include parameter k in the state to make the model

more precise and enable us to study proactive replica-

tions. Second, we study the impact of switch topology

and corresponding placement strategy. Third, we ex-

tend the model to consider realistic failure detection

delays and brick replacement delays. Finally, we pro-

vide a more rigorous treatment to the estimation of ,

the number of independent objects.

Ramabhadran et.al [16] studied a single object's

MTTDL in long-running replicated system, using a

Markov chain model that only captures replica dynam-

ics and assuming exogenous available repair band-

width.

Sit et.al [21] proposed proactive maintenance for

distributed hash table in wide-area storage and used

simulation to study its durability in term of fractional

availability, not MTTDL. Chun et.al [6] tried to pro-

vide separate reliability and availability of data in the

environment where there were transient failures and

permanent failures, which is different from our settings.

Yu et.al [23] focused on the operation availability

involving multi-object with different assignment of

object replicas to machines in wide-area network. Nath

et.al [15] studied erasure-coded data availability in

face of correlated failure in wide-area network via live

deployment and simulation. Both studies focus on

availability rather than reliability.

8. Conclusion and Future Work

In this paper, we present a framework for analyzing

brick storage reliability in the dynamics of brick fail-

ures, data repair, data rebalance, and proactive replica-

tion. We applied the framework to a number of set-

tings and provide quantitative results to show how data

reliability can be affected by switch topology, proac-

tive replication, failure detection delay, and brick re-

placement delay. We also use simulation results to

verify and refine our analytical framework. The

framework is able to provide important guidelines to

storage system designers and administrators on how to

fully utilize system resources (extra disk capacity,

available bandwidth, switch topology, etc) to improve

data reliability while reducing system and maintenance

cost.

While these results are concrete, they are only par-

tially useful. Ultimately, what we want to solve is a

multi-constraint problem for brick storage design and

maintenance: given the performance, reliability and

capacity targets, define the least expensive architecture

and also suggest the best policies and parameters. We

believe that our framework is a significant step to-

wards this goal.

Reference

[1] “Reference information: The next wave”, The Enter-

prise Storage Group, June 2002.

[2] http://www.ee.duke.edu/~kst/software_packages.html

[3] A. Adya, et al, “FARSITE: Federated, Available, and

Reliable Storage for an Incompletely Trusted Environ-

ment”, in Proc. of the 5th OSDI, 2002.

[4] R. Billinton and R. N. Allan. “Reliability Evaluation of

Engineering System: Concepts and Techniques”, Per-

seus Publishing, 1992.

[5] W. A. Burkhard, J. Menon, “Disk Array Storage Sys-

tem Reliability”, in Proc. of Symposium on Fault-

Tolerant Computing, 1993.

[6] B.G. Chun, et. al, “Efficient Replica Maintenance for

Distributed Storage Systems”, in Proc. of NSDI'06,

May 2006.

[7] J. R. Douceur and R. P. Wattenhofer. “Competitive

Hill-climbing Strategies for Replica Placement in a Dis-

tributed File System”, in Proc. of the 15th Symp. on

Distributed Computing. Oct. 2001.

[8] J. R. Douceur and R. P. Wattenhofer, “Optimizing File

Availability in a Secure Serverless Distributed File Sys-

tem”, in Proc. of SRDS, 2001.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The

Google File System”, in Proc. of the 19th SOSP, Oct.

2003.

[10] G. A. Gibson, et al. “A Cost-Effective, High-Bandwidth

Storage Architecture”, in Proc. of the 8th ASPLOS, Oct.

1998.

[11] Jim Gray, Catharine Van Ingen, “Empirical Measure-

ments of Disk Failure Rates and Error Rates”, Technic-

al Report, MSR-TR-2005-166, Dec. 2005

[12] Q. Lian, W. Chen, Z. Zhang, “On the Impact of Replica

Placement to the Reliability of Distributed Brick Sto-

rage Systems”, in Proc. of 25th ICDCS, Jun 2005.

[13] J. MacCormick, et.al, “Boxwood: Abstractions as the

Foundations for Storage Infrastructure”, in Proc. of

OSDI'04, Dec. 2004.

[14] Heidelberger, P., Muppala, J. K., and Trivedi, K. S.

1996, “Accelerating mean time to failure computations”,

Perform. Eval. 27-28 (Oct. 1996), 627-645.

[15] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan, “Subtle-

ties in Tolerating Correlated Failures in Wide-area Sto-

rage Systems ”, in Proc. of NSDI'06 , May 2006.

[16] S. Ramabhadran, J. Pasquale, “Analysis of Long-

Running Replicated Systems”, in Proc. of INFOCOM,

2006.

[17] R. van Renesse, F. B. Schneider, “Chain replication for

Supporting High Throughout and Availability”, in

Proc. of OSDI'04, Dec. 2004.

[18] R. van Renesse, “Efficient Reliable Internet Storage”,

in Proc. of Workshop on Dependable Distributed Data

Management, 2004.

[19] Y. Saito, et al, “FAB: Building Distributed Enterprise

Disk Arrays from Commodity Components”, in Proc. of

the 11th ASPLOS, Oct. 2004.

[20] Seagate Technology. “Estimating Drive Reliability in

Desktop Computers and Consumer Electronic Sys-

tems”, http://www.digit-

life.com/articles/storagereliability/, 2006.

[21] E. Sit, et.al, “Proactive Replication for Data Durabili-

ty”, in Proc. of IPTPS 2006.

[22] Q. Xin, E. L. Miller, D. D. E. Long, S. A. Brandt, T.

Schwarz, W. Litwin, “Reliability Mechanisms for Very

Large Storage Systems”, in Proc. of 20th IEEE/11th

NASA Goddard Conference on Mass Storage Systems

& Technologies, Apr., 2003

[23] H. Yu, P. B. Gibbons, and S. Nath, “Availability of

Multi-Object Operations”, in Proc. of NSDI'06, May

2006.

[24] Z. Zhang, et al, “RepStore: A Self-Managing and Self-

Tuning Storage Backend with SmartBricks”, in Proc. of

the first IEEE International Conference on Autonomic

Computing, May 2004.

http://www.digit-life.com/articles/storagereliability/
http://www.digit-life.com/articles/storagereliability/

