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Worm containment must be automatic because worms can spread too fast for humans to respond.
Recent work proposed network-level techniques to automate worm containment; these techniques
have limitations because there is no information about the vulnerabilities exploited by worms at the
network level. We propose Vigilante, a new end-to-end architecture to contain worms automatically
that addresses these limitations.

In Vigilante, hosts detect worms by instrumenting vulnerable programs to analyze infection
attempts. We introduce dynamic data-flow analysis: a broad-coverage host-based algorithm that
can detect unknown worms by tracking the flow of data from network messages and disallowing
unsafe uses of this data. We also show how to integrate other host-based detection mechanisms
into the Vigilante architecture. Upon detection, hosts generate self-certifying alerts (SCAs), a new
type of security alert that can be inexpensively verified by any vulnerable host. Using SCAs, hosts
can cooperate to contain an outbreak, without having to trust each other. Vigilante broadcasts
SCAs over an overlay network that propagates alerts rapidly and resiliently. Hosts receiving an
SCA protect themselves by generating filters with vulnerability condition slicing: an algorithm that
performs dynamic analysis of the vulnerable program to identify control-flow conditions that lead
to successful attacks. These filters block the worm attack and all its polymorphic mutations that
follow the execution path identified by the SCA.

Our results show that Vigilante can contain fast-spreading worms that exploit unknown vulner-
abilities, and that Vigilante’s filters introduce a negligible performance overhead. Vigilante does
not require any changes to hardware, compilers, operating systems, or the source code of vulnerable
programs; therefore, it can be used to protect current software binaries.
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1. INTRODUCTION

Worms!—programs that self-replicate automatically over computer networks—
constitute a serious threat to hosts connected to the Internet. They exploit soft-
ware defects to infect remote hosts without any user intervention, and they
can use their victims for malicious activities such as corrupting data, sending
unsolicited electronic mail messages, generating traffic for distributed denial-
of-service attacks, and stealing information. The first experiments with pro-
grams similar to modern worms were reported in 1982 [Shoch and Hupp 1982].
However, worms did not become a major security threat until the advent of
the Internet: By connecting most of the world’s computers, the Internet en-
abled global worm epidemics. The first recorded Internet worm outbreak hap-
pened in 1988 [Spafford 1989; Eichin and Rochlis 1989]; since then, several
major outbreaks have caused serious financial losses and disruption of critical
software services [Moore et al. 2003, 2002; Bailey et al. 2005; Shannon and
Moore 2004].

One avenue to deal with this problem is prevention. Since worms need to
exploit software defects, by eliminating all software defects we would eradicate
worms. Although significant progress has been made on software development,
testing, and verification, empirical evidence [CERT 2005] suggests that we are
still far from producing defect-free software: Figure 1 shows that exploitable
software defects (also referred to as vulnerabilities) continue to be discovered
at a rate of several thousand per year.

Another avenue to solve the worm problem is containment. Containment
systems are built on a premise accepting that software has defects that can be
exploited by worms, and they strive to contain a worm epidemic within a small
fraction of the vulnerable hosts. Containment systems need to be fully auto-
matic because worms can spread far faster than humans can respond [Moore
et al. 2003; Staniford et al. 2002]. Recent work on automatic containment [Kim
and Karp 2004; Singh et al. 2004; Kreibich and Crowcroft 2003; Weaver et al.
2004] has explored network-level approaches. These rely on heuristics to an-
alyze network traffic and derive a packet classifier that blocks or rate-limits
forwarding of worm packets. It is hard to provide guarantees on the rate of
false positives and false negatives with these approaches because there is no

1The use of “worm” with this meaning derives from the tapeworm programs in John Brunner’s
novel The Shockwave Rider, Ballantine, New York, 1975.
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Fig. 1. Number of new vulnerabilities cataloged by CERT per year, from 1995 to 2007.

information about the software vulnerabilities exploited by worms at the net-
work level. False negatives allow worms to escape containment, while false
positives may cause network outages by blocking normal traffic. We believe
that automatic containment systems will not be widely deployed unless they
have a negligible false positive rate.

This article presents Vigilante, a new system to contain worm epidemics au-
tomatically that addresses these limitations with an end-to-end architecture.
An end-to-end architecture can use information about the vulnerable programs
running at end-hosts. This information, which is not available to network-level
approaches, can be leveraged to detect worms even when they exhibit normal
network traffic patterns. This detection can verify unequivocally that a host
is running vulnerable software and guide the generation of filters that block
mutations of a worm attack. An end-to-end architecture ensures that the con-
tainment system will react only when real worm outbreaks happen, and it can
contain worms that escape network-level containment.

Figure 2 illustrates automatic worm containment with Vigilante. In Vigi-
lante, hosts detect worms by instrumenting network-facing programs to an-
alyze infection attempts. Vigilante introduces dynamic data-flow analysis: a
host-based algorithm that can detect worms that exploit unknown vulnerabil-
ities with broad coverage. Dynamic data-flow analysis tracks the flow of data
from network messages inside the vulnerable program, and disallows unsafe
uses of the data. The algorithm detects the three most common infection tech-
niques used by worms: code injection, edge injection, and data injection on un-
modified binaries. We also show how to integrate other detection mechanisms
into the Vigilante architecture.

Vigilante relies on collaborative worm detection at end-hosts, but does not
require hosts to trust each other. Upon detection, hosts generate self-certifying
alerts (SCAs). An SCA is a machine-verifiable proof of vulnerability: It proves
the existence of a vulnerability in a program and can be inexpensively veri-
fied. By verifying an SCA, a host can determine with certainty that a program
is vulnerable; the verification procedure has no false positives. SCAs enable
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Fig. 2. Automatic worm containment in Vigilante.

cooperative worm detection with many detectors distributed all over the net-
work, thereby making it hard for the worm to avoid detectors or to disable
them with denial-of-service attacks. Additionally, cooperation allows hosts to
run expensive and highly accurate detection engines, because it spreads de-
tection load. For example, a host that does not run a database server can run
a version of the server instrumented to detect infection attempts in a virtual
machine. This instrumented version is a honeypot [Provos 2004]; it should not
normally receive traffic. Therefore, the host will incur little overhead for run-
ning the detection engine, whereas a production database server could incur
an unacceptable overhead.

SCAs provide a common format to describe vulnerabilities and a common
verification mechanism, which can be reused by many different detection en-
gines to keep the trusted computing base small. SCAs could be verified using
the detection engine that generated them, but this would require all vulnerable
hosts to run and trust the code of all detection engines. SCAs make it possible
to increase aggregate detection coverage by running many distinct detection
engines and by deploying new engines quickly.

In Vigilante, detectors distribute SCAs to other hosts using an overlay net-
work that propagates alerts rapidly and resiliently. Before a host distributes an
SCA or after it receives an SCA from another host, it verifies the SCA by repro-
ducing the infection process described in the SCA in a sandbox. If verification is
successful, the host initiates the process of protecting the vulnerable program.

Alerted hosts protect themselves by generating filters that block worm mes-
sages before they are delivered to a vulnerable program. These filters are
generated automatically using dynamic data- and control-flow analysis of the
execution path followed by a worm when exploiting the vulnerability described
in an SCA. This procedure, called vulnerability condition slicing, identifies
a set of instructions in the program that define control-flow conditions that
lead to successful attacks. Filters block messages that satisfy these conditions.
Since each vulnerable host runs this procedure locally, hosts don’t need to trust
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external entities to produce correct filters. Furthermore, analyzing the vulner-
able code, instead of the worm attack messages, allows hosts to generalize the
attack beyond what they observed. It also avoids interference by the worm,
since the vulnerable code is not controlled by the worm, while the attack mes-
sages are. The filters generated by vulnerability condition slicing have no false
positives, and block all polymorphic worm mutations [Szor and Ferrie 2001]
that follow the same execution path to gain control.

To validate the system, we implemented the algorithms on Intel IA-32 hosts
running the Windows operating system. We tested Vigilante with a broad range
of synthetic attacks and with three infamous real worms: Slammer, CodeRed,
and Blaster. We also simulated the overall behaviour of the system when de-
ployed on the Internet using parameters extracted from our implementation,
and from Internet measurements of the Slammer, CodeRed, and Blaster out-
breaks. Our results show that Vigilante can contain fast-spreading worms that
exploit unknown vulnerabilities, even when only a small fraction of the vulner-
able hosts can detect the attack. The results also show a negligible performance
impact on the vulnerable programs protected by Vigilante. Furthermore, Vigi-
lante does not require any changes to hardware, compilers, operating systems,
or the source code of vulnerable programs; therefore, it can be used to protect
current software binaries. Vigilante makes the following contributions:

—an end-to-end architecture for automatic worm containment based on high-
coverage host-based detectors, security alerts that can be verified, an overlay
network for fast and resilient dissemination of alerts, and automatic gener-
ation of filters to prevent infection at end-hosts;

—a dynamic data-flow analysis algorithm that provides automatic high-
coverage detection of worm infection attempts for unknown vulnerabilities;

—the concept of self-certifying alerts (SCAs) and mechanisms to generate, ver-
ify, and distribute SCAs automatically;

—a vulnerability condition slicing algorithm to automatically generate host-
based filters that block worm infections; and

—experimental evaluation of the architecture and algorithms through mea-
surements of a prototype implementation and large-scale simulation.

The rest of this article is organized as follows. Section 2 describes the design
and implementation of the dynamic data-flow analysis detection algorithm,
and discusses the importance of using a diverse set of detection mechanisms
in Vigilante. Section 3 introduces the concept of SCA and describes procedures
to verify, generate, and distribute SCAs. Section 4 presents the design and
implementation automatic filter generation with vulnerability condition slicing.
Section 5 presents our experimental results. Section 6 describes related work.
We conclude in Section 7 and discuss some directions for future work.

2. DETECTION

The first step to contain the outbreak of an unknown worm is to detect it.
Vigilante detects worms by analyzing the execution of vulnerable programs at
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end-hosts; it detects a worm when it is about to infect a running program. Us-
ing host-based detectors enables Vigilante to detect worms that have normal
network traffic patterns, since at some point they still need to infect their vic-
tims. To be effective, worm detectors need to have high coverage and generate
few false positives. This section introduces dynamic data-flow analysis, a new
host-based detection algorithm that achieves these goals. Before describing the
algorithm, we analyze how worms infect remote hosts, since the infection tech-
niques used by worms guided our design of dynamic data-flow analysis.

2.1 Infection

Remotely infecting a host requires coercing the host into running the worm
code. To achieve this, worms exploit low-level software defects, also known as
vulnerabilities. Vulnerabilities are common in current software because it is
large, complex, and mostly written in unsafe programming languages. Several
different classes of vulnerabilities have been discovered over the years. Cur-
rently, buffer overflows [One 1996], arithmetic overflows [blexim 2002], memory
management errors [jp 2003], and incorrect handling of format strings [gera
and riq 2002] are among the most common types of vulnerabilities. Worms ex-
ploit these vulnerabilities to gain control of remote programs using one of three
mechanisms: injecting new code into the program, injecting new control-flow
edges into the program (e.g., forcing the program to call functions that shouldn’t
be called), and corrupting data used by the program. Vigilante was designed to
detect these three kinds of infection.

The next sections discuss these three infection mechanisms in detail. To
facilitate the discussion, we use a program with a simple stack-based buffer
overflow vulnerability [One 1996], shown in Figure 3, but it is important to
note that all other types of vulnerabilities enable the same types of success-
ful infection. The program in Figure 3 processes a message received from
the network. The ProcessRequest function checks if the first byte in the mes-
sage is within an allowed range, and then copies the two subsequent fields in
the message to a stack-based buffer called request and to a buffer supplied in
the parameter user_id, respectively. The code assumes fields in the message
are separated by the newline character. The program is vulnerable because it
does not check if the first field of the message fits in the stack-based request
buffer. Consequently, the worm can send a message with a large first field and
overwrite the stack frame. This defect can be exploited to infect the program
with code injection, edge injection, and data injection.

2.1.1 Code Injection. The simplest form of infection involves injecting new
code into a running process and coercing the process into executing the new
code. To use this type of attack on the program in Figure 3, the worm could
craft a packet including its code at the end of the message and using a first field
large enough to overwrite the return address on the stack frame. Inside the
first field, at the position that would overwrite the return address, the worm
would supply the address of its code in the virtual address space of the program
under attack (the code would be there as part of the message just received). This

ACM Transactions on Computer Systems, Vol. 26, No. 4, Article 9, Publication date: December 2008.



Vigilante: End-to-End Containment of Internet Worm Epidemics . 9:7

void ProcessRequest(char *message, char *user_id)
{

char request[8];

char message_id = *message - ID_BASE;

if (message_id > LOW_ID && message_id < HIGH_ID)

{
int len = CopyField(request,message + 1);
CopyField(user_id,message + len + 2);
ExecuteRequest (request,user_id) ;

}

system(log_activity_command) ;

int CopyField(char *destination, char *source)

int len = 0;
while(*source != ’\n’)
{
len++;
*destination++ = *source++;

}
*destination = ’\0’;
return len;

}

Fig. 3. Vulnerable code in the C++ programming language. The code has a buffer overflow vulner-
ability enabling code injection, edge injection, and data injection attacks.

would ensure that, upon returning from the function, the process would start
to run worm code.

The details of the attack can be understood by analyzing the vulnerable
program in IA-32 assembly language, as shown in Figure 4. When the Pro-
cessRequest function starts to execute, the esp register points to the return
address saved by the call instruction that transferred control to the function.
The function starts by saving the ebp register on the stack, decrementing esp
by 4 in the process (the stack grows towards lower addresses). Instruction 3
moves the first byte of the message into the al register (the first parameter
for the function is passed in the ebx register). The function then executes the
range check on the first byte of the message. Instruction 7 subtracts 8 from esp,
thus allocating 8 bytes on the stack, to hold the request variable. Therefore, the
return address is stored at a 12-byte offset from start of request. This means
that the worm should place the value to be used as return address at offset 13
in the attack message (since the first byte is not copied). Instruction 16 makes
eax point to the start of the request buffer. The function then enters a loop (lines
21 to 26) that copies the first field of the message and eventually overwrites the
stored return address. To decide which value to supply as return address, the
worm only needs to know the virtual address range where the network message
is stored and use a value that points to the start of the worm code within that
range.?

2If the message is not stored at a predictable address, the worm can find code sequences that
transfer control to the attack payload elsewhere in memory [dark spyrit 1999].
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1: push ebp ;on entry, ebx points to the message parameter
2: mov ebp,esp

3: mov al,byte ptr [ebx] ;move first byte of message into al

4: mov ecx,dword ptr [ebp+8]

5: sub al,10h

6: sub al,31h

7: sub esp,8 ;allocate stack space for request buffer
8: cmp al,OEh ;perform range check on first byte

9: ja 45

10: mov dl,byte ptr [ebx+1] ;move second byte of message into dl
11: push esi

12: push edi

13: lea edi, [ebx+1] ;move address of second byte into edi
14: xor esi,esi

15: cmp dl,0Ah

16: lea eax, [ebp-8] ;move address of request buffer into eax
17: je 28

18: mov ecx,eax

19: sub edi,ecx
20: lea esp, [esp+0h]
21: mov byte ptr [eax],dl ;loop to copy the first
22: mov dl,byte ptr [edit+eax+1] ;field of the message
23: add eax,1 ;into the request buffer,
24: add esi,1 ;while searching for
25: cmp dl,0Ah ;the character OA.
26: jne 21
27: mov ecx,dword ptr [ebp+8] ;move user_id parameter into ecx
28: lea esi, [esi+ebx+2]
29: mov byte ptr [eax],0
30: mov al,byte ptr [esi] ;move first byte of second field into al
31: cmp al,0Ah
32: mov edx,ecx ;move user_id parameter into edx
33: je 40
34: sub esi,ecx
35: mov byte ptr [edx],al ;loop to copy the second
36: mov al,byte ptr [esi+edx+1] ;field of the message into
37: add edx,1 ;the user_id parameter, while
38: cmp al,0Ah ;searching for the character OA.
39: jne 35
40: lea eax, [ebp-8]
41: mov byte ptr [edx],0
42: call ExecuteRequest ;call ExecuteRequest(request,user_id)
43: pop edi
44: pop esi
45: push 403018h ;push address of log_activity_command
46: call system ;call system(log_activity_command)
47: add esp,4
48: mov esp,ebp
49: pop ebp
50: ret ;load value pointed to by esp into eip

Fig. 4. Vulnerable program in IA-32 assembly language (compiled from the source code
in Figure 3). The code is vulnerable to code injection, edge injection, and data injection
attacks.

2.1.2 Edge Injection. Infecting a remote host does not require directly in-
jecting new code into a running process. Another way to carry out infection
is to inject a new control-flow edge into the vulnerable program by forcing a
control-flow transition that should not happen [nergal 2001]. To use this type
of attack on the program in Figure 3, the worm could again craft a message
including a first field large enough to overwrite the return address on the stack
frame. This would allow the worm to supply, as a return address, the address
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of a function already loaded by the program. For instance, the attacker could
supply the address of the system function from the C runtime library, and an
appropriate argument to this function. This would allow the worm to run arbi-
trary programs. It could, for instance, use a file transfer program to download
its code and subsequently run it. This attack can evade algorithms that only
detect code injection because no new code is loaded by the process running the
vulnerable program.

2.1.3 Data Injection. Finally, infecting a remote host does not even require
forcing any control-flow error in a running process: Attacks can succeed just by
corrupting data. One general form of this type of attack involves corrupting the
arguments of functions called by the program. By changing the values of the
arguments, the worm changes the behavior of the program without injecting
any code or forcing any control-flow transfers.

Using again the example in Figure 3, we can see that after processing the
message, the function ProcessRequest calls system to run an external program
that maintains an activity log for the program. The call to system takes as pa-
rameter a pointer (log-activity-command) to a string with the appropriate log-
ging command. The worm can successfully attack the program by corrupting
this string, thus forcing the program to run other commands (e.g., commands
that download the worm code). Corrupting this string is a slightly more elab-
orate process than corrupting the function’s return address, because neither
the string nor the pointer to the string are stored in the stack frame for the
function (i.e., the region that can easily be overwritten by overflowing the re-
quest buffer). However, the worm can still manipulate the code in the function
to do the appropriate overwrite. It notes that the code copies the second field
in the message to the user_id parameter. This parameter is in the function’s
stack frame and can be easily overwritten. Therefore, all the worm need do is
to overwrite user_id to make it point to the log-activity-command string and
supply, as the second field in the attack message, a string with the command it
wishes to run.

2.2 Dynamic Data-Flow Analysis

To remotely exploit software defects with the infection techniques described in
the previous section, a worm needs to send messages that trigger the execution
of the defective code at the target hosts. Therefore, all remote attacks can be
linked to errors that occur while processing messages received from the net-
work. The dynamic data-flow analysis detection algorithm is based on the idea
of dynamically tracking the flow of data received from the network and disal-
lowing unsafe uses of this data; therefore, it is a form of information-flow se-
curity [Fenton 1974a, 1974b,1973; Denning 1976]. Like the other mechanisms
introduced by Vigilante, dynamic data-flow analysis is based on analyzing the
vulnerable code infected by worms. This approach is more effective than ana-
lyzing the worm’s code or the worm’s behavior because the vulnerable code is
not controlled by the worm.
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ONRECEIVEDNETWORKMESSAGE (address, size)

for i — 0 to size — 1
do
SETDIRTY (address + )

ONMOVEDATAINSTRUCTION(destination, source)

if ISDIRTY(source)
then SETDIRTY (destination)
else CLEARDIRTY(destination)

ONINDIRECTCONTROLFLOWTRANSITION(address)

> halt if the program counter is loaded from a dirty address or is directed to dirty memory
if IsDIRTY(address)

then GENERATESECURITYTRAP
if ISDIRTY(VALUEAT (address))

then GENERATESECURITYTRAP

ONDIRECTCONTROLFLOWTRANSITION(address)

> halt if the program counter is directed to a dirty address
if ISDIRTY(address)
then GENERATESECURITYTRAP

ONNEXTINSTRUCTION (address)

> halt if execution falls-through to a dirty address
if ISDIRTY(address)
then GENERATESECURITYTRAP

ONSECURITYSENSITIVEFUNCTIONCALL(argument)
if IsDIRTY(argument)
then GENERATESECURITYTRAP

Fig. 5. Dynamic data-flow analysis algorithm.

2.2.1 Algorithm. The dynamic data-flow analysis algorithm, shown in
pseudocode® in Figure 5, consists of two parts. The first part tracks data re-
ceived from the network. Whenever a network input operation completes, the
memory locations where the data is written are marked as dirty. Then, the
algorithm tracks all movements of this data. Whenever the processor executes
an instruction that moves data from a source to a destination, the destination
becomes dirty if the source is dirty, or it becomes clean otherwise. Sources and
destinations can be memory locations or processor registers. At all times, the
algorithm keeps track of the location of all copies of data received from the
network.

The second part of the algorithm generates a security trap when dirty data
is used in an unsafe way. To decide which uses of dirty data are unsafe, we need
to consider the ways in which worms can infect a running process. As discussed
in Section 2.1, worms can infect a process using three types of attack: injecting
new code into the process, injecting a new control-flow edge into the process (i.e.,
forcing the process to make an unwanted control-flow transition), and injecting
data used in security-sensitive operations. To prevent each of these types of
infection, dynamic data-flow analysis generates a security trap on each of the

3We use the pseudocode notation from Cormen et al. [1990]; in particular, lines starting with a
triangle are comments.
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following situations:

(1) execution of dirty data;
(2) loading of dirty data into the program counter; and
(3) passing of dirty data in arguments of security-sensitive functions.

Preventing execution of dirty data is important because the data has come
from network messages and therefore corresponds to code injected by the worm.
Preventing loading of dirty data into the program counter is important because,
by supplying data used in this way, the worm can force the program to make ar-
bitrary control-flow transitions. Finally, passing data to arguments of security-
sensitive functions is a common form of achieving infection by only injecting
data; therefore, it is also important to prevent it.

To be able to generate security traps on the first and second aforesaid condi-
tions, the algorithm dynamically analyzes the state of memory and processor
registers at every control-flow transition in the program. If the execution is be-
ing directed to a memory region that contains dirty data, or if the data loaded
into the program counter is dirty, a security trap is generated. To enforce the
third condition, whenever security-sensitive functions are called, their argu-
ments are checked for dirtiness. For instance, when operating system functions
that create new processes are called, the argument that specifies the program
to run is checked for dirtiness because controlling this argument would allow
the worm to launch arbitrary programs.

We will use the vulnerable code in Figure 4 to illustrate how the dynamic
data-flow analysis algorithm can detect an edge injection attack (the mechanics
of attacks on this code were described in Section 2.1).

When the code starts to execute, the esp register points to the return address
saved by the call instruction that transferred control to the function, and the
ebx register holds the message parameter. The parameter points to a message
just received from the network. When the message was received, the memory
pointed to by ebx was marked dirty. After executing some instructions irrelevant
for the attack, the program reaches instruction 7 which subtracts 8 from esp,
thus allocating 8 bytes on the stack to hold the request variable. After running
the range check on the first byte of the message, on line 8, the program loads
the second byte of the message into the d! register, on line 10. At this point, d! is
marked dirty because the memory at ebx+1 is dirty. Instruction 16 makes eax
point to the start of the request buffer. The function then enters a loop, on lines
21 to 26, that copies the first field of the message. When instruction 21 executes,
the memory location pointed to by eax is marked dirty because dl is dirty.
Instruction 22 loads the next byte of the message into dl, which remains dirty.
The byte is then compared with the newline character (0x0A), and the loop con-
tinues if the newline was not reached. The loop eventually overwrites the stored
return address, and the memory location where the return address is stored
is marked dirty in the process. Figure 6 shows the state of memory just before
and immediately after the vulnerable code is executed. After executing some
more instructions irrelevant for the attack, the code reaches the ret instruction
at line 50. At this point, the algorithm generates a security trap because the
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| return address |return address| <+—
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(b) memory after

execution of

vulnerable code

Fig. 6. Example of worm detection with dynamic data-flow analysis. The figure shows the memory
when: (a) a message is received and the vulnerable code is about to execute; and (b) after the
vulnerable code executes and overwrites the return address in the stack. Greyed areas indicate
dirty memory regions.

esp register points to a dirty memory location: the location where the return
address was originally stored. Thus, dynamic data-flow analysis detects the
worm before it can inject an arbitrary control-flow edge into the program.

The dynamic data-flow analysis algorithm has several important properties.
First, it has broad coverage: It detects the three kinds of infection mechanisms
most used by worms. It detects overwrites of control data structures with data
received from the network, and it prevents execution of data received from the
network. Furthermore, it detects attacks that do not cause control-flow errors
in the program. As shown in Section 2.1, the same vulnerability can often be
exploited to infect a program with these three different techniques; hence it is
important to detect all of them.

Second, dynamic data-flow analysis is independent of vulnerabilities and
attack targets. Since the algorithm does not require any information about
vulnerabilities or targets of attacks inside programs, it will remain useful if
new types of vulnerabilities or attack targets are identified in programs in the
future. In contrast, previous techniques that protect specific targets in programs
have been shown easy to bypass [Wilander and Kamkar 2003]. For instance,
mechanisms that protect return addresses on the stack [Cowan et al. 1998] can
be bypassed by overwriting function pointers.

Third, dynamic data-flow analysis works on unmodified program binaries.
The algorithm inspects execution at the processor instruction level; conse-
quently, it does not require source code or any form of cooperation from the
entity producing the program under analysis. Thus, it can be used to detect
infection of arbitrary binaries. Furthermore, it works even in cases where pro-
gram analysis is hard, such as programs with self-modifying or dynamically
generated code.
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Finally, the dynamic data-flow analysis prevents evasive action by the worm.
The algorithm detects the worm infection attempt before the worm executes any
instructions. This is a key property because it prevents the worm from checking
thatitis runningin a detection environment and using evasion techniques [Holz
and Raynal 2005; Bethencourt et al. 2005; Shinoda et al. 2005]. For instance,
if the worm was allowed to execute any instructions, it could time its own
execution to try to distinguish a normal execution from an execution inside the
detection environment. The worm could then refrain from performing malicious
actions inside the detection environment, thus avoiding detection.

Dynamic data-flow analysis has several limitations. First, it may generate
false positives because programs may perform safety checks on data received
from the network before using this data in ways that would be unsafe if the
checks were not performed. Since dynamic data-flow analysis is unaware of the
checks performed by programs, it still generates a security trap on potentially
unsafe uses of the data. This may happen, for instance, when a program loads
a value received from the network into the program counter after checking that
the value is within a safe range (e.g., checking that the value is the address of a
function in the program). Our experiments in Section 5 indicate that such cases
are rare. Another example is an application (e.g., the Web browser) for which
downloading and executing code is a normal activity. Such applications already
have mechanisms to control the execution of the downloaded code (e.g., requir-
ing it to be signed by a trusted entity). These mechanisms would need to be in-
tegrated with dynamic data-flow analysis to enable the applications to run (e.g.,
by explicitly informing the dynamic data-flow analysis algorithm that a piece of
downloaded code is granted execution privileges). This type of integration is a
simple operation and need be done only once for each specific code-downloading
mechanism. It is also important to note that the vast majority of programs are
not designed to download code at runtime, and thus are not affected by this re-
striction. Even rare false positives are a serious concern because organizations
will understandably avoid deploying automatic worm containment systems if
those systems may generate security alerts and block traffic even when there
is no worm outbreak. To address this problem, we describe in Section 3 a veri-
fication mechanism to discard any false positives generated by detectors in the
Vigilante containment system.

Dynamic data-flow analysis may also have false negatives, that is, there are
several attacks that it cannot detect. It cannot detect attacks that exploit high-
level defects in programs such as explicit backdoors in programs. Backdoors
can exist either due to malicious intent of the developers who wrote the code, or
simply due to unintentional development mistakes. Dynamic data-flow analy-
sis also cannot detect software configuration errors such as weak passwords.
Accessing a host with a guessed or stolen password is indistinguishable from a
legitimate access.

Finally, dynamic data-flow analysis will not detect attacks that overwrite
security-sensitive information with values controlled by the worm, but not di-
rectly copied or derived from the attack messages. Two important cases where
this may happen are when network data is combined with other data through
arithmetic and logic operations, and when network data is used to control the
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addresses of load and store instructions in the program. These types of false
negatives can be addressed by extending the algorithm to propagate dirtiness
to the destination operands of arithmetic and logic instructions and to the des-
tination operands of loads and stores. The extended algorithm would provide
increased coverage, but would also increase the number of false positives.

2.2.2 Implementation. The dynamic data-flow analysis algorithm can be
implemented in hardware by changing the processor’s data movement instruc-
tions to propagate dirtiness and augmenting the instructions that change
control-flow with checks to avoid loading dirty data into the program counter.
It can also be implemented by changing compilers to emit instructions that
inline the algorithm with the program’s instructions. Finally, it can also be im-
plemented by using processor emulators [Bochs 2006; QEMU 2006] to analyze
each instruction as it is emulated.

While all the aforementioned implementations are viable, we chose to im-
plement the algorithm with a dynamic binary rewriting tool, because this
allows us to run the algorithm on unmodified binaries with reasonable per-
formance. Specifically, we have used the Nirvana runtime instrumentation en-
gine [Bhansali et al. 2006] to intercept, at runtime, each instruction executed by
the program under analysis. Our implementation runs on Windows operating
systems and Intel IA-32 processors. Nirvana performs dynamic binary trans-
lation of processor instructions, by breaking the instructions into sequences of
simpler operations and optionally inserting call instructions to client-supplied
callback functions.

The dynamic data-flow analysis implementation instruments every data
movement instruction for Intel IA-32 [Intel 1999] CPUs, by inserting callbacks
on each of these instructions. The instrumented instructions include all vari-
ants of mov, movs, push, and pop instructions. To keep track of which memory
locations and CPU registers are dirty with data received from input operations,
we keep a bitmap with one bit per 4K memory page, which is set if any loca-
tion in the page is dirty. For every dirty page we keep an additional bitmap
with one bit per memory location. We also keep an additional bitmap with a
bit per CPU register to keep track of which registers are dirty. Upon receiving
the callback from Nirvana, our implementation reads the current eip (i.e., the
program counter for Intel CPUs) from the CPU state passed as the argument
to the callback. Then, the implementation decodes the current instruction and
updates its data structures accordingly: If the source is dirty the destination
becomes dirty, otherwise it becomes clean. To bootstrap this process, when-
ever data is received from the network, the memory locations where the data is
written are marked dirty. To intercept network I/O, we implemented a WinSock
layered service provider (LSP) [Hua et al. 1999]. LSPs are a simple extension
mechanism for the Windows implementation of the socket interface for network
programming. Finally, we also insert callbacks for every control-flow transfer
instruction on IA-32 CPUs: ret, call, jmp, jz, etc., and we generate a security
trap when dirty data is about to be executed or loaded into the program counter.

Figure 7 illustrates the components inside a process running under the con-
trol of the dynamic data-flow analysis detector. The code and data layout inside
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Fig. 7. Components inside a process running under the control of the dynamic data-flow analysis
detector.

the process remain unchanged (the process may even be running when we
attach the detector to it). Nirvana dynamically populates its code cache with
translated instruction sequences, including callbacks to the detector code. The
detector updates its data structures upon receiving callbacks and generates a
security trap upon detecting an attack. Finally, it is worth pointing out that the
detector code can be activated/deactivated dynamically (i.e., the process can
easily switch between instrumented and noninstrumented execution).

2.3 Diversity of Detection Mechanisms

Vigilante can use other host-based detectors, besides dynamic data-flow anal-
ysis. We believe it is important to use not only a diverse set of detection al-
gorithms, but also different implementations of the same algorithm. Different
algorithms provide different coverage and different runtime characteristics.
For instance, some algorithms will be appropriate to run on production sys-
tems, while others will only be appropriate for honeypots due to their runtime
overhead. Using a diverse set of detection mechanisms makes the system more
resilient to attack because the attacker needs to successfully avoid all the detec-
tors. Using different implementations of the same detector makes the system
more resilient to defects in the detector itself, and it also makes it more diffi-
cult for the attacker to use fingerprinting techniques [Holz and Raynal 2005;
Bethencourt et al. 2005; Shinoda et al. 2005] that evade the detectors.

3. SELF-CERTIFYING ALERTS

Detecting a worm outbreak is not sufficient to contain it: Vulnerable hosts that
have not yet been infected need to be protected. The first step to achieve this is
to inform the vulnerable hosts about the worm outbreak. To do this, Vigilante
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detectors generate self-certifying alerts (SCAs). An SCA is a new type of security
alert that claims that a program is vulnerable to infection, and includes enough
information for hosts to verify this claim. Since SCAs can be verified, any host
in Vigilante can independently act as a detector. This allows hosts to share
the detection load (e.g., different organizations may run different detectors),
and makes it harder for a worm to evade detection because it is difficult to
know where detectors are deployed. Using SCAs, hosts cooperate to contain an
outbreak without having to trust each other. In this section we describe the
format of SCAs, as well as the mechanisms to verify, generate, and distribute
this new type of security alert.

3.1 Alert Types

An SCA proves that a program is vulnerable by describing how to exploit the
program and how to generate an output that signals the success of the exploit
unequivocally. SCAs are not a piece of code. An SCA contains a sequence of
messages that, when received by the vulnerable program, cause it to reach a
disallowed state. SCAs are verified by sending the messages to the program
and checking whether it reaches the disallowed state. We use detection engines
combined with message logging to generate SCAs at detectors.

We have developed three self-certifying alert types for Vigilante that cover
the most common vulnerabilities that worms exploit, described next.

—Arbitrary execution control alerts identify vulnerabilities that allow worms to
redirect execution to arbitrary pieces of code in a running program’s address
space. They describe how to invoke a piece of code whose address is supplied
in a message sent to the vulnerable program.

—Arbitrary code execution alerts describe code-injection vulnerabilities. They
describe how to execute an arbitrary piece of code that is supplied in a mes-
sage sent to the vulnerable program.

—Arbitrary function argument alerts identify data-injection vulnerabilities
that allow worms to change the value of arguments to critical functions (e.g.,
to change the name of the executable to run in an invocation of the exec sys-
tem call). They describe how to invoke a specified critical function with an
argument value that is supplied in a message sent to the vulnerable program.

These alert types are general. They demonstrate how the worm can gain control
by using the external messaging interface to a program, without specifying the
low-level coding defect used to gain control. This allows the same alert types
and verification procedures to be used with many different types of detection
engines; hence different types of detection engines can cooperate to contain an
outbreak. This cooperation reduces the overall false negative rate of the system.

The three types of SCAs have a common format: an identification of the
vulnerable program, an identification of the alert type, verification information
to aid alert verification, and a sequence of messages with the network endpoints
that they must be sent to during verification.

The verification information allows the verifier to craft an exploit whose
success it can verify unequivocally. It is different for the different types of alert.
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Program: Microsoft SQL Server 8.00.194

\Alert type: Arbitrary Execution Control

Verification Information: Address offset 97 of message 0

\INumber messages: 1

\Message: 0 to endpoint UDP:1434

\Message data: 04,01,01,01,01,01,01,01,01,01,01,01,01,01,01,
01,01,01,01,01,01,01,01 01 01 01 01 01 01 01 01 01 01 01,01 01, 01
01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01.01,
01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01 01,01 01 01,

01,01,01,01,01,01,01,01,01,01,01,01 01,01 01,01,DC,C9,B0,42,EB,
OE,01,01,01,01,01,01,01,70,AE,42,01,70,AE, 42, ..

Fig. 8. An example arbitrary execution control SCA for the Slammer vulnerability. The alert is
457-bytes long and has been reformatted to make it human-readable. The enclosed message is
376-bytes long and has been truncated.

The verification information for an arbitrary execution control SCA specifies
where to put the address of the code to execute in the sequence of messages (e.g.,
in which message and at which offset). Similarly, the information for arbitrary
code execution SCAs specifies where to place the code to execute in the sequence
of messages. Arbitrary function argument alerts have information to specify a
critical function, a critical formal argument to this function, and where to put
the corresponding actual argument value in the sequence of messages.

Figure 8 shows an example arbitrary execution control SCA generated for the
Slammer worm. The SCA identifies the vulnerable program as Microsoft SQL
Server version 8.00.194 and the alert type as an arbitrary execution control.
The verification information specifies that the address of the code to execute
should be placed at offset 97 of message 0. The SCA also contains the 376-byte
message used by the Slammer worm.

3.2 Alert Verification

Verifying an SCA entails reproducing the infection process by sending the se-
quence of messages in the alert to a vulnerable program. It is important to run
the verification procedure in a sandbox because SCAs may come from untrusted
sources. The current implementation runs the verification procedure in a sep-
arate virtual machine to contain any malicious side effects. Hosts must use the
same configuration to run the production instance of a program and the sand-
boxed instance for verification, because some vulnerabilities can be exploited
only in certain program configurations.

To verify SCAs, each host runs a virtual machine with a verification man-
ager and instrumented versions of network-facing programs. Each program is
instrumented by loading a new library into its address space with a Verified
function that signals verification success to the verification manager. In ad-
dition, critical functions (e.g., exec system calls) are wrapped using a binary
rewriting tool [Hunt and Brubacher 1999]. The wrappers call Verified if the
actual value of a critical argument matches a reference value specified by the
verification manager. Otherwise, they call the original functions. Since we do
not require access to the source code of the programs, we can instrument any
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Fig. 9. SCA verification.

program. The host also runs an SCA verifier process outside the virtual ma-
chine, that provides other processes with an interface to the verification module
and acts as a reverse firewall to ensure containment.

Figure 9 illustrates the SCA verification procedure. When the SCA verifier
receives an SCA for verification, it sends the SCA to the verification manager
inside the virtual machine. The verification manager uses the data in the SCA
to identify the vulnerable program. Then it modifies the sequence of messages
in the SCA to trigger execution of Verified when the messages are sent to the
vulnerable program. The modifications involve changing the byte string at the
offset of the message specified in the verification information according to alert
type. This byte string is changed to:

—the address of Verified for arbitrary execution control alerts;
—the code for call Verified for arbitrary code execution alerts; or

—the reference critical argument value for arbitrary function argument
alerts.

After performing these modifications, the verification manager sends the se-
quence of messages to the vulnerable program. If Verified is executed, the
verification manager signals success to the SCA verifier outside the virtual
machine; otherwise, the SCA verifier declares failure after a timeout.

The state of the virtual machine is saved to disk before any verification is
performed. This reference state is used to start uncompromised copies of the
virtual machine for verification. After performing a verification, the virtual
machine is destroyed and a new one is started from the reference state in the
background, to ensure that there is a virtual machine ready to verify the next
SCA. The experimental results in Section 5 show that the memory and CPU
overheads to keep the virtual machine running are small.
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Vigilante’s alert verification procedure has three important properties.

Verification is fast. The time to verify an SCA is similar to the time it takes
the worm to infect the program because the overhead of the instrumentation
and the virtual machine are small.

Verification is simple and generic. The verification procedure is simple and
independent of the detection engine used to generate the alert. This is important
for keeping the trusted computing base small, especially with many distinct
detectors running in the system.

Verification has no false positives. If the verification procedure signals suc-
cess, the program is vulnerable to the exploit described in the SCA. A successful
verification shows that attackers can control a vulnerable program through its
external messaging interface.

The current implementation has some limitations that may lead to false
negatives (but not false positives). First, it assumes that the target address,
code, and argument values in SCAs can be supplied verbatim in the messages
that are sent during verification. This is the case in many vulnerabilities, but
in others these values are transformed by the vulnerable program before being
used; for example, integer values could be decoded from ASCII characters. This
can potentially be addressed by specifying a conversion function for these values
in SCAs.

Second, the current implementation assumes that sending the sequence of
messages in an SCA to the vulnerable program is sufficient to replay the exploit
during verification. This is true for all previous worms that we are aware of,
but it may be insufficient for some worms. For example, the success of some
exploits may depend on a particular choice of scheduling order for the threads
in a program. We could address this limitation by including other events in
SCAs (e.g., scheduling events and other I/O events) and by replaying them
during verification. There is a large body of work in this area [Elnozahy et al.
2002; Dunlap et al. 2002] that we could leverage.

3.3 Alert Generation

Hosts generate SCAs when they detect an infection attempt by a worm. Vigi-
lante enables hosts to use any detection engine, provided it generates an SCA
of a supported type. SCA generation follows the same general pattern for all
detection engines and programs, but some details are necessarily detection-
engine-specific.

To generate SCAs, hosts log messages and the networking endpoints where
they are received during program execution. We garbage-collect the log by re-
moving messages that are included in generated SCAs or that are blocked by
our filters. We also remove messages that have been in the log more than some
threshold time (e.g., one hour).

When the engine detects an infection attempt, it searches the log to generate
candidate SCAs and runs the verification procedure for each candidate. The
strategy to generate candidate SCAs is specific to each detection engine, but
verification ensures that an SCA includes enough of the log to be verifiable by
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others, and it filters out any false positives that detectors may generate. SCA
generation returns a candidate SCA when that SCA passes verification.

We implemented SCA generation for two detection engines: the nonexe-
cutable (VX) pages [PAX 2001] algorithm, which we describe next, and the dy-
namic data-flow analysis detection algorithm described in Section 2. We chose
these engines because they represent extreme points in the trade-off between
coverage and overhead: The first detector has low overhead but low coverage,
whereas the second has high overhead and high coverage. Furthermore, they
are both widely applicable, since neither requires access to source code.

3.3.1 Using Nonexecutable Pages. The first detection engine uses nonex-
ecute protection on stack and heap pages to detect and prevent code-injection
attacks. It has negligible runtime overhead with emerging hardware support
and has relatively low overhead even when emulated in software [PAX 2001].
This detector can be used to generate arbitrary execution control or arbitrary
code execution SCAs, described as follows.

When the worm attempts to execute code in a protected page, an exception is
thrown. The detector catches the exception and then tries to generate a candi-
date SCA. First, the detector traverses the message log from the most recently
received message, searching for the code that was about to be executed or for
the address of the faulting instruction. If the detector finds the code, it gener-
ates a candidate arbitrary code execution SCA, and if it finds the address of the
faulting instruction, it generates a candidate arbitrary execution control SCA.
In both cases, the message and the offset within the message are recorded in
the verification information, and the single message is inserted in the candidate
SCA.

The detector then verifies the candidate SCA. Since most worms exploit vul-
nerabilities using only one message to maximize their propagation rate, this
candidate SCA is likely to verify. However, it will fail verification for multi-
message exploits. In such a case, the detector includes additional messages by
taking longer suffixes of the message log and including them in the candidate
SCA. The detector keeps increasing the number of messages in the candidate
SCA until the SCA verifies or the message log has no further messages.

The search through the log is efficient when detectors are run in honeypots
because the detection engine will receive only anomalous traffic and the mes-
sage log will be small. We optimize for this case by including all logged messages
in the first candidate SCA when the log size is smaller than a threshold (e.g., 5).

3.3.2 Using Dynamic Data-Flow Analysis. Dynamic data-flow analysis
can be used to generate the three types of alerts discussed in Section 3.1. By
tracking the flow of data received from the network, dynamic data-flow anal-
ysis can generate efficiently the verification information needed for SCAs. To
do this, the instrumented data movement instructions are used to maintain
data structures that indicate not only which CPU registers and memory loca-
tions are dirty, but also where the dirty data came from. Each dirty register
and memory location has an associated integer that identifies the input mes-
sage and offset where the dirty data came from. These identifiers are simply a
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sequence number for every byte received in input messages. There is a bitmap
with one bit per 4K memory page; the bit is set if any location in the page is
dirty. For each page with the bit set, an additional table is maintained with
one identifier per memory location. We also keep a table with one identifier
per CPU register. Finally, we keep a list with the starting sequence number for
every input message, to map identifiers to messages.

The modified dynamic data-flow algorithm proceeds in a manner similar to
the one described in Section 2.2.1: Whenever an instruction that moves data
from a source to a destination is executed, the destination becomes dirty if the
source is dirty and becomes clean otherwise. When a destination becomes dirty,
it is tagged with the identifier associated with the source. Whenever data is
received from a network connection, the memory locations where the data is
written are marked dirty and tagged with sequence numbers corresponding
to each received byte. The instrumented control-flow instructions signal an
infection attempt when dirty data is about to be executed or loaded into the
program counter, while the instrumented critical functions signal an infection
attempt when all the bytes in a critical argument are dirty. The algorithm
generates a candidate SCA of the appropriate type when it detects an infection
attempt, explained as follows.

—If dirty data is about to be loaded into the program counter, it generates an
arbitrary execution control SCA.

—If dirty data is about to be executed, it generates an arbitrary code execution
SCA.

—If a critical argument to a critical function is dirty, it generates an arbitrary
function argument SCA.

The additional information maintained by this engine eliminates the need for
searching through the log to compute the verification information: This infor-
mation is simply read from the data structures maintained by the engine. The
identifier for the dirty data is read from the table of dirty memory locations or
the table of dirty registers. The identifier is mapped to a message by consult-
ing the list of starting sequence numbers for input messages, and the offset in
the message is computed by subtracting the starting sequence number from
the identifier. Then, the detector adds the single identified message to the can-
didate SCA and attempts to verify it. This verification will succeed for most
worms and it completes the generation procedure. For multimessage exploits,
the detector follows the same search strategy to compute candidate SCAs as
the detector based on nonexecutable pages.

We will use the vulnerable code in Figure 10 to illustrate SCA generation
using dynamic data-flow analysis (the source code for the program is shown in
Figure 3) during an edge injection attack. When the code starts to execute, the
ebx register holds the message parameter. The parameter points to a message
just received from the network. In this example, the bytes in the incoming
attack message were mapped to identifiers from 100 to 127. Before the code is
executed, the memory region where the message was received is marked dirty
with identifiers from 100 to 127. The code starts by doing a range check on the
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1: push ebp ;on entry, ebx points to the message parameter
;esp points to eip saved on the stack
;the memory containing the message is tagged with
;identifiers 100 to 127

2: mov ebp,esp
3: mov al,byte ptr [ebx] ;move first byte of message into al
;tag al with 100
4: mov ecx,dword ptr [ebp+8]
5: sub al,10h
6: sub al,31h
7: sub esp,8 ;allocate stack space for request buffer
8: cmp al,OEh ;perform range check on first byte
9: ja 45
10: mov dl,byte ptr [ebx+1] ;move second byte of message into dl
;tag dl with 101
11: push esi
12: push edi
13: lea edi, [ebx+1] ;move address of second byte into edi
14: xor esi,esi
15: cmp dl,0Ah
16: lea eax, [ebp-8] ;move address of request buffer into eax
17: je 28
18: mov ecx,eax
19: sub edi,ecx
20: lea esp, [esp+0h]
21: mov byte ptr [eax],dl ;copy next byte into request buffer
;tag address pointed to by eax with 100+i
22: mov dl,byte ptr [editeax+1l] ;move next byte of message into dl
;tag dl with 100+i
23: add eax,1
24: add esi,1
25: cmp dl,0Ah ;if not found OA, continue to next byte.
26: jne 21
jirrelevant instructions omitted
48: mov esp,ebp
49: pop ebp
50: ret ;load value pointed to by esp into eip

;generate an SCA, because
;esp points to dirty memory

Fig. 10. Example of SCA generation with vulnerable program in IA-32 assembly language (com-
piled from the source code in Figure 3).

first byte of the message, by subtracting 0x10 and 0x31 from the first byte in
the message and then comparing the result with a constant (0x0E). If the check
succeeds, the next bytes in message are copied to a stack-based buffer until a
newline character is found. This results in a buffer overflow that overwrites
the return address on the stack. After running the range check on the first byte
of the message, on line 8, the program loads the second byte of the message
into the dI register, on line 10. At this point d/ is marked dirty and tagged with
identifier 101. The function then enters a loop, on lines 21 to 26, that copies the
first field of the message into the request buffer. When instruction 21 executes,
the memory location pointed to by eax is marked dirty and tagged with identifier
101, since dl is also tagged with 101. Instruction 22 loads the next byte of the
message into d/, which becomes tagged with 102. The byte is then compared
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Fig. 11. Example of SCA generation with dynamic data-flow analysis. The figure shows the mem-
ory when: (a) a message is received and the vulnerable code is about to execute; and (b) after the
vulnerable code executes and overwrites the return address in the stack. Greyed areas indicate
dirty memory regions and the identifiers of dirty data are shown on the left.

with the newline character (0x0A), and the loop continues if the newline was
not reached. The loop eventually overwrites the stored return address.

Figure 11 shows the state of memory before and after the vulnerable code is
executed. When the ret instruction is about to execute, at the end of the func-
tion, a portion of the stack has been marked dirty with identifiers from 101 to
127 because the instrumented data movement instructions propagated the tags
from the message into the stack buffer, while copying the message data. Since
the copy overwrote the return address in the stack, the ret instruction attempts
to load dirty data into the program counter. Therefore, the detector generates
an arbitrary execution control alert: It computes the verification information
from the identifier of the dirty data pointed to by the stack pointer and adds
the identified message to the SCA. This message is the attack message because
the identifier of the dirty data falls in the range 100 to 127, and the offset is
computed by subtracting 100 from the identifier. The detector verifies this SCA
and sends it to the distribution and protection modules.

As explained in Section 2, dynamic data-flow analysis suffers from a small
but non-negligible false positive rate. It also has a substantial runtime over-
head when implemented with dynamic binary rewriting. SCAs address both of
these issues: Verification eliminates false positives and the cooperative detec-
tion architecture spreads the detection load.

3.4 Alert Distribution

After generating an SCA, a detector broadcasts it to other hosts. This allows
other hosts to protect themselves if they run a program with the vulnerability
in the SCA.
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The mechanism to broadcast SCAs must be fast, scalable, reliable, and se-
cure. It must be fast because there is a race between SCA distribution and worm
propagation. Scalability is a requirement because the number of vulnerable
hosts can be extremely large. Additionally, SCA distribution must be reliable
and secure because the growing number of hosts compromised by the worm can
launch attacks to hinder distribution and the number of detectors sending an
SCA for a particular vulnerability can be small. The SCA must be delivered to
vulnerable hosts with high probability, even under these extreme conditions. To
meet these requirements, Vigilante uses a secure Pastry overlay [Castro et al.
2002] to broadcast SCAs.

Vigilante uses flooding to broadcast SCAs to all hosts in the overlay: Each
host sends the SCA to all its overlay neighbors. Since the overlay is scalable,
we can distribute an SCA to a large number of hosts with low delay in the
absence of attacks. Each host maintains approximately 15 x log;sN neighbors
and the expected path length between two hosts is approximately log,,NV . Since
each host has a significant number of neighbors, flooding provides reliability
and resilience to passive attacks where compromised hosts simply refuse to
forward an SCA. Hosts that join the overlay can obtain missing SCAs from
their neighbors.

The secure overlay also includes defenses against active attacks. It prevents
sybil attacks [Douceur 2002] by requiring each host to have a certificate signed
by a trusted offline certification authority in order to participate in the over-
lay [Castro et al. 2002]. The certificate binds a random hostld assigned by
the certification authority with a public key whose corresponding private key
should be known only to the host. This prevents attackers from choosing their
identifiers or obtaining many identifiers because these keys are used to chal-
lenge hosts that want to participate in the overlay.

Additionally, the secure overlay prevents attackers from manipulating the
overlay topology by enforcing strong constraints on the hostlds of hosts that can
be overlay neighbors [Castro et al. 2002]. These constraints completely specify
the set of neighbors of any host for a given overlay membership. Each host
establishes authenticated and encrypted connections with its neighbors using
the certified public keys. Since compromised hosts cannot choose their hostlds,
they are not free to choose their neighbors and not able to increase the number
of overlay paths through compromised hosts.

Compromised hosts in the overlay may also attempt to disrupt SCA distri-
bution with denial-of-service attacks. Vigilante uses three techniques to miti-
gate these attacks: hosts do not forward SCAs that are blocked by their filters
or are identical to SCAs received recently; they only forward SCAs that they
can verify; and they impose a rate limit on the number of SCAs that they are
willing to verify from each neighbor. The first technique prevents attacks that
flood variants of old SCAs and the second prevents attacks that flood bogus
SCAs to all hosts in the overlay. Since hosts only accept SCAs received over the
authenticated connections to their neighbors, the third technique bounds the
computational overhead that compromised hosts can impose on their neigh-
bors. It is effective because the constraints on neighbor identifiers make it hard
to change neighbors.
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Requiring hosts to verify SCAs before forwarding raises some issues. Some
hosts may be unable to verify valid SCAs because either they do not have the
vulnerable software or they run a configuration that is not vulnerable. We made
overlay links symmetric to reduce the variance in the number of neighbors per
host and to ensure a large number of disjoint overlay paths between each pair
of nodes. Since flooding explores all paths in the overlay, the probability that
SCAs are delivered to vulnerable nodes is high, even when the fraction of nodes
that can verify the SCA is small.

Additionally, verifying SCAs introduces delay. Our verification procedures
are fast, but the attacker can increase delay with denial-of-service attacks.
In addition to the techniques described before, we verify SCAs from different
neighbors concurrently to defend against attacks that craft SCAs that take a
long time to verify. Therefore, the attacker can increase the verification delay
at a host by a factor proportional to the number of compromised neighbors of
the host.

Most worms have propagated by randomly probing the IP address space, but
they could propagate much faster by using knowledge of the overlay topology.
Therefore, it is important to hide this information from the worm. One tech-
nique to achieve this is to run the overlay code in a separate virtual machine
and to enforce a narrow interface that does not leak information about the
addresses of overlay neighbors.

Our preferred technique to hide information about the overlay topology from
the worm is to run an overlay with superpeers. The superpeers are not vulner-
able to most worm attacks because they run only the overlay code and a set
of virtual machines with sandboxed versions of vulnerable programs to verify
SCAs efficiently. The superpeers form a secure Pastry overlay as we described.
Each ordinary host connects to a small number ¢ of superpeers (e.g., g = 2)
that are completely specified by the host’s identifier. This prevents leaking in-
formation about vulnerable hosts because all neighbors of compromised hosts
are superpeers that do not run vulnerable software.

An overlay with superpeers is also more resilient to denial-of-service at-
tacks. First, we can give priority to verification of SCAs sent by superpeers.
Since superpeers are less likely to be compromised than ordinary hosts, this is
an effective defence against denial-of-service attacks that bombard hosts with
SCAs. Additionally, superpeers may be well-connected nodes with large link
capacities, to make it hard for attackers to launch denial-of-service attacks by
simply flooding physical links.

Currently, a secure overlay with superpeers is the best option for deploy-
ment of SCA distribution. It could be supported easily by an infrastructure
similar to Akamai’s, which is already used by antivirus companies to distribute
signatures [Akamai 2000]. However, it should be noted that alerts could be dis-
tributed over other broadcast/multicast channels (e.g., channels used to broad-
cast video).

3.5 Implementation

The implementation of SCA generation uses techniques similar to the ones
described in Section 2, for the implementation of the dynamic data-flow
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analysis detector. Vigilante intercepts socket operations, using a layered ser-
vice provider [Hua et al. 1999], to log received messages and to mark the socket
buffers dirty. Each new byte received is tagged with a unique 32-bit identifier.
Tags are propagated when dirty data moves across memory and registers, by
using Nirvana [Bhansali et al. 2006] to translate code sequences dynamically
into instrumented versions. This instrumentation ensures that the detection
engine is invoked before every instruction to disassemble the instruction, ex-
amine its operands, and update the data structures that keep track of dirty
data. These data structures are similar to the ones described in Section 2 for
the implementation of the dynamic data-flow analysis detector, except that
they store 32-bit identifiers for dirty data instead of single bits. When a control
transfer instruction is about to give control to the worm, the engine gener-
ates an SCA from these data structures and the message log (as described in
Section 3.3.2).

SCAs are verified inside a Virtual PC 2004 virtual machine (VM) to isolate
any side effects of the verification process (see Figure 9). During an initial setup
phase, the SCA verifier process starts a VM and establishes a virtual network
connection to the verification manager inside the VM. The verification manager
initiates the connection because the VM is configured to disallow any incoming
connections. The SCA verifier then instructs the verification manager to load
network-facing programs. The verification manager injects a dynamic link li-
brary (DLL) into each program by creating a new thread thatloads the DLL. The
DLL includes the Verified function, as well as an initialization routine which
reports the address of the Verified function back to the verification manager
through a shared-memory section. At this stage the setup for verification is
complete and the virtual machine state is saved.

When an SCA arrives, the SCA verifier relays the SCA to the verification
manager, sets a timer, and waits for a success notification message or the time-
out. The verification manager replays the messages in the SCA, using the ad-
dress of the Verified function as described in Section 3.2, and waits on a syn-
chronization object. If the SCA is valid, the Verified function is called and sets
the synchronization object, signaling success to the verification manager, who
sends a success notification message to the SCA verifier. After each verification,
the VM is destroyed and a new one is created from the state on disk to be ready
to verify the next SCA.

The implementation of the overlay used for distribution is described in Castro
et al. [2004, 2002]. We used a small real network to evaluate the distribution of
SCAs. To understand the behavior of Vigilante on the Internet, we simulated
the distribution system using topologies from the secure version of the over-
lay [Castro et al. 2002]. The simulations also used measurements from real
worm outbreaks and from our implementation of Vigilante.

4. PROTECTION

The last crucial step to contain a worm outbreak is to protect vulnerable hosts
that have not yet been infected. After receiving an SCA for the outbreak, vul-
nerable hosts protect themselves, but first they verify the SCA to prevent false
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positives. If the verification is successful, the local version of the program,
with the local configuration, is vulnerable to the exploit described in the SCA.
If the verification fails, the SCA is dropped and the host does not consume
more resources with the protection procedure. This is important for mitigat-
ing denial-of-service attacks because verification is significantly less expensive
than generating protective countermeasures.

After successful verification of the SCA, hosts could stop the vulnerable pro-
gram or run it with a detection engine to prevent infection. However, stopping
the program is not acceptable in most settings and running a high-coverage de-
tection engine (e.g., dynamic data-flow analysis) results in poor performance.
Additionally, detection engines typically detect the infection attempt too late
for the vulnerable program to be able to recover gracefully.

Instead, hosts in Vigilante generate filters to block worm traffic before it is
delivered to the vulnerable program, and they suspend the vulnerable program
to prevent infection during the filter generation process. Once generated, these
filters allow the program to continue running while under attack. Furthermore,
they are unlikely to affect the correct behavior of the program, since they do
not change the program’s code; they just discard attack messages. The main
challenge in generating these filters is to make them block polymorphic muta-
tions [Szor and Ferrie 2001] of the worm attack. In this section we describe the
optimal filters and present an algorithm to automatically generate filters that
are effective at blocking mutations of worm traffic, have no false positives, and
introduce low overhead.

4.1 Sufficient Preconditions for Infection

The optimal filter for a worm blocks all mutations of attack messages and has
no false positives. This filter can be expressed in terms of weakest preconditions,
as defined by Dijkstra [1975]. We assume a system that processes input mes-
sages by running a vulnerable program P, instrumented to terminate when it
reaches a state satisfying the condition I that defines successful infection. The
optimal filter for this system, in regard to I, is the weakest precondition for
infection (i.e., the weakest condition which is guaranteed to lead to an infected
state).

wp(P, I)

While of theoretical interest, calculating weakest preconditions is currently
not practical for most real systems [Winskel 1993]. However, it is practical to
generate filters that capture sufficient preconditions for infection: a set of con-
ditions on attack messages such that there are program states and scheduling
decisions for which the messages satisfying these conditions are guaranteed to
lead to successful infection. This means that when an entity, malicious or not,
sends a message satisfying these conditions, the message may lead to successful
infection; therefore, we classify it as an attack message. The filters generated
automatically by Vigilante have no false positives because they only drop attack
messages.
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4.2 Vulnerability Condition Slicing

4.2.1 Algorithm. Hosts generate the conditions for filters automatically
by analyzing the execution path followed when the messages in the SCA are
replayed. They use vulnerability condition slicing, a form of dynamic data- and
control-flow analysis that finds the conditions on the messages in the SCA that
determine the execution path that exploits the vulnerability.

The dynamic data-flow analysis during filter generation is more elaborate
than the one we use to detect worms. It instruments all instructions in the
program to compute data-flow graphs for dirty data (i.e., data derived from
the messages in the SCA). These data-flow graphs describe how to compute the
current value of the dirty data: They include the instructions used to compute
the current value from the values at specified byte offsets in the messages and
from constant values read from clean locations. We associate a data-flow graph
with every memory position, register, and processor flag that stores dirty data.

The control-flow analysis keeps track of all conditions that determine the
program counter value after executing control transfer instructions (conditional
move and set instructions are handled similarly to control transfer instructions,
therefore we omit them for brevity). We call the conjunction of these conditions
the filter condition. The filter condition is initially ¢rue and is updated when an
instruction uses a dirty processor flag, transfers control to an address read from
a dirty location, or reads/writes from/to an address read from a dirty location.
The filter condition is updated to be the conjunction of its old value and the
appropriate conditions on the expressions computed by the data-flow graphs of
the dirty flag and address location.

Figure 12 shows the vulnerability condition slicing algorithm in pseudocode.
When the program receives a message, the algorithm tags the memory posi-
tions where each byte in the message is stored with a new data-flow graph
that identifies the byte (input bytes are identified by an increasing counter).
Whenever an instruction is executed, the algorithm checks if its arguments
are tagged with data-flow graphs. If so, the address that stores the result of
the instruction is tagged with a new data-flow graph reflecting the execution of
the instruction; otherwise the address that stores the result is marked clean. If
the instruction affects the processor’s flags, they are tagged in a similar fashion.

When a conditional control-flow instruction is executed, the flag controlling
the instruction is checked for dirtiness. If it is dirty, the filter condition is up-
dated to reflect the conditions tested by the instruction and the outcome of the
check on the flag. This is done by creating a new data-flow graph that applies
the opcode of the instruction to the data-flow graph of the flag controlling the
jump; the outcome of the test on the flag is recorded by negating the opcode if
the jump is not taken; negating the opcode denotes replacing it with the opcode
for the converse condition, for example, replacing the opcode for je (jump if
equal) with the opcode for jne (jump if not equal). When an indirect control-
flow transfer uses a dirty location (memory or register), the filter condition is
updated to reflect that the data-flow graph for the dirty location must be equal
to the current value stored there. The filter is updated similarly on indirect
memory accesses which use a dirty address operand.
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INITIALIZE

filter = GRAPH(TRUE);
counter =0

ONRECEIVEDNETWORKMESSAGE (address, size)

for i — 0 to size — 1
do
SETTAG(address + i, GRAPH(INPUT, counter))
counter = counter + 1

GETTAGORVALUE(a)

if IsDIRTY(a)
then return GETTAG(a)
else return GRAPH(CONSTANT, VALUEAT(a))

ONINSTRUTION(address, opcode, a, b)

if IsDIrTY(a) or ISDIRTY(b)
then Tac(address, GRAPH(opcode, GETTAGORVALUE(a), GETTAGORVALUE(b)))
foreach flag in CHANGEDFLAGS(opcode)
do TaG(flag, GRAPH(opcode, GETTAGORVALUE(a), GETTAGORVALUE(b)))

else CLEAR(address)
foreach flag in CHANGEDFLAGS(opcode)
do CLEAR(flag)

ONCONDITIONALCONTROLFLOWTRANSFER( flag, opcode, taken)

if ISDIRTY(flag)
then
if taken
then filter = GRAPH(AND, filter, GRAPH(opcode, GETTAG(flag)))
else filter = GRAPH(AND, filter, GRAPH(—opcode, GETTAG(flag)))

ONINDIRECTCONTROLFLOWTRANSFERORINDIRECTMEMORY ACCESS (address)

if IsDIRTY(address)
then filter = GRAPH(AND, filter, GRAPH(EQUAL, VALUEAT(address), GETTAG(adress)))

Fig. 12. Vulnerability condition slicing algorithm. The algorithm generates filters that block muta-
tions of worm attacks, by analyzing a vulnerable program and extracting the control-flow decisions
that lead to successful attacks.

For example, when the instruction jz address (jump if zero to address) is
executed, the filter condition is left unchanged if the zero flag is clean. If the
zero flagis dirty and the jump is taken, we add the condition that the expression
computed by the data-flow graph for the zero flag be true. If the zero flag is dirty
and the jump is not taken, we add the condition that the expression computed
by the data-flow graph for the zero flag be false. As another example, when jmp
eax (jump to the memory position identified by the eax register) is executed,
the filter condition is left unchanged if the eax register is clean. If eax is dirty,
we add the condition that the expression computed by eax’s data-flow graph be
equal to the value currently stored by eax.
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1: push ebp ;on entry, ebx points to the message parameter
;esp points to eip saved on the stack
;the memory containing the message is tagged with
;data-flow graphs for symbols input[0] to input[27]

2: mov ebp,esp
3: mov al,byte ptr [ebx] ;move first byte of message into al
;tag al with input[0]
4: mov ecx,dword ptr [ebp+8]
5: sub al,10h ;tag al with input[0] - 0x10
6: sub al,31h ;tag al with input[0] - 0x10 - 0x31
7: sub esp,8 ;allocate stack space for request buffer
8: cmp al,OEh ;perform range check on first byte
;tag flags with input[0] - 0x10 - 0x31 = O0xOE
9: ja 45 ;add filter condition input[0] - 0x10 - 0x31 <= 0xOE
;because the jump is not taken
10: mov dl,byte ptr [ebx+1] ;move second byte of message into dl
;tag dl with input[1]
11: push esi
12: push edi
13: lea edi, [ebx+1] ;move address of second byte into edi
14: xor esi,esi
15: cmp dl,0Ah ;tag flags with input[1] = 0xOA
16: lea eax, [ebp-8] ;move address of request buffer into eax
17: je 28 ;add filter condition input[1]!= 0xO0A
;because the jump is not taken
18: mov ecx,eax
19: sub edi,ecx
20: lea esp, [esp+0h]
21: mov byte ptr [eax],dl ;copy next byte into request buffer
;tag address pointed to by eax with input[i]
22: mov dl,byte ptr [editeax+l] ;move next byte of message into dl
;tag d1 with input[i]
23: add eax,1
24: add esi,1
25: cmp dl,0Ah ;tag flags with input[i] = 0xOA
26: jne 21 ;add filter condition input[i] != 0xOA

;because the jump is taken

Fig. 13. Example of filter generation with vulnerable program in IA-32 assembly language (com-
piled from the source code in Figure 3).

We will use the vulnerable code shown in Figure 13, as well as the correspond-
ing arbitrary execution control SCA from Section 3.3, to illustrate the filter
generation procedure (the mechanics of attacks on this code were described in
Section 2.1). When the code starts to execute, the ebx register holds the message
parameter. The parameter points to a message just received from the network.
Before the code is executed, the memory region where the message was re-
ceived is tagged with data-flow graphs with symbols input [0] to input[27],
corresponding to the bytes just received in the message. The code starts by
loading the first byte of the message into al; at this point al is tagged with
input [0]. Next, the code does a range check on the first byte of the message by
subtracting 0x10 and 0x31 from it, and comparing the result with 0x0E. Thus, at
instruction 6, al becomes tagged with input [0] - 0x10 - 0x31. The zero, sign,
and overflow flags become dirty after the comparison at instruction 8, and their
data-flow graphs become input[0] - 0x10 - 0x31=0x0E; Figure 14(a) shows
the data-flow graph associated with the flags at this point. The filter condition
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Fig. 14. Data-flow graphs for flags controlling conditional jumps: (a) when instruction ja 45 is
executed; and (b) when the instruction jne 21 is executed. Both instructions are executed by the
vulnerable program in Figure 13.

is updated to input [0] - 0x10 - 0x31<=0xOE after instruction 9, because the
conditional jump ja is not taken.

The function then copies bytes from the message into the request buffer,
until it finds the terminator character 0x0A. The check for termination on the
second byte is implemented by instructions 15 and 17, and the remaining bytes
are checked by instructions 25 and 26. For each iteration of the copy loop,
the dl register holds the next byte in the message, and is therefore tagged
with input[i] (for i >= 1). Each iteration adds a filter condition of the form
input [1]#0x0A for i >= 1, because dI is compared with 0x0A and a conditional
jump continues the loop if they are not equal; Figure 14(b) shows the data-flow
graph associated with the flags when these control-flow decisions are taken.

Figure 15 shows the filter condition generated by the algorithm for this exam-
ple. It shows that the algorithm generalizes the attack by noting that messages
will lead to successful attacks if they have a first byte within the appropriate
range and a sufficient number of subsequent bytes different from the newline
character.

The termination condition for the filter generation procedure depends on the
type of SCA. The filter generation procedure replays the execution triggered by
receiving the message in the SCA after updating the location specified by the
verification information to contain a verification nonce. The idea is to use the
dynamic data-flow analysis to stop execution in the same conditions that we
described for detection, while using the verification nonce to prevent false posi-
tives. For example, the filter generation procedure for arbitrary code execution
alerts stops when the program is about to jump to the nonce value. To remove
unnecessary conditions from the filter, the generation procedure returns the
value of the filter condition after the instruction that overwrites the critical ar-
gument or jump target that causes the worm to gain control. To obtain the value
of the filter condition at this point, we tag write operations with the current
value of the filter condition.

The filters generated by this algorithm are safe. The conditions generated
by the algorithm can be computed without propagating side effects to memory
or the processor, because they are pure functional expressions. In addition, the
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Fig. 15. Filter condition for an edge injection attack on the program in Figure 13. The filter blocks
mutations of the attack; it matches any attack message with the first byte in the allowed range and
the subsequent bytes different from 0x0A, up until the bytes that overwrite the return address on
the stack.

filter conditions do not include loops or recursion. Therefore, they can always
be computed in linear time or less, on the size of the corresponding data-flow
graphs. Figure 16 shows the translation of the filter condition in Figure 15 into a
filtering program. The translation is carried out by doing a depth-first traversal
of the graph to generate a stack-based evaluation of the data-flow expression.
We ensure that the code generated has no side effects, by saving/restoring the
CPU state when entering/leaving the filter code and by using a separate stack
that we ensure is large enough to evaluate the data-flow expressions. Filters
also check that a message is at least as long as the largest offset used by the
filter code.

Filters generated using this procedure have no false positives: Any message
that matches the filter condition would be able to exploit the vulnerability if
received in the state in which the filter was generated, and if the scheduling
decisions were identical. Additionally, they can filter many worm variants that
exploit the same vulnerability because the filter captures the exact conditions
that determine the path to exploit the vulnerability. These filters are totally
different from filters that block messages that contain a particular string [Kim
and Karp 2004; Singh et al. 2004] or sequence of strings [Newsome et al. 2005].
They can capture arbitrary computations on the values of the input messages.

This algorithm can be seen as a form of program slicing [Weiser 1984]. It
identifies a subset of instructions in the program that compute those control-
flow decisions that lead to successful attacks. The instructions captured in the
data-flow graphs in Figure 14 are a subset of the instructions of the vulnerable
program shown in Figure 4. Filters block messages that satisfy these conditions,
by computing the conditions immediately after messages are received.

The algorithm can also be seen a form of symbolic execution [King 1976]:
Simultaneously with the concrete execution of the vulnerable program, the
algorithm executes symbolically the instructions that process dirty data.
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mov eax, message_len ;move the message length into eax

cmp eax, 14 ;check maximum index used in filter conditions
jb do_not_drop ;if message is shorter, do not drop it
mov esi, message ;move address of message into esi

XOr eax,eax ;clear eax register

mov al,byte ptr [esi + 0x00] ;move first byte into al

push eax

push 0x10

pop ebx

pop eax

sub al,bl ;subtract 0x10 from al

push eax

push 0x31

pop ebx

pop eax

sub al,bl ;subtract 0x31 from al

push eax

push OxOE

pop ebx

pop eax

cmp al, bl ;compare al with OxOE

ja do_not_drop ;if above, do not drop the message
XOr eax,eax ;clear eax register

mov al,byte ptr [esi + 0x01] ;move second byte into al

push eax

push OxOA

pop ebx

pop eax

cmp al,bl ;compare with 0xO0A

je do_not_drop ;if second byte is 0xOA, do not drop the message

;the remaining bytes, until the ones
;that overwrite the return address on the stack,
;are also checked to be different from 0xOA

Fig. 16. Filter code generated automatically for the filter condition in Figure 15. The filter blocks
mutations of an edge injection attack on the vulnerable program shown in Figure 13. The code to
save registers and to set-up a separate stack is omitted for brevity.

The current implementation only supports filters with conditions on a single
message. To deal with SCAs with multiple messages in their event list, we
produce a filter that blocks a critical message in the list to prevent the attack.
The filter is obtained using the generation procedure that we described earlier
and removing all conditions except those related to the critical message. We pick
this critical message to be the one named in the SCA’s verification information
because this is the message that carries the worm code or the value used to
overwrite a control structure or a critical argument. To prevent false positives,
we only install the filter if this is also the message that gives the worm control
when it is processed.

The filters that we described so far have no false positives, but they may be
too specific. They may include conditions that are not necessary to exploit the
vulnerability. For example, the filter generated for the Slammer worm would
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require a longer than necessary sequence of nonzero bytes. This filter would
not block variants of the worm that used smaller messages.

We use two filters to reduce false negatives while ensuring that we have no
false positives: a specific filter without false positives, and a general filter that
may have false positives but matches more messages than the specific filter to
block more worm variants.

Messages are first matched against the general filter. If a message does not
match, it is sent to the program for immediate processing. Otherwise, it is
matched against the specific filter. A message that matches is dropped and
one that does not is sent to a dynamic data-flow analysis detection engine. If
the engine determines that the message is innocuous, it is sent to the pro-
gram for processing. But if the engine detects an attempt to exploit a vul-
nerability, the message is dropped after being used to generate an SCA. This
SCA can be used to make the specific filter more general: The specific filter’s
condition can be updated to be the disjunction of its old value and the fil-
ter condition generated from the SCA using the procedure from the previous
section.

Since detection with dynamic data-flow analysis is expensive, the general fil-
ter must have a low false positive rate for the protected program to achieve good
performance. We create the general filter by removing some conditions from the
specific filter, using heuristics guided by information about the structure of the
path that exploits the vulnerability.

The first heuristic removes conditions on message bytes that appear after the
offset identified by the verification information in the SCA. Since bytes in the
message are usually processed in order, this heuristic is unlikely to introduce
false positives. The second heuristic removes conditions added by the execution
of a function when that function returns. The rationale is that these conditions
are usually not important after the function returns and that the important
effects of the function are captured in the data-flow graphs of dirty data. The
third heuristic removes conditions added by indirect memory accesses, since
they may unnecessarily constrain inputs due to coding idioms used in com-
mon implementations of runtime libraries. We compute the general filter at
the same time as the specific filter by maintaining a separate general filter
condition to which we apply these heuristics. Our experimental results sug-
gest that these heuristics work well in practice: They generalize the filter to
capture most or even all worm variants and they appear to have zero false
positives.

4.2.2 Implementation. The implementation of filter generation uses tech-
niques similar to the ones described in Section 2, for the implementation of
the dynamic data-flow analysis detector. We associate a data-flow graph with
every memory position, register, and processor flag that stores dirty data. We
maintain a page table with one entry per 4K memory page; if any byte in the
page is dirty, the entry points to a table with one pointer per memory location.
If a location is dirty, the corresponding entry in this table points to a data-
flow graph. A separate data structure stores data-flow graphs for registers and
flags.
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Fig. 17. Components inside a process with a filter deployed by Vigilante. Vigilante intercepts
socket functions to process network messages with the filter code. When the filter matches a mes-
sage, it is dropped; otherwise, it is handed over to the normal code.

The implementation intercepts socket operations, and tags each received
byte with a unique data-flow graph that identifies the byte. We wuse
Nirvana [Bhansali et al. 2006] to instrument all IA-32 instructions to maintain
the data-flow graphs up-to-date. These data-flow graphs describe how to com-
pute the current value of the dirty data: They include instructions used to
compute the current value from the values at specified byte offsets in input
messages and from constant values read from clean locations. In the current
implementation, each data-flow graph has constants, byte offsets in messages,
and Intel TA-32 opcodes as vertices, and the edges connect the operands of
an instruction with its opcode. The filter condition is represented as a list of
graphs with the same format. Therefore, the filter condition can be translated
into efficient executable IA-32 code for filtering incoming messages, as shown
in Figure 16. Furthermore, we ensure that the filter code has no side effects
and that it always terminates, since it includes only forward jumps.

After filters are generated, we deploy them with the Detours [Hunt and
Brubacher 1999] runtime instrumentation package. The interception mecha-
nism used by Detours has low overhead, therefore it is appropriate for use in
production systems, where the filters will be deployed. Deploying the filters
on a vulnerable host does not require restarting the vulnerable program. To
achieve hot installation of the filters, the functions that intercept the socket
interface check for availability of filters on a shared memory section. After fil-
ter generation, the filter code is copied to the vulnerable process through the
shared memory section. Figure 17 shows the components inside a vulnerable
process, after a filter is deployed.
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5. EVALUATION

We implemented a prototype of Vigilante for Intel IA-32 hosts running the
Windows operating system. This section evaluates our implementation of the
Vigilante algorithms and architecture.

5.1 Experimental Setup

Experiments ran on Dell Precision Workstations with 3GHz Intel Pentium 4
processors, 2GB of RAM, and Intel PRO/1000 Gigabit network cards. Hosts
were connected through a 100Mbps D-Link Ethernet switch.

We evaluated Vigilante with real worms: Slammer, Blaster, and CodeRed.
Experiments with CodeRed and Blaster ran on Windows 2000 Server and ex-
periments with Slammer ran on Windows XP with SQL Server 2000. These
worms attacked popular programs and had a high impact on the Internet.

Slammer infected approximately 75,000 Microsoft SQL Servers. So far, it has
been the fastest worm in history [Moore et al. 2003]. During its outbreak, the
number of infected hosts doubled every 8.5 seconds. Slammer’s exploit uses a
UDP packet with the first byte set to 0x04, followed by a 375-byte string with
the worm code. While copying the string, SQL overwrites a return address in
the stack.

CodeRed infected approximately 360,000 Microsoft IIS Web servers. It
spread much more slowly than Slammer, taking approximately 37 minutes to
double the infected population. CodeRed’s exploit sends a “GET /default.ida?”
request followed by 224 “X” characters, the URL encoding of 22 Unicode charac-
ters (with the form “%uHHHH”, where H is an hexadecimal digit), “HTTP/1.0”
headers, and an entity body with the worm code. While processing the request,
IIS overwrites the address of an exception handler with a value derived from the
ASCII encoding of the Unicode characters. The worm gains control by trigger-
ing an exception in a C runtime function and it immediately transfers control
to the main worm code that is stored in the heap.

Blaster infected the RPC service on Microsoft Windows hosts. We conser-
vatively estimate that it infected 500,000 hosts and that its spread rate was
similar to CodeRed’s. Blaster is a two-message attack: The first message is a
DCERPC bind request and the second is a DCERPC DCOM object activation
request. The second message has a field that contains a network path starting
with “\\”. While copying this field to a buffer and searching for a terminating
“\”, the RPC service overwrites a return address in the stack.

5.2 Detection

We tested the dynamic data-flow analysis detector on the set of real worm at-
tacks described previously, and on a broad range of synthetic attacks. Table I
shows the results for attacks that exploited the network-facing programs de-
scribed earlier; all the attacks were detected.

The synthetic attacks were based on a testbed of 18 buffer overflow attacks
described in Wilander and Kamkar [2003]. Each attack is based on a different
combination of technique, location, and attack target. The testbed uses two
techniques, two types of location, and four attack targets, detailed next.
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Table I. Real Attacks Detected by Dynamic Data-Flow

Analysis
Program Attack Detected?
SQL Server Slammer attack | yes
Internet Information Server | Code Red attack | yes
Windows RPC Service Blaster attack yes

Table II. Synthetic Attacks Detected by Dynamic Data-Flow Analysis

Attack Target Data Structure Detected?
Direct overwrite on stack Parameter function pointer | yes
Parameter longjmp buffer yes
Return address yes
Old base pointer yes
Function pointer yes
Longjmp buffer yes
Direct overwrite on data segment Function pointer yes
Longjmp buffer yes
Overwrite through stack pointer Parameter function pointer | yes
Parameter longjmp buffer yes
Return address yes
Old base pointer yes
Function pointer yes
Longjmp buffer yes
Overwrite through data segment pointer | Return address yes
Old base pointer yes
Function pointer yes
Longjmp buffer yes

Techniques. The first technique simply overflows a buffer until the attack
target is overwritten. The second technique overflows a buffer until a pointer
is overwritten, and a uses a subsequent assignment through the pointer to
overwrite the attack target.

Locations. The attacks use two types of location for the overflowed buffer:
the stack, and the data segment.

Attack Targets. The attacks use four different control data structures as tar-
gets: the return address on the stack, the old base pointer on the stack, function
pointers and longjmp buffers. The last two can be either variables or function
parameters.

Table II shows the results for synthetic attacks. All attacks were detected.
It is worth pointing out that dynamic data-flow analysis is able to detect the
attacks without using any specific knowledge about the control data structures
used by the program. By comparison, the coverage of several tools that protect
specific control data structures was tested with the same attacks and the best
tools only detected 50% of the attacks [Wilander and Kamkar 2003]. Even if all
the techniques used by the tools tested in Wilander and Kamkar [2003] were
combined, a third of the attacks would not be detected.

We also measured the performance overhead introduced by the dynamic
data-flow analysis detector with SQL Server, the IIS Web server, and the
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Fig. 18. Runtime overhead of running the dynamic data-flow analysis detector.

Windows RPC service. For each vulnerable program we measured the average
response time of one hundred requests. For SQL Server the requests were gen-
erated with transactions from the TPC-C benchmark [TPC 1999]. To measure
the worst-case scenario for detector overhead, we used empty implementations
for the TPC-C stored procedures; therefore the requests were CPU bound. For
IIS we used requests from the SpecWeb99 [SPEC 2008] benchmark. To measure
a worst-case scenario, IIS returned 512 bytes from main memory in response to
every request. For the Microsoft Windows RPC service, we generated a custom
workload using requests to look up an RPC interface; these requests are also
CPU bound. Figure 18 shows the overhead for each of the experiments for the
three vulnerable programs. The overhead is large in all cases: The response
time increases by a factor of 51 for SQL, 38 for the RPC service, and 50 for
IIS. Therefore, it is not appropriate to run our implementation of the dynamic
data-flow analysis detector on production deployments. The largest contribu-
tors to the overhead are the Nirvana rewriting mechanism and the disassembler
used to decode instructions. Both of these mechanisms can be optimized; for in-
stance, DynamoRIO [Bruening et al. 2001] provides much faster rewriting, and
we also plan to optimize the detector by caching decoded instructions. However,
as Section 5.3 shows, in spite of their large overhead, these detectors can still
generate alerts in times ranging from tens of milliseconds to a few seconds;
thus, they can already be used to provide timely detection of unknown worm
attacks.

5.3 Alert Generation

The next experiment measures the time to generate SCAs with the dynamic
data-flow analysis and NX detectors. The time is measured from the moment
the last worm message is received until the detector generates an SCA. It
does not include the time to verify the SCA before it is distributed, and the
log contains only the worm messages. One detector uses dynamic data-flow
analysis and the other uses a software emulation of nonexecute protection on
stack and heap pages (INX). The detectors generate arbitrary execution con-
trol alerts for Slammer and Blaster, and an arbitrary code execution alert for
CodeRed.
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Fig. 20. SCA sizes in bytes for real worms.

Figure 19 shows average SCA generation times for Slammer, Blaster, and
CodeRed with the dynamic data-flow detector and for Slammer using the NX
detector. The results are the average of five runs. The standard deviation is
0.5 milliseconds for Slammer, 3.9 milliseconds for Blaster, and 204.7 millisec-
onds for CodeRed.

Both detectors generate SCAs fast. The NX detector performs best because
its instrumentation is less intrusive, but it is less general. For both Slammer
and Blaster, the dynamic data-flow detector is able to generate the SCA in under
210 milliseconds and it takes just over 2.6 seconds for CodeRed. Generation time
is higher for CodeRed because the number of instructions executed is larger and
Nirvana has to dynamically translate a number of libraries loaded during the
worm attack.

Figure 20 shows the SCA size in bytes for each worm. The SCAs include a
fixed header of 81 bytes that encodes the SCA type, vulnerable program identi-
fication, and verification information. The size of the SCAs is small and mostly
determined by the size of the worm probe messages.

5.4 Alert Verification

The next experiment measures the time to verify SCAs. SCAs are verified inside
a Virtual PC 2004 virtual machine that has all the code needed for verification
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Fig. 21. SCA verification time in milliseconds for real worms.

loaded. The state of this VM is saved to disk before verifying any SCA. After
each verification, the VM is destroyed and a new one is created from the state
on disk to be ready to verify the next SCA.

Figure 21 shows the average time in milliseconds to verify each SCA. The
results are the average of five runs. The standard deviation is 0.5 milliseconds
for Slammer, 1.5 milliseconds for Blaster, and 6.5 milliseconds for CodeRed.

Verification is fast because it doesn’t need to instrument the vulnerable soft-
ware, and because we keep a VM running that is ready to verify SCAs when
they arrive. The overhead to keep the VM running is low: A VM with all vul-
nerable programs used less than 1% of the CPU and consumed approximately
84MB of memory.

We also explored the possibility of starting VMs on demand to verify SCAs.
The VM is compressed by the Virtual PC into a 28MB checkpoint. It takes four
seconds to start the VM from disk with cold caches, but it takes less than a
second to start the VM from a RAM disk. Since this additional delay is prob-
lematic when dealing with fast-spreading worms, we decided to keep a VM
running. Techniques to fork running programs [Vrable et al. 2005; Fraser and
Chang 2003] should enable creation of VMs on demand with low delay.

5.5 Alert Distribution

To evaluate the effectiveness of SCA distribution at large scale, we ran simu-
lations with parameters derived from our experiments with the prototype and
from published statistics about real worms.

5.5.1 Simulation Setup. The simulations ran on a simple packet-level dis-
crete event simulator with a transit-stub topology generated using the topology
generator described in Zegura et al. [1996]. The topology has 5050 routers, ar-
ranged hierarchically with 10 transit domains at the top level and an average
of 5 routers in each. Each transit router has an average of 10 stub domains
attached with an average of 10 routers each. The delay between routers is com-
puted by the topology generator and routing is performed using the routing
policy weights of the graph generator. Vigilante hosts are attached to randomly
selected stub routers by a LAN link with a delay of 1 millisecond.
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In all the simulations, we use a total population of 500,000 hosts. S randomly
selected hosts are assumed susceptible to the worm attack because they run the
same piece of vulnerable software. A fraction p of the susceptible hosts are ran-
domly chosen to be detectors, while the rest are referred to as vulnerable hosts.
We evaluate distribution using the secure overlay with superpeers: 1,000 of the
500,000 hosts are randomly selected to be superpeers that form a secure Pastry
overlay and each ordinary host connects to two superpeers. Each superpeer is
able to verify the SCA and is neither vulnerable nor a detector.

We model worm propagation using the epidemic model described in Heth-
cote [2000] with minor modifications that take detectors into account. Assum-
ing a population of S susceptible hosts, a fraction p of them being detectors,
and an average infection rate of g, let I; be the total number of infected hosts
at time ¢ and P; be the number of distinct susceptible hosts that have been
probed by the worm at time ¢, the worm infection is modeled by the following

equations.
P, P,
E"“’f(l_§> W
dr, I
E—.Blt<1_p_§) (2)

Starting with % initially infected hosts, whenever a new vulnerable host is
infected at time ¢, our simulator calculates the expected time until a new sus-
ceptible host receives a worm probe using Egs. (1) and (2), and randomly picks
an unprobed susceptible host as the target of that probe. If the target host is
vulnerable, it becomes infected. If the target host is a detector, an SCA will be
generated and distributed.

To account for the effects of network congestion caused by worm outbreaks,
we built a simple model that assumes both the percentage of packets delayed
and the percentage of packets dropped increase linearly with the number of
infected hosts. We computed the parameters for the model using the data gath-
ered during the day of the Slammer outbreak by the RIPE NCC test traffic
measurements (TTM) service [Georgatos et al. 2001]. At the time, the TTM
service had measurement hosts at 54 sites spread across the world and each
host sent a probe to each of the other hosts every 30 seconds.

Since Slammer took approximately 10 minutes to propagate, we computed
the peak percentage of packets dropped and delayed by analyzing the data dur-
ing the 10-minute interval starting at 10 minutes after the Slammer outbreak.
We also computed the average increase in packet delay, using as the baseline
the delays in the 10-minute interval ending at 10 minutes before the outbreak.
We observed that about 9.6% of the packets sent were delayed with an average
delay increase of 4.6 times, while 15.4% of the packets were dropped. We delay
or drop a percentage of packets equal to the aforesaid values multiplied by the
fraction of infected hosts.

When probed, a detector takes time Ty to generate an SCA and then it broad-
casts the SCA. SCA verification takes time T,,. Detectors, vulnerable hosts, and
superpeers can verify SCAs but other hosts cannot. Unless otherwise stated,
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Table III. Simulation Parameters for Modeling
Containment of Real Worms

B S Ty (ms) | Ty (ms)
Slammer | 0.117 75,000 18 10
CodeRed | 0.00045 | 360,000 2667 75
Blaster 0.00045 | 500,000 206 18

we assume 10 initially infected hosts. Each data point presented is the mean
value of 250 runs with an error bar up to the 90¢h percentile. Each run has
different random choices of susceptible hosts, detectors, and initially infected
hosts.

We model a DoS attack where each infected host continuously sends fake
SCAs to all its neighbors to slow down distribution. We conservatively remove
rate control. We assume that the concurrent execution of n instances of SCA
verification increases verification time to nT), seconds.

Finally, we note that while accurately modeling worm outbreaks and coun-
termeasures is still an area of active research [Moore et al. 2003; Zou et al.
2003; Chen et al. 2003; Vojnovi¢ and Ganesh 2005; Ganesh et al. 2006], the
preceding worm-spreading model has been shown to describe accurately out-
breaks of real worms [Moore et al. 2003], and we parameterized the model with
measurements from our implementation of Vigilante and with data collected
during real outbreaks.

5.5.2 Containment of Real Worms and Beyond. First, we evaluate the ef-
fectiveness of Vigilante with Slammer, CodeRed, and Blaster. Table III lists the
parameter settings used for each worm. The infection rates (8) and susceptible
population (S) for Slammer and CodeRed are based on observed behavior re-
ported by Moore et al. [2003]. Blaster was believed to be slower than CodeRed,
but with a larger susceptible population. We conservatively set its infection rate
to be the same as CodeRed and have the entire population being susceptible.
T, and T, are set according to the measurements in Sections 5.3 and 5.4.

Figure 22 shows the infected percentage (i.e., percentage of vulnerable hosts
that are eventually infected by the worm) for the real worms with different
fractions (p) of detectors, both with and without DoS attacks. The graph shows
that a small fraction of detectors (p = 0.001) is enough to contain the worm
infection to less than 5% of the vulnerable population, even under DoS attacks.
The Vigilante overlay is extremely effective at disseminating SCAs: Once a
detector is probed, it takes approximately 2.5 seconds (about 5 overlay hops) to
reach almost all the vulnerable hosts.

SCA verification time (7T},) determines SCA distribution delay, whereas the
number of initially infected hosts (k) and infection rate (8) characterize worm
propagation. Figure 23 shows the impact of T,, 8, and & on the effective-
ness of Vigilante, both with and without DoS attacks. Slammer is the fastest-
propagating real worm. We therefore use Slammer’s 8 = 0.117 as the base
value in Figure 23(b); for example, with a worm infection rate of 83, the num-
ber of infected hosts doubles approximately every second. Because the initially
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Fig. 22. Containment of Slammer, CodeRed, and Blaster using parameter settings in Table III,
both with and without DoS attacks. Each data point is the mean value with an error bar up to the
90t h-percentile value.
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Fig. 24. Filter-generation time for real worms.

infected hosts are counted in the infected percentages reported, the baseline
in Figure 23(c) shows the contribution of initially infected hosts to the final in-
fected percentage. Unless otherwise specified, the experiments use the default
values with p of 0.001, 2 of 10, T; of 1 second, T, of 100 milliseconds, 8 of 0.117,
and S of 75,000.

These results show that Vigilante remains effective even with significant
increases in SCA verification time, infection rate, or number of initially in-
fected hosts. The effectiveness of Vigilante becomes reduced (and exhibiting
significant variations) with an SCA verification time of 1000 milliseconds, with
infection rate of 88, or with 10,000 initially infected nodes. Do note that these
settings are an order of magnitude worse than the worst of real worms.

Not surprisingly, DoS attacks appear more damaging in configurations where
Vigilante is less effective because the significance of DoS attacks hinges directly
on the number of infected hosts. Also as expected, Vigilante becomes increas-
ingly vulnerable to DoS attacks as the verification time increases.

Other attacks on the distribution of SCAs have also been analyzed in recent
work: Raiciu et al. [2006] analyzed the possibility of using the information in
the SCAs to generate new worms. Such attacks have a limited impact because
the generated worms compete with a worm that is already spreading.

5.6 Protection

The next set of experiments evaluates the overheads associated with filters and
their effectiveness.

5.6.1 Filter Generation. The first experiment measures the time to gener-
ate a filter from an SCA that has already been verified. Figure 24 shows the
time in milliseconds to generate both the specific and general filters for the
three worms. The results are the average of five runs. The standard deviation
was 0.7 milliseconds for Slammer, 5.1 milliseconds for Blaster, and 205.3 mil-
liseconds for CodeRed. In all cases, filter generation is fast. Filter generation
for CodeRed is more expensive because the number of instructions analyzed is
larger and the binary rewriting tool needs to dynamically translate code for a
number of libraries that are loaded on demand.
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XOr eax,eax ;clear the eax register

mov al,byte ptr [esi + 0x0] ;move first byte into al

push eax ;push the first byte into the stack
push 0x02

pop ebx

pop eax

sub eax,ebx ;subtract 2 from first byte

push eax

pop eax

mov ebx,0x02

cmp eax,ebx ;compare with 2

jne do_not_drop ;exit the filter without a match if not equal

Fig. 25. TA-32 code for a condition of Slammer’s filter.

The generated filters are also effective. In all cases, the specific filters block
the attack, have no false positives, and also block many polymorphic varia-
tions of the attack. We describe the general filters in more detail because they
determine the false negative rate.

The general filter for Slammer checks that the first byte is 0x4 and that
the following bytes are nonzero (up to the byte offset of the value that would
overwrite the return address in the stack). This filter is optimal; it captures
all polymorphic variations of the attack with no false positives. The filter’s code
sequence is not optimized; it corresponds to a stack-based evaluation of the filter
condition. For example, in Slammer, the condition that the first byte is equal
to 0x04 is computed by the code in Figure 25. There are a number of obvious
optimizations, but the performance of the filter is good even without them.

The general filter for Blaster checks that there are two consecutive back-
slash (“/”) Unicode characters at the required positions, followed by Unicode
characters different from “/” up to the position of the value that will overwrite
the return address in the stack. This filter catches all polymorphic variations
in the worm code and some variations in other parts of the message.

The general filter for CodeRed checks that the first 4 bytes form the string
“GET”, and that bytes from offset 0x11 to offset 0xF0 are ASCII characters and
different from “+” and “%”. The filter also checks that “%u” strings are used
in the same positions where the attack used them and that the characters fol-
lowing these strings are ASCII representations of hex digits. This filter catches
polymorphic variations on the worm code and insertion of HT'TP headers in the
attack message.

These results show that dynamic control- and data-flow analysis make a
promising approach to filter generation. While the general filter for Slammer is
perfect, the general filters for Blaster and CodeRed have some limitations. For
Blaster, it is possible that other successful attacks could be mounted by using
the string starting with “/”“/” at a different position in the attack message. The
CodeRed filter also does not tolerate shifting or insertion of “+” or “%” where
the worm used “X” characters. We plan to improve the general filters in the
future. In our current implementation, filters may also be evaded with packet
fragmentation. We plan to address this limitation by implementing well-known
countermeasures for this evasion technique [Ptacek and Newsham 1998].
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Fig. 26. CPU overhead of network traffic interception and filter deployment.

5.6.2 Overhead of Deployed Filters. We also measured the performance
overhead introduced by deployed filters. Filters were deployed by binary rewrit-
ing the vulnerable programs. We used Detours [Hunt and Brubacher 1999] to
intercept calls to the socket interface and install the filters immediately above
functions that receive data.

We ran three experiments for each vulnerable program and measured the
overhead with a sampling profiler. The first experiment (intercepted) ran the
program with just the socket interface being intercepted. The second exper-
iment (intercepted + filter) ran the program with the socket interface being
intercepted and invoking the appropriate general and specific filters. The third
experiment (intercepted + filter + attack) stressed the filter code by sending
worm probes to the program at a rate of 10 per second (which is three orders
of magnitude larger than the rate induced by Slammer). For every experiment,
we increased the service load until it reached 100% CPU usage, as described
next. Figure 26 shows the overhead for each of the experiments for the three
vulnerable programs. The results are the average of five runs. The overhead is
low in all cases.

SQ@L. For Slammer the vulnerable program is SQL Server. We generated load
using the TPC-C benchmark [TPC 1999] with 170 simulated clients running on
two separate hosts. Clients were configured with zero think-time. To measure
the worst-case scenario for the filter overhead, the number of requests serviced
per unit time was maximized by using empty implementations for the TPC-C
stored procedures. Figure 26 shows that the CPU consumed by the interception
is just 0.16%. When Slammer filters are then installed, the overhead remains
the same because Slammer exploits a vulnerability in a management interface
running on UDP port 1434. This is not the same communication endpoint that
SQL uses to listen for client transactions. Therefore, the requests issued by
TPC-C clients follow a different code path and the impact of running the filter
is negligible. With worm probes, the overhead rises to only 0.2%.

RPC. For Blaster the vulnerable program is Microsoft Windows RPC service.
We generated a custom workload using requests to look-up and register an RPC
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interface. We loaded the RPC service using 3 client hosts that look-up the RPC
interface and 1 local client that registers the interface. Figure 26 shows that
the CPU consumed by interception is only 0.51%, and it rises to 0.7% when
the filters are invoked. When running with 10 Blaster probes per second the
overhead was 0.76%. Unlike Slammer, the filters are on the normal execution
path and are used by requests to look-up the interface.

IIS. For CodeRed the vulnerable program is Microsoft IIS Server. We gener-
ated a workload using the requests from the SpecWeb99 [SPEC 2008] bench-
mark with clients running on two separate hosts. To measure a worst-case sce-
nario for filter overhead, we installed an IIS extension that returns 512 bytes
from main memory in response to every request. Figure 26 shows that the CPU
consumed by the interception is 1.4%. The majority of this CPU overhead is
attributable to matching I/O operation handles to discover where data is writ-
ten when asynchronous I/O operations complete. When the CodeRed filters are
invoked the overhead increases to 1.92%. These filters are on the normal exe-
cution path and are invoked for every packet. Finally, adding the 10 CodeRed
probes per second, the overhead rises to 2.07%.

5.7 End-to-End Experiments

The final set of experiments measures Vigilante’s worm containment process
end-to-end in a five-host Vigilante network. The hosts were configured in a chain
representing a path from a detector to a vulnerable host in the SCA distribution
overlay with three superpeers. They were connected by a LAN. The first host
was a detector running a dynamic data-flow analysis engine. Once the detector
generated an SCA it was propagated through three superpeers to a host running
the vulnerable program. This provides approximately the same number of hops
as the simulations described in Section 5.5.

We measured the time in milliseconds from the moment the worm probe
reached the detector until the moment when the vulnerable host verified the
SCA. This time is critical for protection. After successful verification, the vul-
nerable host can suspend execution of the vulnerable program during filter
generation. We ran the experiment for the three worms: using SQL Server
with Slammer, the Windows RPC Service with Blaster, and IIS with CodeRed.
The time was 79 milliseconds for Slammer, 305 milliseconds for Blaster, and
3044 milliseconds for CodeRed. The results are the average of five runs.
The standard deviation is 12.2 milliseconds for Slammer, 9.0 milliseconds for
Blaster, and 202.0 milliseconds for CodeRed. These values are close to those
obtained by adding the SCA generation time to five SCA verifications, as ex-
pected.

The vulnerable host deployed the filter after it was generated, which does not
require restarting the vulnerable program. To achieve hot installation of the
filters, the functions that intercept the socket API check for availability of filters
on a shared memory section. After filter generation, the filter code is copied to
the vulnerable process through the shared memory section. Filter deployment
is fast: In all cases filters were deployed in less than 400 microseconds.
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6. RELATED WORK

Previously proposed techniques to mitigate worm attacks can be divided into
network-based and host-based mechanisms. Network-based mechanisms ex-
clusively analyze network traffic, while host-based systems use information
available at the end-hosts. This section discusses previous proposals in each of
these areas.

6.1 Network-Based Mechanisms

Detection in network-based systems is based on defining a model of normal
traffic and identifying deviations from that model. Protection in these systems
consists of blocking suspicious traffic. Traffic can be considered suspicious for
several reasons: It may come from outside an enterprise network perimeter; it
may come from hosts thought to be infected; it may match a signature generated
from previously observed attacks; or it may contain suspicious data (e.g., data
that looks like executable code). All network-based systems that we are aware
of are based on heuristics and can have both false positives and false negatives.
Furthermore, it seems difficult to completely remove false positives and false
negatives from these systems because the root cause for worm attacks, namely
vulnerable programs, is not visible at the network level.

6.1.1 Firewalls. Firewalls [Cheswick et al. 2003] comprise one of the most
successful network-based protection mechanisms. Enterprise firewalls define
a boundary between enterprise networks and the Internet. Only certain types
of network interaction are allowed across the firewall boundary. For instance,
incoming connections are usually disallowed. Firewalls are effective at blocking
many attacks, but they are a brittle boundary. Worms can bypass them using
Web-browser vulnerabilities or email-based attacks, because firewalls typically
allow this type of traffic [CERT 2001]. Worms can also exploit virtual private
network connections and infected laptops to penetrate enterprise networks.
After infecting one host inside the enterprise network, the worm can spread in-
ternally, unhampered by the firewall. Thus, while firewalls make it hard for the
worm to directly send attack messages from the Internet to hosts on enterprise
networks, they do not provide a general solution for containment.

Personal firewalls, that is, firewalls that run on personal computers, are also
widely deployed. They are usually more permissive than enterprise firewalls,
and therefore less effective at blocking attacks. Personal firewalls provide an
effective mechanism to deploy traffic filters generated with the blacklisting and
content-filtering approaches discussed next.

6.1.2 Address Blacklisting. Several systems are based on the idea of block-
ing network traffic from infected hosts, thus preventing them from infecting
other hosts. Early proposals identified infected hosts by analyzing host connec-
tivity graphs [Staniford-Chen et al. 1996]. The heuristics used by the GrIDS
system generated 1 to 2 false positives a day; it is unclear how many false
positives would be generated by current traffic. More recently, several systems
proposed identifying infected hosts by detecting scanning behavior. Mirage net-
works [Mirage 2006] and Forescout [Forescout 2006] mark hosts as infected
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if they send messages to unallocated (dark) IP addresses. Worms can avoid
this type of detector by not using dark IP addresses. The systems in Ganger
et al. [2002] and Whyte et al. [2005] consider hosts infected if they use IP
addresses without first resolving the corresponding DNS [Mockapetris 1987]
names. These systems can generate false positives that need to be handled
with whitelisting. It seems they can also be evaded if worms coordinate to fake
DNS traffic. For instance, a worm instance can generate DNS queries that are
answered by another worm instance, by supplying the appropriate IP address
for the next scan target.

Several systems detect scanning by observing that worms generate many
failed network transmissions [Toth and Kruegel 2002b; Jung et al. 2004;
Schechter et al. 2004; Weaver et al. 2004] because they try to contact unreach-
able addresses. Jung et al. [2004] proposed Threshold Random Walk (TRW):
an algorithm that can be parameterized with models of good traffic and attack
traffic, and detects infection by analyzing the rate of successful to failed connec-
tions. Weaver et al. [2004] proposed a simplification of TRW that uses a thresh-
old on an estimate of the difference between the number of failed and successful
connections. Bro [Paxson 1999] uses a configurable threshold on the num-
ber of failed connections. Snort [Roesch 1999] and Network Security Monitor
[Heberlein et al. 1990] do not look at failed connections; instead, they monitor
the rate at which unique destination addresses are contacted. If hosts exceed
a threshold of new addresses contacted in a given interval, they can be flagged
as infected. Finally, SPICE [Staniford et al. 2002] is an algorithm to detect
slow scans of enterprise networks by correlating anomalous events; the algo-
rithm gathers information over long time periods (days) and is expensive to
run. Therefore it is not well adapted to the detection of fast-spreading worms.

Staniford [2004] and Ganesh et al. [2006] analyze the conditions under which
scanning detection and subsequent blacklisting can provide containment.
Staniford [2004] discusses the importance of an “epidemic threshold” for these
systems: If on average an infected host can find more than one victim before
being blacklisted, the number of infected hosts will still grow exponentially.
Weaver et al. [2004] argue that scanning detection and suppression would need
to be deployed in every local area network (LAN), in special hardware devices,
for the system to provide containment.

These systems also cannot contain worms that have normal traffic patterns
(e.g., topological worms that exploit information about hosts in infected hosts
in order to propagate, thus avoiding scanning). False positives are another
problem for these systems because several normal network services exhibit
scanning-like behavior [Jung 2006]. A related problem is malicious false posi-
tives; for example, an attacker can perform scanning with a fake source address
to block traffic from that address.

6.1.3 Throttling Connections. A variant of blacklisting is throttling: limit-
ing the resources used by infected hosts without blocking all traffic from those
hosts. Williamnson [2002] proposed limiting the rate of connections to new ad-
dresses. This can be seen as a form of delaying execution at infected hosts, as
proposed by Somayaji and Forrest [2000]. This approach limits the impact of
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false positives by allowing the hosts to continue active, albeit with degraded
performance. On the other hand, this only slows the spread of worms, without
providing containment.

6.1.4 Content Filtering. Another approach to network-based worm con-
tainment is to generate a set of content signatures for worm attack messages,
and to drop messages that match the signatures. Interest in this approach in-
creased after Moore et al. [2003] showed it superior to blacklisting, if content
signatures can be generated quickly. The intuition for this is simple: Systems
based on blacklisting need to continuously discover and blacklist the addresses
of the infected hosts soon after they become infected, while content-filtering
systems can block all attack traffic by generating a signature only once.

Worm signatures have traditionally been generated by humans, but there
are several proposals to generate signatures automatically. Kephart and Arnold
[1994] proposed, in the context of viruses, the first algorithm to generate signa-
tures automatically. Their system generates byte-string signatures by luring
viruses into infecting decoy programs, and creating candidate signatures by
finding common substrings in several instances of infected programs.* The
candidate signatures are then filtered to minimize the probability of false
positives.

More recently, Honeycomb [Kreibich and Crowcroft 2003] proposed generat-
ing byte-string signatures from the traffic observed at honeypots. Honeycomb
assumes all traffic received by honeypots is suspicious. Signatures are gener-
ated by finding the longest common substring in two network connections. The
system can generate false positives if legitimate traffic reaches the honeypot.
Malicious false positives are also a problem, since an attacker can send traffic to
the honeypot in order to generate a signature. Honeycomb can also have false
negatives. It uses a configurable minimum length for its signatures to avoid
false positives, but this will allow polymorphic worms to spread undetected.
Polymorphic worms can have little invariant content across attack messages,
thereby making it difficult to match them with byte strings.

Autograph [Kim and Karp 2004] also generates byte-string signatures au-
tomatically. Rather than relying on honeypots, Autograph identifies suspicious
network flows at the firewall boundary. It stores the address of each unsuccess-
ful inbound TCP connection, assuming the host generating such connection
requests is scanning for vulnerable hosts. When a configurable number of such
attempts are recorded, Autograph marks the source IP address as infected. All
subsequent connections involving IP addresses marked as infected are inserted
into a pool of suspicious network flows. Periodically, Autograph selects the most
common byte strings in the suspicious flows as worm signatures. To limit the
amount of false positives, Autograph can be configured with a list of disallowed
signatures; the authors suggest a training period during which an administra-
tor runs the system and gradually accumulates the list of disallowed signatures.

4Strictly speaking, this system uses host-level information, but we include it here since it is similar
to subsequent network-based systems that generate signatures by finding common substrings in
network traffic.
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The system is also configured with a minimum signature size, which can result
in false negatives, especially with polymorphic worms.

Earlybird [Singh et al. 2004] is based on the observation that it is rare to
see the same byte strings within packets sent from many sources to many
destinations. Unlike Autograph, Earlybird doesn’t require an initial step that
identifies suspicious network flows based on scanning activity. Earlybird gen-
erates a worm signature when a byte string is seen in more than a threshold
number of packets and is sent/received to/from more than a threshold number
of different IP addresses. Earlybird uses efficient algorithms to approximate
content prevalence and address dispersion; therefore, it scales to high-speed
network links. To avoid false positives, Earlybird uses whitelists and minimum
signature sizes. As with Honeycomb and Autograph, malicious false positives
are a concern and polymorphic worms are likely to escape containment.

PayL [Wang et al. 2005] is based on the idea of analyzing byte frequency dis-
tributions in normal traffic, and considering messages with anomalous distri-
butions as suspect. PayL triggers a signature generation procedure if outgoing
messages are similar to suspect incoming messages. PayL signatures are byte
strings which are shared by incoming and outgoing suspect messages. PayL can
generate false positives and recent work [Fogla et al. 2006] showed that it can
be evaded.

Polygraph [Newsome et al. 2005] argued that single byte-string signatures
cannot block polymorphic worms. In an effort to generate signatures that match
polymorphic worms, Polygraph generates signatures that are multiple disjoint
byte strings, instead of a single byte string. Polygraph relies on a preliminary
step that classifies network flows as suspicious or innocuous. Tokens are identi-
fied as repeated byte strings across the suspicious network flows. A subsequent
step groups tokens into signatures. Polygraph proposes three types of matching
with these signatures: matching all the byte strings in a signature, matching
the byte strings in order, or assigning a numeric score to each byte string and
base matching in an overall numeric threshold. Their evaluation shows that
none of these types of signature is superior to the others for every worm. All of
them can have false positives and false negatives. A recent evaluation [Perdisci
et al. 2006] shows that attacks that generate fake anomalous network flows
can prevent Polygraph from reliably generating useful signatures.

PADS [Tang and Chen 2005] generates signatures comprised of a sequence
of byte frequency distributions. The authors show that PADS works for some
cases, but it is unclear whether a polymorphic worm cannot generate arbitrary
byte frequency distributions for most bytes in the attack messages. Malicious
false positives are also a problem for PADS; it uses a configuration with two
honeypots to try to remove any nonworm traffic from the signature generation
procedure, but the worm can still generate bogus traffic after infecting a host.

Nemean [Yegneswaran et al. 2005] uses protocol-specific information to gen-
erate signatures that are regular expressions and may include session-level
context, but it requires some manual steps and also cannot cope with pollution
of the network data that is used as input to the signature generation process.

Finally, another technique to filter attack messages is to identify executable
code in network messages. Toth and Kruegel [2002a] proposed using binary
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disassembly over a network flow and dropping messages whenever a long se-
quence of valid instructions is found. An instruction is considered valid if it
can be decoded by the processor and if all the memory operands of the instruc-
tion can reference memory locations that can be accessed. Strictly speaking,
this mechanism requires host-based information, since checking if the memory
locations can be accessed requires having access to the address space of the
process running the target program. However, this information can easily be
approximated (e.g., certain memory regions are always reserved for the operat-
ing system and can never be accessed by applications) and subsequent systems
removed this requirement [Chinchani and van den Berg 2005; Kruegel et al.
2005; Wang et al. 2006]. Their system assumes attack messages will have a
relatively long region with instructions that have no effect (sometimes called a
NOP sledge [Toth and Kruegel 2002a]), since this is a common technique used
by worms to deal with small variations on the location where attack messages
are stored in the virtual address space of target processes. This technique can be
defeated by inserting noise (e.g., branch instructions, illegal instructions, etc.)
in the sledge. To deal with this type of attack, several systems [Chinchani and
van den Berg 2005; Kruegel et al. 2005; Wang et al. 2006] proposed using static
analysis techniques on the disassembled network flow. These systems identify
executable code in the network flow more reliably, at some performance cost.

Techniques that identify code in messages are more resilient against attack
mutations because they do not use fixed byte strings as signatures. They may
still have false negatives because they look for code sequences of some minimum
length (e.g., 15 instructions [Wang et al. 2006]) and worms can use very short
code sequences to encode/decode the bulk of the attack payload. Another source
of false negatives is worm attacks that succeed without injecting new executable
code into their targets. Even for injected code, the code may be encoded in the
protocol messages [rix@hert.org 2001]; for instance, the systems in Toth and
Kruegel [2002a] and Wang et al. [2006] use protocol-specific information to
decode the network messages, before trying to find executable code.

6.2 Host-Based Mechanisms

Host-based mechanisms either statically analyze programs, or dynamically an-
alyze the execution of programs. Some host-based mechanisms try to remove or
avoid all defects that might be exploited by worms, while other systems detect
attacks only when worms exploit defects at runtime. The latter often require
additional survivability mechanisms, since detection is usually not enough to
keep programs running while they are being attacked. This section reviews
work in all of these areas.

6.2.1 Avoid/Remove Defects. Type-safe languages [Cardelli 2004;
Madhavapeddy 2006] can avoid many of the defects that can be exploited by
worms. However, these languages force the programmer to relinquish some of
the flexibility and speed available in languages like assembly or C; thus, they
have not been adopted by some programmers. Many of these languages include
facilities to link with unsafe modules, and often their runtimes are written in
unsafe languages. This has made them vulnerable to attack [SecurityFocus
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2002]. Finally, there is a large body of code written in unsafe languages; the
effort of porting this code to different languages is large and difficult to justify
economically. Languages like CCured [Necula et al. 2002] and Cyclone [Jim
et al. 2002] try to facilitate the evolution of code written in C to memory-safe
dialects. The disadvantage of these approaches is that the effort to port existing
C code to these dialects is nontrivial and they require significant changes to
the C runtime; for example, CCured replaces malloc and free by a garbage
collector.

Another approach to remove defects is to statically analyze the source code
of programs, looking for specific classes of defects. SELECT [Boyer et al. 1975]
and Lint [Johnson 1984] were some of the early tools in this space. More re-
cently, several tools [Bush et al. 2000; Yang et al. 2004; Xie and Aiken 2005]
have been used to find defects in large programs. Some tools have been specif-
ically designed to find security vulnerabilities [Wagner et al. 2000; Evans and
Larochelle 2002; Johnson and Wagner 2004; Shankar et al. 2001; Larochelle
and Evans 2001; Avots et al. 2005; Livshits and Lam 2005].

Most of these tools can generate false positives, that is, they report defects
which are not real. One reason is that their results may be based on control-flow
paths that are infeasible at runtime, but they cannot determine this statically.
They also often have limits on the length of execution paths they explore, to
be able to scale to large programs, but this causes false negatives. Unsound
handling of pointer aliasing may also create false negatives. Finally, they may
also have false negatives because they usually look for known classes of defects.
Hence, they cannot find previously unknown types of defects, although there
has been some work on describing defects generally as deviant behavior [Engler
et al. 2001].

6.2.2 Detect/Prevent Exploits. Since static tools can have false positives
and have not been able to remove all defects from software, runtime mecha-
nisms have been developed to detect and stop attacks at runtime. These systems
are based on the idea of detecting or preventing exploits, rather than removing
defects.

One of the first host-based techniques to detect attacks consisted of identifing
anomalous patterns of system calls [Forrest et al. 1996]. Wagner and Soto [2002]
showed that mimicry attacks can elude this type of detection, and Kruegel et al.
[2005] showed how to automate these attacks, even for recent improvements
on the original technique [Feng et al. 2003; Giffin et al. 2004; Sekar et al. 2001].

Other early systems protected specific control data structures, such as re-
turn addresses. StackGuard [Cowan et al. 1998] proposed writing a canary
value between the local variables and the return address on a stack frame,
and checking that the canary value is intact before using the saved return ad-
dress. This method detects attacks that overflow buffers on the stack because
the overflow overwrites the canary value on the way to overwriting the re-
turn address. StackShield [Vendicator 2001], RAD [Chiueh and Hsu 2001], and
Libverify [Baratloo et al. 2000] proposed keeping copies of return addresses sep-
arate from the normal stack. This allows them to detect overwrites of return
addresses by comparing the saved values with values on the normal stack.
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They can also recover the original return addresses. Libsafe [Baratloo et al.
2000] provided implementations of C library functions that do additional bound
checks to avoid overwriting return addresses. FormatGuard [Cowan et al. 2001]
provides safe implementations of C library functions that use format strings.
PointGuard [Cowan et al. 2003] proposed protecting pointers by encrypting
them in memory and decrypting them when they are loaded into registers.
While effective at protecting some attack targets, these approaches can be by-
passed [Wilander and Kamkar 2003; Bulba and Kil3r 2000].

More recently, DIRA proposed protecting all control data structures [Smirnov
and Chiueh 2005] by keeping a separate copy of these data structures and
checking their integrity at control-flow transfers. The copies are protected by
storing them between guard (read-only) memory pages. Such protection can be
bypassed by corrupting pointers, and using assignments though the corrupted
pointers to directly change the stored copies, without writing over the guard
pages [Wilander and Kamkar 2003; Chiueh and Hsu 2001].

Backwards-compatible bounds checking for C [Jones and Kelly 1997] detects
bounds errors in C programs. It instruments pointer arithmetic to ensure that
the result and original pointers point to the same object. To find the target
object of a pointer, it uses a splay tree that keeps track of the base address and
size of heap, stack, and global objects. A pointer can be dereferenced, provided
it points to a valid object in the splay tree. CRED [Ruwase and Lam 2004] is
similar but provides support for some common uses of out-of-bounds pointers in
existing C programs. These systems may have false negatives, since they do not
prevent all bounds violations. For example, they cannot prevent attacks that
exploit format string vulnerabilities or that overwrite data using a pointer to a
dead object whose memory was reused. Additionally, they have high overhead
because of accesses to the splay tree; for instance, the scheme in Jones and
Kelly [1997] can cause up to a 30X slowdown in applications. The overhead
may be controlled by applying the checks only to specific types of data (e.g.,
strings) [Ruwase and Lam 2004], yielding a slowdown of up to 2.3X, but this
increases the number of false negatives.

Program shepherding [Kiriansky et al. 2002] introduced a general mecha-
nism to ensure that a program does not deviate from its control-flow graph. They
compute a control-flow graph for a program statically, and they use a dynamic
binary rewriter [Bruening et al. 2001] to monitor the program’s execution and
to ensure that every control-flow transition is allowed by the control-flow graph.
Control-Flow Integrity [Abadi et al. 2005] checks that control-flow transitions
follow the computed control-flow graph with inlined checks based on a static
binary rewriter.

Program shepherding has less overhead than current implementations of
dynamic data-flow analysis, but it has several limitations. Program shepherd-
ing cannot detect attacks that succeed without changing the control flow of the
target programs [Chen et al. 2005]. Dynamic data-flow analysis can detect some
of these attacks, for example, attacks that overwrite arguments of system calls
with data received from the network. Also, program shepherding cannot be used
on programs for which it is not feasible to compute a control-flow graph stati-
cally. Dynamic data-flow analysis works even with self-modifying code. Finally,
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program shepherding requires access to source code, while dynamic data-flow
analysis works on unmodified binaries.

Concurrently with the publication of the dynamic data-flow analysis al-
gorithm presented here [Costa et al. 2005, 2004], three systems [Suh et al.
2004; Crandall and Chong 2004; Newsome and Song 2005] have proposed sim-
ilar mechanisms for detection, that do not require access to source code. The
idea of securing information flows can be traced back to the work of Fenton
[1974a, 1973] and Denning [1976]. Recently these ideas have also been ex-
plored in the context of programming languages [Myers 1999] and distributed
systems [Zheng et al. 2003]; in particular, Perl taint mode [PERL 2006] pro-
posed tracking input data and preventing unsafe uses of that data in the context
of a scripting language, and Chow et al. [2004] proposed tracking the lifetime of
sensitive information, such as passwords, through memory and CPU registers.
More recently, Suh et al. [2004] proposed a hardware design that tracks the
flow of data from I/O operations. Their design tags each byte of memory with a
dirty bit, but they also include multigranularity tags, to optimize storage and
bandwidth overhead. Besides tracking direct copies of input data, their system
can also track three other forms of dependency: When a dirty value is used
in arithmetic or logic instructions, the result of the operation may be marked
dirty; and when a dirty value is used to specify an address in an instruction that
loads data from memory, the loaded value may be marked dirty; and when an
instruction that stores data in memory uses a dirty value to specify the address
of the store, the stored value may be marked dirty. Since tracking all of these
dependencies may generate false positives, the system allows users to specify
a per-application security policy describing which I/O flows should be tracked,
which dependencies should be tracked, and which uses of dirty data should
generate security traps. They also include some heuristics to reduce false posi-
tives; for instance, they identify common code patterns that are safe, but would
normally be trapped as attacks (e.g., using a dirty value to index a jump table,
after appropriate bounds checking is performed); these heuristics may lead to
false negatives. They do not detect use of dirty data in system function calls;
we believe this is an important avenue for attacks.

Minos [Crandall and Chong 2004] is a hardware microarchitecture that im-
plements Biba’s low-watermark policy [Biba 1977]. In Minos, every 32-bit word
is tagged with an additional bit. Since Intel CPUs can address memory at byte
granularity, tagging 32-bit words leads to imprecision which may cause false
positives (e.g., a word is marked dirty when only one of its bytes is dirty; the
clean bytes may be moved to another location, causing it to be tagged as dirty
when it is in fact clean). By contrast, Vigilante’s dynamic data-flow analysis
tags each individual memory byte with an additional bit. In Minos, when dirty
data is combined with clean data using arithmetic and logic instructions, the re-
sulting data is marked dirty; this increases coverage at the cost of a possible in-
crease in false positives. While Minos does not propagate dirtiness when stores
or loads use a dirty value to specify the address, it marks as dirty values result-
ing from 8- and 16-bit immediate loads; this increases coverage when network
data is used in some addressing operations (e.g., table lookups for character
translation), but it also increases false positives. To increase coverage, Minos
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can track network data across disk operations, but this requires changes to the
operating system. Vigilante does not track the flow of data when it leaves the
address space of a process. Minos only detects those attacks that hijack control
flow by overwriting control data structures. Vigilante also detects attacks that
corrupt noncontrol data used in system calls, as well as attacks that redirect
execution to dirty memory regions, without corrupting control data structures.

TaintCheck [Newsome and Song 2005] tracks input data by instrumenting
binaries using Valgrind [Nethercote and Seward 2003]. TaintCheck tags each
byte of dirty memory with a 32-bit pointer to a data structure that records
the system call through which the data was received into the address space
of the process, a copy of the stack at the time when the data was received,
and a copy of the data. TaintCheck propagates dirtiness when executing data
movement and arithmetic operations. As with Minos, it does not check whether
execution is redirected to a dirty memory region, which is important to catch
some attacks (it only checks if the value loaded into the program counter is
dirty). As with Vigilante, Taincheck also checks the dirtiness of arguments
to security-sensitive functions. TaintCheck proposes using a training phase to
deal with false positives: Locations where false positives are observed can be
recorded to avoid raising security traps there.

The work in Chen et al. [2005] evaluated a security policy that generates
security traps when memory writes use dirty pointers. This policy had been
proposed in Suh et al. [2004], but had not been evaluated in the context of
noncontrol-data attacks. This technique can catch some attacks that do not
change the control flow of programs, but it also increases the likelihood of false
positives. Crandall and Chong [2004] discussed the possibility of checking the
integrity of addresses used in 32-bit loads and stores. They conclude that this
approach is infeasible because it would generate too many false positives if
dirtiness is also propagated by arithmetic and logic instructions. Vigilante’s
procedure to verify SCAs provides an effective way to deal with this type of
false positive. If a detector generates an alert that cannot be verified, it is
simply discarded.

Since its original publication [Costa et al. 2005, 2004], the dynamic data-
flow analysis algorithm has also be used by several systems. Ho et al. [2006]
proposed an implementation based on the Xen [Barham et al. 2003] virtual
machine monitor that automatically transitions from emulation to direct CPU
execution when none of the CPU’s registers is dirty. Argos [Portokalidis et al.
2006] uses an implementation based on QEMU [2006] to detect attacks on full
operating system and application code.

Another host-based approach to thwart attacks is randomization. Several
forms of achieving diversity through randomization were initially discussed in
Forrest et al. [1997]. Randomizing the memory layout of processes was origi-
nally implemented by the PAX [2001] project. Randomizing the location of the
stack, heap, and code makes it difficult for the attacker to gain control of the
target program: Even if the attacker can force the program to load an arbitrary
value into the program counter, it’s still difficult to know which value to supply
(since the attacker doesn’t know, for instance, where the attack messages are
in the target’s address space). Recent projects proposed improvements on this
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technique [Bhatkar et al. 2005, 2003; Xu et al. 2003]. Several attacks against
address randomization have been proposed [Durden 2002]. It has been shown
that for some implementations it is possible to discover the addresses of rele-
vant objects by brute-force attacks [Shacham et al. 2004]. Information leakage
attacks [Shacham et al. 2004] are also a concern: The security provided by
randomization relies on keeping the locations of objects secret; if locations are
leaked out of the target process, the target can be compromised.

Another form of randomization is instruction set randomization [Kc et al.
2003; Barrantes et al. 2003]. The idea is to create process-specific randomized
instruction sets by using a simple encoding of instructions, for example, by
XORing them with a random key, and decoding the instructions before execut-
ing them. Since the encoding key is secret, any code supplied by an attacker is
decoded into a meaningless instruction sequence when executed. This approach
has a significant performance penalty if implemented in software. Furthermore,
it only blocks attacks that inject code into targets; attacks that merely change
the control flow or corrupt data are not detected. Attacks against instruction
set randomization have been described in Sovarel et al. [2005].

Finally, it is important to note that the diversity of the proposed detection
mechanisms makes it difficult for an attack to elude all of them. All of these
mechanisms could be used as detectors in the Vigilante architecture. By gener-
ating SCAs, any detector can communicate useful information about the attack
to all other hosts in the system.

6.2.3 Survivability. Several systems have proposed mechanisms that, like
Vigilante filters, allow vulnerable programs to continue execution while being
attacked.

Rinard et al. [2004] proposed failure-oblivious computing. They use a C com-
piler that inserts runtime checks for illegal memory accesses using the C range
error detector [Ruwase and Lam 2004]. Their system discards invalid memory
writes, and redirects invalid memory reads to a pre-allocated buffer of values;
they use heuristics to decide which values to use. While they show that several
applications continue to execute normally when memory errors are masked in
this way, it is not clear how this mechanism affects the correct execution of
general programs.

Several systems proposed techniques that checkpoint/rollback executions to
a previous execution point upon detecting an attack. DIRA [Smirnov and Chi-
ueh 2005] is a compiler extension that can log updates to memory, and allows
rolling back vulnerable programs to the entry point of a function. Sidiroglou
et al. [2005] proposed using an emulator to execute code in regions where faults
have been observed. When faults occur, their system rolls back memory writes
and returns an error from the current function. Rx [Qin et al. 2005] checkpoints
processes periodically, and rolls them back to the latest checkpoint when an er-
ror is detected. Rx then dynamically changes the execution environment based
on the observed error. For instance, if a buffer overflow has been observed,
subsequent executions may allocate larger buffers to avoid the overflow. One
limitation of the checkpoint/rollback approach is that rolling back past the point
where I/O operations are committed is problematic; for instance, the state in
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disks or in processes that received network messages from the faulty process
may become inconsistent. Performance is also a concern for two reasons. First,
worm attack packets may be frequent, causing many rollbacks (Rx mitigates
this concern by enforcing the changes to the execution environment for a thresh-
old interval, but it still discards them after this interval to reduce space and
time overheads). Second, these systems require a detection mechanism to de-
cide when to initiate a rollback, and high-coverage detection mechanisms are
often expensive. Vigilante filters are more efficient than these techniques and
less likely to affect the correct execution of the protected programs.

Sidiroglou et al. [2005] proposed generating patches automatically using a
set of heuristics to modify vulnerable source code, for example, modifying the
code to move vulnerable buffers to the heap. Their system still requires applica-
tions to stop for applying the patch, but after this they can continue executing.
While they show that this approach works in some cases, it is difficult to provide
guarantees on the semantics of the modified program.

Recently, several systems proposed using filters generated with host-based
information. Buttercup [Pasupulati et al. 2004] proposed identifying the return
address range used in worm attack messages and filtering messages that in-
clude such addresses. To reduce false positives, their system searches for the
return address value starting at a predetermined offset in messages, and stops
after a configurable number of bytes have been checked. While Buttercup re-
quires these addresses to be externally specified, CTCP [Hsu and Chiueh 2004]
and TaintCheck [Newsome and Song 2005] proposed to obtain them automat-
ically, by using the exact return address observed in attack messages. These
systems can have false positives because the 4-byte sequences used as a return
address can appear in normal messages. The system can also have false neg-
atives, since attackers can use a wide range of values of return addresses by
searching the address space of vulnerable applications for sequences of bytes
corresponding to instructions that transfer control to the worm code [Crandall
et al. 2005].

ARBOR [Liang and Sekar 2005a] generates signatures based on the size of
network messages and the fraction of non-ASCII characters in them. Its signa-
tures also include host context: Messages are dropped at specific code locations,
and when specific call sequences are observed. ARBOR can still have false pos-
itives and false negatives. COVERS [Liang and Sekar 2005b] also generates
signatures based on length of inputs and fraction of non-ASCII characters in
them, but includes an input correlation mechanism to identify attack packets
and the specific bytes in those packets that were involved in an observed se-
curity fault. Vigilante’s SCA generation algorithm performs this correlation in
a more efficient way. COVERS uses information about the network protocol
used by an application, to generate filtering conditions on specific fields of the
protocol. In contrast, Vigilante does not require network protocol information.
Moreover, COVERS does not provide guarantees on the rate of false positives
or false negatives.

Several systems provide interesting alternatives to deploy Vigilante filters.
IntroVirt [Joshi et al. 2005] uses vulnerability-specific predicates to analyze the
execution state of applications and operating systems running inside virtual
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machines. Like Vigilante filters, IntroVirt predicates can compute generic con-
ditions, but they are generated manually for known vulnerabilities. By using
virtual machine rollback and replay, IntroVirt is able to detect whether vul-
nerabilities were exploited in the past. We could deploy Vigilante filters as
IntroVirt predicates. Shield [Wang et al. 2004] uses host-based filters to block
vulnerabilities, but these filters are generated manually. We could use Shield’s
infrastructure to deploy our filters.

6.3 Atrtificial Immune Systems

Several projects have contributed to the design of artificial immune systems.
Cohen [1987] studied computer viruses, and Kephart et al. [1997] designed a
computer immune system targeted at viruses. Unlike viruses, worms spread
automatically by exploiting software vulnerabilities. This led to a vulnerability-
centric design in Vigilante that solves many of the problems faced by Kephart
et al. [1997]. Hofmeyr and Forrest [2000] describe an artificial immune system
inspired by natural immune systems. Their system can be applied to several
domains, but it is not particularly well adapted to the problem of containing
worm epidemics. One attack-resilience principle inspired by natural systems is
diversity [Forrest et al. 1997]. Interestingly, the argument that monocultures
contribute to improved security has also been made [Locasto et al. 2006].

Several authors have proposed theoretical models for predicting characteris-
tics of worm epidemics and for analyzing immunization systems [Kephart and
White 1991; Wang et al. 2000; Staniford et al. 2004, 2002; Moore et al. 2003; Zou
et al. 2003; Chen et al. 2003; Staniford et al. 2004; Vojnovi¢ and Ganesh 2005;
Goldenberg et al. 2005; Ganesh et al. 2006]. Vigilante can be seen as a detailed
design for an automatic artificial immune system that provides protection from
worm attacks: We described how unknown worm attacks can be detected with
broad coverage, how hosts can safely share information about the attacks in a
timely manner, and how hosts can protect themselves efficiently.

7. CONCLUSIONS

7.1 Summary

Systems to contain Internet worm epidemics must be deployed because our so-
ciety is increasingly dependent on computers connected to the Internet. Worm
containment systems must be automatic, since worms spread much faster than
humans can respond. However, automatic systems will not be widely deployed
unless they are accurate. They cannot cause network outages by blocking in-
nocuous traffic and they should be hard to evade.

Vigilante introduces an end-to-end architecture to automate worm contain-
ment. End-hosts can contain worms accurately because they can perform a
detailed analysis of attempts to infect the software they run. Vigilante intro-
duces dynamic data-flow analysis: an algorithm that detects infection attempts
with broad coverage. The algorithm detects the three most common infection
techniques used by worms, namely code injection, edge injection, and data injec-
tion, without requiring access to source code. Vigilante introduces the concept
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of a self-certifying alert that enables a large-scale cooperative architecture to
detect worms and to propagate alerts. Self-certifying alerts remove the need
to trust detectors; they provide a common language to describe vulnerabilities
and a common mechanism to verify alerts. Verifying SCAs is an effective way
to discard any false positives generated by detectors. After detection, Vigilante
uses an overlay to distribute SCAs in a resilient and timely manner. Vigilante
also introduces vulnerability condition slicing: a new mechanism to generate
host-based filters automatically by performing dynamic data- and control-flow
analysis of attempts to infect programs. These filters can block mutations of
the attacks observed by detectors and they produce a negligible performance
degradation when deployed. Our results show that Vigilante can contain real
worms like Slammer, Blaster, CodeRed, and polymorphic variants of these
worms, even when only a small fraction of the vulnerable hosts can detect the
attack.

7.2 Future Work

There are several promising directions for future work. Recently, we proposed
techniques that can prevent both control- and noncontrol-data attacks by en-
forcing safety properties that we call data-flow integrity [Castro et al. 2006]
and write integrity [Akritidis et al. 2008]. We could integrate these techniques
as new detectors in the Vigilante architecture.

We are also working on combining static analysis techniques with our dy-
namic analysis to generate filters that can block more attack mutations [Costa
et al. 2007], and our work also inspired others to follow this direction [Brumley
et al. 2006]. Analyzing more execution paths (besides the path identified by an
SCA) and using more static analysis techniques will yield more general filters.

The operational mechanism that we have used to verify SCAs could be aug-
mented with a static version of verification. This can be seen as an application
of proof-carrying code [Necula and Lee 1996], where logic proofs of vulnerability
are exchanged by hosts.

Finally, it is interesting to consider integrating Vigilante with network tele-
scopes Moore et al. [2004, 2001] and honeyfarms [Vrable et al. 2005]. By redi-
recting suspicious traffic to host-based detectors, network telescopes can help
detect a worm outbreak sooner, yielding even better containment results than
we have presented here.
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