
Enforcing Routing Consistency in Structured Peer-to-Peer
Overlays: Should We and Could We?

Wei Chen Xuezheng Liu
Microsoft Research Asia

{weic, xueliu}@microsoft.com

ABSTRACT
In this paper, we argue that enforcing routing consistency in key-
based routing (KBR) protocols can simplify P2P applicationdesign
and make structured P2P overlays suitable for more applications.
We define two levels of routing consistency semantics, namely
weakly consistent KBR and strongly consistent KBR. We focus
on an algorithm that provides strong consistency based on group
membership service and weakly consistent KBR. The algorithm
provides a continuum of consistency levels for applications with a
tunable parameter.

1. INTRODUCTION

1.1 Why routing consistency?
The success of Internet peer-to-peer (P2P) file-sharing ser-

vices has motivated considerable research on P2P systems.
Among these works, one important area is structured P2P
overlays that provide key-based routing (KBR) functional-
ity [12]. KBR maps a large identifier space onto the set
of nodes in the system, and it relies on the overlay topol-
ogy to route any key in the identifier space to its mapped
node. Previous research mainly concentrated on the design
of overlay topology and KBR algorithms to improve routing
performance, reduce maintenance costs, or explore the trade-
offs between routing hops and the size of the routing table.
However, to make KBR a valuable building block for many
P2P applications, it is critical for KBR to provide routing
consistency guarantee.

Routing consistency in structured P2P overlays is the prop-
erty ensuring that routings with any given key always reach
the correct node mapped by the key (a.k.a the owner of the
key). Unfortunately, most existing protocols only provide
best-effort routing and do not guarantee this property. As
a result, routings are sometimes erroneous. These routing
errors become more frequent when churns and failures drive
routing tables of nodes into inconsistent states. The techni-
cal report version of Bamboo [24] shows that some routing
errors are difficult to correct and may exist for a long time.

Routing errors may decrease the performance of KBR-
based applications or cause application errors. For example,
applications (e.g. [11, 15]) using distributed hash tablesto
store key-value pairs may falsely report a stored key to be
lost when routing to a wrong node, or start unnecessary
replication maintenance. Similar situations can be found in
other KBR-based applications and algorithms, such as pub-
lish/subscribe applications (e.g. [4,6]) and P2P locking algo-
rithm [18]. It is difficult for every individual applications to
build complex distributed data structures and systems on top
of an inconsistent and error-prone routing layer. To a certain
extent, this makes structured P2P overlays less competent as

a widely applicable building block for distributed systems.

1.2 How to enforce routing consistency?
Our research on enforcing routing consistency is mainly

inspired from group membership and group communication
systems (e.g. [3, 5, 28]), which have made significant ad-
vances in supporting strong consistency in dynamic systems.
These systems, however, are only appropriate for cluster
environments and are not scalable to large scale and more
dynamic P2P environments.

If we look at KBR routing consistency as a continuous
spectrum, existing KBR protocols are at the weakest end
since they are best-effort and does not provide consistency
guarantee, while the traditional group membership protocols
are at the strongest end, because they maintain a consis-
tent view over entire membership and KBR is reduced to
one-hop membership lookup. Both extremes have their own
drawbacks: the weakest end has no consistency guarantee
desired by applications while the strongest end is not scal-
able. Therefore, our task is to balance the tradeoff between
consistency and scalability and locate appropriate pointsin
the middle of the spectrum for applications.

In this paper, we tackle the above problem by rigorously
specifying and enhancing routing consistency in structured
P2P overlays. We define two levels of routing consistency,
namely weakly consistent KBR that eventually achieves rout-
ing consistency, and strongly consistent KBR that provides
consistency guarantees even before the system is stable.
Based on our specifications, designers of P2P applications
can clearly understand and avoid misuse of routing function-
ality, as well as make formal proofs on their algorithms.

Using group membership services and weakly consistent
KBR, We design a new routing algorithm that implements
strongly consistent KBR. This is the first KBR algorithm that
provides strong consistency guarantee as well as reasonable
scalability. The algorithm provides a continuum of consis-
tency levels with a tunable parameter, with which applica-
tions can select the appropriate consistency level and avoid
complicated designs to tolerate routing errors. Our work
makes KBR suitable as a general building block for many
applications and potentially broadens the usage of structured
P2P overlays.

1.3 Related Work
Few studies were found on providing strong semantics to

P2P systems. Lynch,et.al. [20] studied data access atomic-
ity in distributed hash tables (DHT), which shares the same
motivation of providing stronger guarantees to P2P systems.
Our paper is on KBR, which is at a lower layer and is a key
component of DHT. To the best of our knowledge, this is the



first work that directly study the strong consistency semantics
of KBR.

Consistency semantics have been extensively studied in
group membership services (GMS) and group communica-
tion systems (see survey [10]). GMS implementations can be
found in group communication systems (e.g. [3, 5, 28]) and
there are several attempts to formally specify group member-
ships (e.g. [22,25]). However, the specifications differ from
each other due to their different focuses.

Many KBR protocols in structured overlays (e.g., [23, 26,
27, 29]) exist, but they do not focus on routing consistency
guarantees. The closest one to provide some guarantee is
Chord [17, 27], which supports the weak consistency se-
mantic proposed in this paper when enhanced with an extra
mechanism to detect and remove the loopy state. A sepa-
rate study [9] is conducted by our group on improving these
KBR protocols to guarantee weak consistency and achieve
fast convergence to the consistent steady state.

The rest of the paper is organized as follows. In Section 2,
we provide the formal specification of weakly consistent
KBR and strongly consistent KBR with related definitions
on system model and group membership service. In Sec-
tion 3, we present the basic zone-based algorithm that imple-
ments strongly consistent KBR using group membership and
a weakly consistent KBR primitive. In Section 4, we dis-
cuss how to make the algorithm scalable and adaptive. We
conclude in Section 5 and discuss several research directions
that would complete this research.

2. KEY-BASED ROUTING SPECIFICA-
TION

2.1 System model
We consider a peer-to-peer system consisting of nodes

(peers) drawn from the setΣ = {x1, x2, x3, . . .}. We treat
time as discrete with the rangeT . Nodes may join or leave
the system or may crash at any time. We treat node leaves
and crashes as the same class of unpredictable and unnotified
events. Amembership patternis a functionΠ from T to 2Σ,
such thatΠ(t) denotes the finite set of nodes in the system at
time t. A membership patternΠ is eventually stableif there is
a timet0 such thatΠ(t) does not change for allt ≥ t0. If Π
is eventually stable, letsset(Π) be the set of nodes that are
eventually alive in the system.

Nodes communicate by asynchronous message passing
over communication links. Messages sent are assumed to
be unique. Messages cannot be created or duplicated by the
links, and they are reliable in the sense that if both the sender
and the receiver keep alive after the send event of a message,
then the message will be received by the receiver eventually.

The system iseventually stableif there is a time after which
the membership pattern is stable, and there is a link between
any pair of nodes remaining in the system, and all messages
can be delivered to the recipients within a certain time bound.
Eventual stability of the system is only needed to guarantee
liveness properties of the specifications. The assumption of
the complete connectivity in the eventually stable system is
for the simplicity to illustrate the main results of the paper.
As discussed in Section 5, based on some previous results
this assumption can be weakened and we are working on the
details of a weaker and more practical network model for
P2P systems to support consistent KBR.

2.2 Group membership service
For the purpose of supporting KBR, we present group

membership service (GMS) as a query interface to member-
ship views and the queries are totally order together with
membership change events. This total ordering provides
causality between different queries, which is usually not re-
quired in other GMS specifications. The description of GMS
is kept informal due to the space constraint.

GMS maintains amembership viewv = (set , ver) where
v.set ⊂ Σ is a finite set of nodes andv.ver is a non-negative
integer indicating the version of the view. A node in the
system queries the current membership view by invoking
the interface actiongetCV(). Action getCV() always has a
return value, which is either a valid view or⊥ indicating
that the node is not yet in the view or the query failed. The
membership view is updated by two internal actionsjoin(x)
andremove(x). Action join(x) is initiated by a new nodex
joining the system and it adds nodex into the membership
view, while actionremove(x) is initiated by nodes that detect
the failure of nodex and it removesx from the view. Both
actions also increment the view number. GMS totally orders
all getCV(), join() andremove()actions to provide consistency
guarantee on the view membership. Importantproperties that
GMS satisfies include (but may not be limited to):

• Causality Consistency: If node x1 andx2 each invokes
a getCV(), and the return ofgetCV() on x1 causally
precedes the invocation ofgetCV() on x2, and the re-
turn values are two viewsv1 andv2, respectively, then
v1.ver ≤ v2.ver.

• Agreement: For any two viewsv and w returned by
getCV()’s, if v.ver = w.ver , thenv.set = w.set .

• Eventual Convergence: If membership patternΠ is even-
tually stable, then there is a viewv such thatv.set =
sset(Π) and for any nodex ∈ sset(Π), there is a timet1
such that ifx invokesgetCV() after timet1, the return
value isv.

Causality Consistency is a safety property ensuring that
the causality of the query events as defined in [16] is consis-
tent with the increment of the view numbers. Agreement is
another safety property ensuring view consistency as long as
version numbers agree. Eventual Convergence is the liveness
property ensuring that GMS will converge to a single view
that matches the live nodes in the system provided that the
membership becomes stable eventually.

GMS with the above properties can be implemented using
consensus [13] or causal atomic broadcast primitives [14] to
totally order all actions, and use eventually perfect failure
detectors [8] to ensure view convergence to the actual set
of nodes remaining in the system. An implementation is
underway to evaluate the proposed protocol in this paper.

2.3 Weakly consistent KBR specification
Each nodex ∈ Σ has a unique idx.id, drawn from a key

spaceK. When the context is clear, we usex to represent
x.id. Weakly consistent KBR (W-KBR for short) has one
primitive w-lookup(k), wherek is a key value from the same
spaceK. A node uses this primitive to find out the node that
owns the keyk. In large and dynamic P2P systems where a
node cannot store the entire membership list of the system,
w-lookup() is typically implemented by multihop routing.



Thew-lookup() primitive either returns a⊥ value indicating
the failure of the lookup, or a nodex (including its idx.id and
its physical addressx.address for future communication).

Informally, W-KBR means that routings are eventually
consistent when the system is stable for a long enough period,
but they may not be consistent when the system is not stable.
More rigorously, it needs to satisfy the following properties.1

• Eventual Progress: If membership patternΠ is eventu-
ally stable, then there is a timet1 such that for any key
k ∈ K, if a nodex ∈ sset(Π) invokesw-lookup(k) after
t1, then the return value must be somey ∈ sset(Π).

• Eventual Consistency: If membership patternΠ is even-
tually stable, then there is a timet1 such that for
any key k ∈ K, if two nodesx1, x2 ∈ sset(Π) in-
voke w-lookup(k) after time t1 and the return values
arey1, y2 ∈ Σ respectively, theny1 = y2.

The Eventual Progress property requires that eventually
all routings should successfully return a node instead of⊥,
and the node returned should be a live node in the system.
The Eventual Consistency property requires that eventually
all routings with the same key will find the same node. Both
properties assume that the membership is eventually stable,
and together they imply that eventually every key is owned
by exactly one live node in the system.

Most existing KBR protocols use best effort approach and
are essentially moving toward providing W-KBR semantic,
but many do not formally guarantee W-KBR. Chord pro-
tocol with loopy state removal [17] does provide W-KBR
guarantee.

From a theoretical point of view, W-KBR with the above
two properties can be used to implement theΩ failure detec-
tor defined in [7]. This leads to the following impossibility
result, sinceΩ failure detector is known to be the weakest fail-
ure detector implementing Consensus, a well known problem
that is impossible to implement in purely asynchronous sys-
tems with node crashes [13].

THEOREM 1. W-KBR primitivew-lookup(k) for anyk can be
used to implement anΩ failure detector. As a result, W-KBR cannot
be implemented in a purely asynchronous systems subject to node
crashes (even if we do not consider node joins).

The proof is omitted due to the space constraint. The
implication of the theorem is similar to the implication of
the impossibility of Consensus: The purely asynchronous
system model needs to be augmented to make W-KBR im-
plementable. In this paper, we make a simple assumption
that the system is eventually stable so that W-KBR (as well
as the strongly consistent KBR proposed in the next sec-
tion) is implementable. Some research work studied the
minimal synchrony required for implementingΩ failure de-
tector [1, 2, 21], and these results can be potentially adapted
for W-KBR. This is one of our current research topics.

2.4 Strongly consistent KBR specification
Intuitively, strongly consistent KBR (S-KBR for short)

should guarantee that routings with the same key always
reach the same destination no matter where the routing is
1In this paper, we omit other KBR properties such as load balance
and focus on routing consistency properties.

started. This, however, has to be modified since the destina-
tion may changes overtime due to node leaves and joins. To
deal with changes, we add a version number to the routing
results. Informally, the version number tells that the returned
destination is the owner of the key during this version. The
version number increases when the owner of the key changes
overtime.

More specifically, S-KBR uses routing primitive
s-lookup(k), which returns either⊥ or (x, kver ), wherex

is a node andkver is a non-negative integer. S-KBR needs
to satisfy the following properties.

• Causality Consistency: If two nodes x1 and x2 in-
voke s-lookup(k) and get return values(y1, kver1) and
(y2, kver 2) respectively, and the return ofx1’s in-
vocation causally precedes thex2’s invocation, then
kver1 ≤ kver2.

• Strong Consistency: If two nodes x1 and x2 invoke
s-lookup(k) and receive return values(y1, kver1) and
(y2, kver 2) respectively, andkver 1 = kver2, theny1 =
y2.

• Eventual Stability: If membership patternΠ is eventually
stable, then there is a timet1 such that for everyk ∈
K, there is a version numbermk, for every nodex ∈
sset(Π), if x invokess-lookup(k) after timet1, the return
values must be non-⊥, and the version number in the
return value ismk.

Causality Consistency requires that the increment of ver-
sion numbers is consistent with causality. Strong Consis-
tency requires that as long as the two routings of the same key
have the same version number, they will have the same des-
tination. This property is meant to hold at all times, which is
different from the Eventual Consistency property of W-KBR.
One may argue that an implementation can get around the
Strong Consistency property by returning different version
numbers for every return values or returning failures. This,
however, is constrained by the Eventual Stability property
that does not allow indefinite increments of version numbers
or indefinite failure returns if the membership is eventually
stable. Since the implementation does not know when the
system is stable, it has to try to reach strong consistency at
all times.

The above properties can be matched with properties of
GMS in Section 2.2, which indicates that the two problems
are related and using GMS to implement S-KBR is a natural
choice.

3. ALGORITHM FOR S-KBR
S-KBR can be simply built on top of a global GMS: the

routing source obtains a global membership view and then
calculates the destination based on the key and the member-
ship view. Causality, consistency and liveness propertiesare
guaranteed by GMS. The key issue, however, is that GMS is
not scalable enough to handle the scale and dynamic changes
of P2P systems. The way to deal with the issue is to par-
tition the nodes into multiple components, each of which is
managed by a separate GMS.

For simplicity, we restrict the key space to be a one dimen-
sional circular space on integers from 0 to2n − 1 for some
integern, similar as in [26, 27]. The space is statically par-
titioned into a number ofzones, (0, n1], (n1, n2], . . . , (nt, 0].



On nodex:

1 To executes-lookup(k):
2 y ← w-lookup(k);
3 if y = ⊥ or y /∈ Z(k) then return⊥;
4 send message(SLOOKUP, k) to y;
5 wait until [received(SLOOKUPACK, ∗) or timed out];
6 if received(SLOOKUPACK, z, kver) then
7 return(z, kver) else return⊥;

8 On receive(SLOOKUP, k) from a nodey:
9 v ← getCV();
10 if v 6= ⊥ then
11 z ← selectNode(v.set, k);

{select a node from the current view}
12 send(SLOOKUPACK, z, v.ver) to y;

Figure 1: Algorithm implementing S-KBR

We denoteZ as a zone partition of the key spaceK, and for
any keyk, Z(k) represents the zone that covers the keyk.
Nodes whose ids fall into the same zone form a group and
are managed by a GMS for the zone. Zone size is a tunable
parameter that controls the tradeoff between scalability and
consistency, and we will discuss it in Section 4.1.

Figure 1 shows the S-KBR algorithm, which has two
phases. In the first phase, the keyk is routed to a node
in the target zoneZ(k). This routing can be done by a vari-
ant of W-KBR, which requires that eventually routings with
key k always fall into the target zoneZ(k) (stronger than
the Eventual Progress property of W-KBR), but they do not
necessarily end up in the same node (weaker than the Even-
tual Consistency property of W-KBR). As a result, we need
to require that eventually every zone contains some node in
the system, which is discussed in Section 4. Existing KBR
protocols are usually sufficient to be used as such a W-KBR
variant in practice. In the second phase of routing, once a
key is routed into a node within the target zone, the node
queries the zone’s GMS to retrieve the current view of the
zone. Based on the view and the key, the node calculates
the destination node and returns it with the version number
of the zone as the routing result. If a node within the target
zone cannot be located in the first phase, the routing returns
failure. This is the situation where the algorithm chooses to
sacrifice liveness to maintain strong routing consistency.

Since each zone has its own GMS to manage the member-
ship within the zone, there is an issue on how a new node
joining the system locates its zone’s GMS. This bootstrap
problem can be solved by a separate bootstrap service that
connects nodes with its GMS, or it can be solved by the same
W-KBR variant we used in the first phase of S-KBR routing.
When a node is joining the system, it uses its own id as the
routing key and uses the W-KBR variant to route its own
id to a contact node in its zone. Since the W-KBR variant
guarantees that eventually it will route the key to a node in
the same zone, this bootstrap will be successful eventually.

We proved the correctness of the algorithm but omit the
proof due to the space constraint. The following theorem
states its correctness.

THEOREM 2. Under the condition that the GMS and W-KBR
variant satisfy their own properties specified, algorithm in Figure 1

satisfies the Causality Consistency and Strong Consistencyprop-
erties of S-KBR. Moreover, if the system is eventually stable, the
algorithm also satisfies the Eventual Stability property.

The above theorem is not in conflict with Theorem 1 be-
cause it assumes eventual stability of the system for the live-
ness property. The safety properties, namely Causality Con-
sistency and Strong Consistency, do not rely on eventual
stability of the system and they hold for any asynchronous
systems.

The algorithm always maintains routing consistency, even
when the system is not stable. To guarantee such strong
consistency, the algorithm sacrifices routing liveness when
the first-phase routing does not reach the target zone. An
alternative is for the algorithm to return an inconsistent result,
which means it sacrifices routing consistency in favor of
routing liveness. This is a choice that the designer of the
system can made, but for the purpose of demonstrating that
strong routing consistency can be guaranteed, we choose the
algorithm that sacrifices routing liveness in favor of strong
routing consistency.

In the basic algorithm, the version number of any key in
a zone changes as soon as the zone version changes. We
can reduce key version number changes to improve routing
consistency guarantee by the following two steps. First, we
define a stableselectNode() function such that most keys’
version numbers do not change as view changes. Second, in
addition to maintaining a zone view, the GMS also maintains
a data structure to record key ownership versions for each
key in the zone and use it for routing return values instead of
the zone version number. It is not hard to develop the details
of the scheme which we omit in this paper.

4. DISCUSSION
The previous section provides the algorithm that is proven

to support S-KBR. However, to make the basic algorithm
applicable in dynamic P2P environments, a number of issues
need to be addressed. In this section, we discuss our propos-
als to address these issues. Currently we are formulating the
technical details of these proposals. Our next step of research
is to fully implement the entire protocol stack from GMS to
S-KBR, and conduct extensive analysis and simulations to
validate the feasibility of our approach.

4.1 Zone size determination
Zone size is the tunable parameter that determines the

tradeoff between scalability and routing liveness (or routing
consistency). We assume node ids are randomly generated
and we use equally-sized zones and thus each zone contains
roughly the same number of nodes (unbalanced zones are
dealt with in the next section).

With a larger zone size, each zone contains more nodes,
and thus more first-phase routings with the W-KBR variant
will fall into the target zone, leading to successful and con-
sistent routing result. But it increases the GMS query and
maintenance cost and reduces scalability. In the extreme
case where the entire key space is covered by a single zone,
the algorithm is reduced to the global GMS based algorithm.
On the other hand, with a smaller zone size, more first-phase
routings will fall outside the target zone, leading to more
routing failures or, if we choose to return a result, more vi-
olations to routing consistency. The extreme is that each
zone only covers one node and the algorithm is essentially



reduced to a W-KBR algorithm. Therefore, tuning the zone
size provides a continuum of consistency levels from weak
consistency to strong consistency. Further analysis and sim-
ulations are planned to quantify the impact of zone size on
the tradeoff between scalability and routing consistency.

4.2 Zone merges and splits
System churns or system scale changes may cause some or

all zones in the system become overloaded or underloaded.
To key the number of nodes within each zone at the same
level as determined by the consistency to scalability trade-
off, we use zone merges and splits. In particular, when a
zone becomes overloaded, we split it in halves; when a zone
becomes underloaded, we merge it with neighboring zones.

To maintain routing consistency, we need to maintain cor-
rect versions when the zone changes. The idea is that instead
of having one static zoneZ(k) for a keyk, we have a sequence
of zonesZ1(k), Z2(k), . . . for key k, following the causal or-
der of merges and splits. The version numbers along the
sequences of zones associated with keyk is monotonically
increasing. This can be achieved by always using larger
version numbers for the new zones after merges or splits.

Another important issue is that zone merges have to be
agreed upon all relevant zones, otherwise it may result in
inconsistency in zone partition. Such agreement can be
achieved by running consensus among zones, effectively en-
forcing consistency at a higher and inter-zone level. This
leads to a hierarchical design in which a small number of
centralized servers are at the top level enforcing global con-
sistency, but they are only needed when consistency cannot
be resolved at lower levels, and thus they are rarely needed.
The lower levels are more decentralized and maintain local
consistency at a manageable scale. Moreover, an actual im-
plementation may choose to remove the higher levels of the
hierarchy to sacrifice global consistency in some rare cases
for a more decentralized and scalable solution.

4.3 Dead zones
A zone cannot make any progress and becomes dead when

a majority of nodes in the zone are dead before the GMS of
zone takes any action. When a zone becomes dead, we need
to remove it and reactivate the zone, otherwise, any routing
with a key in the zone will not be successful. This is the zone
bootstrap problem, and it can be dealt with using the same
hierarchical design for zone merges and splits. Each zone
is monitored by a number of other zones and consensus is
run among these zones for removing and reactivating a dead
zone.

5. CONCLUDING REMARKS
This paper formally defines the routing consistency seman-

tics of key-based routing in P2P systems. By utilizing prior
research in group communication systems, it provides the
framework and basic results to show that strongly consistent
KBR is achievable. It further provides guidelines on how to
make the result scalable and adaptive, and how to balance the
tradeoff between scalability and consistency, so that it may
be potentially suitable for practical P2P systems.

There are a number of research topics and directions we
are currently pursuing. First, to provide a complete set of
protocols including zone merges, splits, and dead-zone han-
dling, we are formulating a two-level hierarchical design of
the system as sketched in Section 4. The higher level of the

hierarchy handles global consistency tasks such as inter-zone
agreement for zone merges and zone reboot, and it is invoked
less frequently. The lower level is for local consistency and
uses a local group membership service. We will formally
prove the correctness of the hierarchical design once it is
completely formulated. Second, we plan to implement the
hierarchical design using the WiDS platform [19], and uti-
lizes the simulation and verification capabilities of WiDS to
check the correctness of the design and verify the scalability
of the system. Third, we are also working on weakening
the system model to match more practical scenarios. On
this front, there are some existing work studying the minimal
synchrony requirement needed to implementΩ failure detec-
tor [1, 2, 21]. We are working on similar ideas and applying
them to the P2P system context.

Overall, we believe that a scalable hierarchical design is a
general design approach applicable not only to the specific
key-based routing problem in P2P systems, but also to large
scale and dynamic distributed systems in general. Our goal
is to complete a rigorous study on the specifications and the
algorithms of the hierarchical design with both analytical
proofs and experimental evaluation. We believe that both the
approaches and the final results will be beneficial to many
areas related to distributed system research.

Acknowledgments
We would like to thank Yu Chen for his helpful discussions and
thank Lidong Zhou, Ben Y. Zhao and the anonymous referees for
their helpful comments that improve the presentation of thepaper.

REFERENCES
[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet,

Hugues Fauconnier, and Sam Toueg. On implementing
omega with weak reliability and synchrony
assumptions. InProceedings of the 22ed ACM Symposium
on Principles of Distributed Computing, July 2003.

[2] Marcos Kawazoe Aguilera, Carole Delporte-Gallet,
Hugues Fauconnier, and Sam Toueg.
Communication-efficient leader election and
consensus with limited link synchrony. InProceedings
of the 23rd ACM Symposium on Principles of Distributed
Computing, pages 328–337, July 2004.

[3] Yair Amir, Danny Dolev, Shlomo Kramer, and Dahlia
Malkhi. Transis: A communication sub-system for
high availability. InProceedings of the 22nd International
Symposium on Fault-Tolerant Computing, pages 76–84.
IEEE Computer Society Press, July 1992.

[4] Roberto Baldoni, Carlo Marchetti, Antonino Virgillito,
and Roman Vitenberg. Content-based
publish-subscribe over structured overlay networks. In
Proceedings of the 25th International Conference on
Distributed Computing Systems, June 2005.

[5] Kenneth P. Birman. The process group approach to
reliable distributed computing.Communications of the
ACM, December 1993.

[6] Miguel Castro, Peter Druschel, Anne-Marie
Kermarrec, and Antony Rowstron. Scribe: A
large-scale and decentralized application-level
multicast infrastructure.IEEE Journal on Selected Areas
in Communications, 20(8), October 2002.

[7] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam
Toueg. The weakest failure detector for solving



consensus.Journal of the ACM, 43(4):685–722, July
1996.

[8] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, March 1996.

[9] Yu Chen and Wei Chen. Self-stabilizing and fast
convergent structured overlay, 2005. under submission.

[10] Gregory V. Chockler, Idit Keidar, and Roman
Vitenberg. Group communication specifications: A
comprehensive survey.ACM Computing Surveys,
33(4):427–469, December 2001.

[11] Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Wide-area cooperative
storage with CFS. InProceedings of the 18th ACM
Symposium on Operating Systems Principles, October
2001.

[12] Frank Dabek, Ben Zhao, Peter Druschel, John
Kubiatowicz, and Ion Stoica. Towards a common API
for structured peer-to-peer overlays. InProceedings of
the 2nd International Workshop on Peer-to-Peer Systems,
February 2003.

[13] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process.Journal of the ACM, 32(2):374–382,
April 1985.

[14] Vassos Hadzilacos and Sam Toueg. A modular
approach to fault-tolerant broadcasts and related
problems. Technical Report 94-1425, Department of
Computer Science, Cornell University, Ithaca, New
York, May 1994.

[15] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris Wells, and Ben
Zhao. Oceanstore: An architecture for global-scale
persistent storage. InProceedings of the 9th ACM
Symposium on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[16] L. Lamport. Time, clocks, and the ordering of events
in a distributed system.Communications of the ACM,
21(7):558–565, July 1978.

[17] David Liben-Nowell, Hari Balakrishnan, and David
Karger. Analysis of the evolution of peer-to-peer
systems. InProceedings of the 21st ACM Symposium on
Principles of Distributed Computing, July 2002.

[18] Shiding Lin, Qiao Lian, Ming Chen, and Zheng
Zhang. A practical distributed mutual exclusion
protocol in dynamic peer-to-peer systems. In
Proceedings of the 3rd International Workshop on
Peer-to-Peer Systems, February 2004.

[19] Shiding Lin, Aimin Pan, Zheng Zhang, Rui Guo, and
Zhenyu Guo. WiDS: An integrated toolkit for
distributed system development. InProceedings of the
10th USENIX Workshop on Hot Topics in Operation
Systems, June 2005.

[20] Nancy Lynch, Dahlia Malkhi, and David Ratajczak.
Atomic data access in content addressable networks.
In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems, 2002.

[21] Dahlia Malkhi, Florin Oprea, and Lidong Zhou.
Omega meets paxos: Leader election and stability
without eventual timely links. InProceedings of the 19th

International Symposium on Distributed Computing,
September 2005.

[22] Roberto De Prisco, Alan Fekete, Nancy Lynch, and
Alex Shvartsman. A dynamic view-oriented group
communication service. InProceedings of the 17th ACM
Symposium on Principles of Distributed Computing, pages
227–236, June 1998.

[23] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Shenker. A scalable
content-addressable network. InProceedings of the
SIGCOMM’01ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, August 2001.

[24] Sean Rhea, Dennis Geels, Timothy Roscoe, and John
Kubiatowicz. Handling churn in a DHT. Technical
Report UCB-CSD-03-1299, University of California
at Berkeley, December 2003.

[25] Aleta Ricciardi and Ken Birman. Process membership
in asynchronous environments. Technical report,
Department of Computer Science, Cornell University,
April 1994.

[26] Antony Rowstron and Peter Druschel. Pastry:
Scalable, distributed object location and routing for
large-scale peer-to-peer systems. InProceedings of ACM
Middleware, November 2001.

[27] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
In Proceedings of the SIGCOMM’01ACM Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, August 2001.

[28] Robbert van Renesse, Kenneth P. Birman, and Silvano
Maffeis. Horus: A flexible group communication
system.Communications of the ACM, 39(4):76–83, April
1996.

[29] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C.
Rhea, Anthony D. Joseph, and John D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service
deployment.IEEE Journal on Selected Areas in
Communications, 22(1):41–53, January 2004.


