Exact inference and learning for cumulative
distribution functions on loopy graphs

Jim C. Huang, Nebojsa Jojic and Christopher Meek
Microsoft Research
One Microsoft Way, Redmond, WA 98052

Abstract

Many problem domains including climatology and epidemjgloequire models
that can capture both heavy-tailed statistics and locatépncies. Specifying
such distributions using graphical models for probabdignsity functions (PDFs)
generally lead to intractable inference and learning. Qatiwe distribution net-
works (CDNs) provide a means to tractably specify multzerheavy-tailed mod-
els as a product of cumulative distribution functions (CPpMExisting algorithms
for inference and learning in CDNs are limited to those widetstructured (non-
loopy) graphs. In this paper, we develop inference and iegralgorithms for
CDNs with arbitrary topology. Our approach to inference daining relies on
recursively decomposing the computation of mixed denreastbased on a junction
trees over the cumulative distribution functions. We destiate that our system-
atic approach to utilizing the sparsity represented by tinetjon tree yields sig-
nificant performance improvements over the general symbldferentiation pro-
grams Mathematica and D*. Using two real-world datasetsgamonstrate that
non-tree structured (loopy) CDNs are able to provide sigaifily better fits to the
data as compared to tree-structured and unstructured CixNsther heavy-tailed
multivariate distributions such as the multivariate cepamd logistic models.

1 Introduction

The last two decades have been marked by significant advemeesieling multivariate probability
density functions (PDFs) on graphs. Various inference aathing algorithms have been success-
fully developed that take advantage of known variable ddpaoe which can be used to simplify
computations and avoid overtraining. A major source ofdlitfly for such algorithms is the need to
compute a normalization term, as graphical models geyeasfiume a factorized form for the joint
PDF. To make these models tractable, the factors themsedwvelse chosen to have tractable forms
such as Gaussians. Such choices may then make the modehbiestor many types of data, such
as data with heavy-tailed statistics that are a quintesdéaature in many application areas such as
climatology and epidemiology. Recently, a number of teghas have been proposed to allow for
both heavy-tailed/non-Gaussian distributions with a gfadate variable dependence structure. Most
of these methods are based on transforming the data to malarét easily modeled by Gaussian
PDF-fitting techniques, an example of which is the Gaussigoula [11] parameterized as a CDF
defined on nonlinearly transformed variables. In addit@rdpula models, many non-Gaussian
distributions are conveniently parameterized as CDFs (st existing CDF models, however,
do not allow the specification of local dependence strustared thus can only be applied to very
low-dimensional problems.

Recently, a class of multiplicative CDF models has been@seg as a way of modeling structured
CDFs. The cumulative distribution networks (CDNs) model @tivariate CDF as a product over
functions, each dependent on a small subset of variablesatdhaving a CDF form [6, 7]. One
of the key advantages of this approach is that it elimindtesneed to enforce normalization con-
straints that complicate inference and learning in gragdmwdels of PDFs. An example of a CDN
is shown in Figure 1(a), where diamonds correspond to CDNtfans and circles represent vari-
ables. In a CDN, inference and learning involves computatioderivatives of the joint CDF with
respect to model variables and parameters. The graphiaciIitieen allows us to efficiently perform
inference and learning for non-loopy CDNs using messagsipg [6, 8]. Models of this form have

been applied to multivariate heavy-tailed data in climagyl and epidemiology where they have
demonstrated improved predictive performance as comparselveral graphical models for PDFs
despite the restriction to tree-structured CDNs. Non4oGPNs may however be limited models

and adding functions to the CDN may provide significantly exexpressive models, with the caveat
that the resulting CDN may become loopy and previous alganst for inference and learning in

CDNs then cease to be exact.

Our aim in this paper is to provide an effective algorithmléarning and inference in loopy CDNs,
thus improving on previous approaches which were limite@@dNs with non-loopy dependencies.
In principle, symbolic differentiation algorithms suchMathematica [16] and D* [4] could be used
for inference and learning for loopy CDNs. However, as we destrate, such generic algorithms
quickly become intractable for larger models. In this paper develop the JDiff algorithm which
uses the graphical structure to simplify the computatiothefderivative and enables both inference
and learning for CDNs of arbitrary topology. In addition, wevide an analysis of the time and
space complexity of the algorithm and provide experimentagaring JDiff to Mathematica and
D*, in which we show that JDiff runs in less time and can harsigmificantly larger graphs. We
also provide an empirical comparison of several methodefwideling multivariate distributions as
applied to rainfall data and H1N1 data. We show that loopy Gphbvide significantly better model
fits for multivariate heavy-tailed data than non-loopy CDRarthermore, these models outperform
models based on Gaussian copulas [11], as well as multigdméavy tailed models that do not allow
for structure specification.

2 Cumulative distribution networks

In this section we establish preliminaries about learnimg) iaference for CDNs [6, 7, 8]. Let be

a vector of observed values for random variables in théd/saehd letz,, x4 denote the observed
values for variable node € V and variable sefl C V. Let A/(s) be the set of neighboring variable
nodes for function node Define the operatdl , [-] as the mixed derivative operator with respect to
variables in sefl. For exampleg,, , ,[F(z1,z2,23)] = %. Throughout the paper we will
be dealing primarily with continuous random variables andve will generally deal with PDFs,
with probability mass functions (PMFs) as a special case.alde assume in the sequel that all
derivatives of a CDF with respect to any and all argumentstexid are continuous and as a result
any mixed derivative of the CDF is invariant to the order dfatentiation (Schwarz’ theorem).

Definition 2.1. The cumulative distribution network (CDN) consists of (d)umdirected bipartite
graphical model consisting of a bipartite gragh= (V, S, E'), wherel” denotes variable nodes and
S denotes function nodes, with edgeskirconnecting function nodes to variable nodes and (2) a
specification of functiong, (x;) for each function node € S, wherex; = XN () UsesN(s) =V

and each function, : RV()l — [0, 1] satisfies the properties of a CDF. The joint CDF over the
variables in the CDN is then given by the product of CDEs or F(x) = [[,cg ¢s(xs), where
each CDFg;, is defined over neighboring variable nodess). O

For example, in the CDN of Figure 1(a), each diamond cornedpdo a functionp, defined over

neighboring pairs of variable nodes, such that the prodtitirections satisfies the properties of

a CDF. In the sequel we will assume that béttand CDN functionsp, are parametric functions

of parameter vectof and soF = F(x) = F(x|0) and¢, = ¢s(xs) = ¢s(xs;0). In a CDN,

the marginal CDF for any subsét C V is obtained simply by taking limits such thai(x,) =
lim F(x), which can be done in constant time for each variable.

xV\Aﬁoo

2.1 Inference and learning in CDNs as differentiation

For ajoint CDF, the problems of inference and likelihoodeation, or computing conditional CDFs
and marginal PDFs, both correspond to mixed differentratibthe joint CDF [6]. In particular, the
conditional CDFF(xp|x4) is related to the mixed derivativ@, , [F(x4,xp)] by F(xp|xa) =

Fxallaxn)l 5 the case of evaluating the likelihood correspondingh® model, we note that

6x [F(XA)]
for CDF F(x|0), the PDF is defined aB(x|0) = 0x[F(x|0)]. In order to perform maximum-
likelihood estimation, we require the gradient vectog log P(x|0) = ngP(xw), which

requires us to compute a vector of single derivati9g$P(x|0)] of the joint CDF with respect to
parameters in the model.

2.2 Message-passing algorithms for differentiation in nodoopy graphs

As described above, inference and learning in a CDN corredpto computing derivatives of the
CDF with respect to subsets of variables and/or model paesme For inference in non-loopy
CDNs, computing mixed derivatives of the fogq , [F'(x)] for some subset of nodes C V' can
be solved efficiently by the derivative-sum-product (DSBp&athm of [6]. In analogy to the way
in which marginalization in graphical models for PDFs candeeomposed into a series of local
computations, the DSP algorithm decomposes the global atatipn of thetotal mixed deriva-
tive Ox[F'(x)] into a series of local computations by the passing of messtge correspond to
mixed derivatives of'(x) with respect to subsets of variables in the model. To evaltet model
likelihood, messages are passed from leaf nodes to the avistole node and the product of in-
coming root messages is differentiated. This procedureagily produces the correct likelihood
P(x]0) = 0x[F(x]0)] for non-loopy CDNs [6].

To estimate model parametdlsfor which the likelihood over i.i.d. data samplgs,--- ,xy is
optimized, we can further make use of the gradient of thelilagihood Vg log P(x|0) within

a gradient-based optimization algorithm. As in the DSPreriiee algorithm, the computation of
the gradient can also be broken down into a series of localigmacomputations. The gradient-
derivative-product (GDP) algorithm [8] updates tipmdientsof the messages from the DSP algo-
rithm and passes these from leaf nodes to the root variale inche CDN, provably obtaining the
correct gradient of the log-likelihood of a particular sebbservations for a non-loopy CDN.

3 Differentiation in loopy graphs

For loopy graphs, the DSP and GDP algorithms are not guadnteyield the correct derivative

computations. For the general case of differentiating aypcbof CDFs, computing the total mixed
derivative requires time and space exponential in the nuibeariables. To see this, consider the
simple example of the derivative of a product of two functigng, both of which are functions of

x = [z1,- -, zk]. The mixed derivative of the product is then given by [5]
Oxlf()g()] = D Oxe[f(X)]0xps . sy l9()], 1)
Uc{1,-,K}

a summation that contairts® terms. As computing the mixed derivative of a product of more
functions will entail even greater complexity, the naiypeach will in general be intractable.
However, as we show in this paper, a CDN'’s sparse graphicaitate may often point to ways
to computing these derivatives efficiently, with non-logpgphs being special, previously-studied
cases. To motivate our approach, consider the followingrianthat follows in straightforward
fashion from the product rule of differentiation:

Lemma 3.1. LetG = (V, S, FE) be a CDN and lef'(x) = H ¢s(x5) be defined over variables

seS
in V. Let My, M> be a partition of the function nodes and letG; (x¢,) = HseM] os(xs) and

Ga(xc,) = [lens, ¢s(xs), whereCr = U ¢y, N(s) andCy = Uy, NV (s) are the variables
that are arguments t6/;, G2. LetS; 5 = C1 () Ca. Then

BX[Gl (Xcl)GQ(XCZ)] = Z BXCI\SLQ [aXA [Gl (xcl)]}(Q)XC'Q\SL2 {BXSIQ\A[G?(Xcz)]] (2
ACS: 2
Proof. DefineL = C; \ S1,2 andR = C5 \ S12. Then

aX[F(X)] Ox [Gl (xcy) Gaf XCz Z Gl (xcy) BXV\U[GQ(XC2)]
UCv

Z Z Z 8xA,B,C[Gl(Xcl)]8x51Y2\A,L\B,R\C[GQ(XC2)]

ACS, 2 BCLCCR

Z 8XA,L[Gl (Xcl)]aXst\A,R[GQ(XC2)]' (3)
ACS1,2

The last step follows from identifying all derivatives theae zero, as we note that in the above,
Oxc|G1(xc,)] = 0for C # § and similarly,0x, , ,[G2(xc,)] = 0 for L\ B # 0. O
The number of individual steps needed to complete the @iffigation in (2) depends on the size of
the variable intersection sé% o = C; [C2. When the two factor&’;, G, depend on two variable

sets that do not intersect, then the differentiation canitmplgied by independently computing
derivatives for each factor and multiplying. For exampta,the CDN in Figure 1(a), partitioning
the problem such that; = {2,3,4,6},C> = {1, 2,5, 7} yields a more efficient computation than
the brute force approach. Significant computational acged exist even whesi # @, provided
|S1,2] is small. This suggests that we can recursively decompaséotal mixed derivative and
gradient computations into a series of simpler computatsmthat), [F(x)] reduces to a sum that
contains far fewer terms than that required by brute fornesuich a recursion, the total product of
factors is always broken into parts that share as few varsad possible. This is efficient for most
CDNs of interest that consist of a large number of factors éa&h depend on a small subset of
variables. Such a recursive decomposition is naturallyesgmted using a junction tree [12] for the
CDN in which we will pass messages corresponding to locavalére computations.

3.1 Differentiation in junction trees
InaCDNG = (V,S,E), let{Cy,---,C,} be a set ofx subsets of variable nodes 1, where
U, C; =V.LetC ={1,--- ,n}andT = (&,C) be atree wher€ is the set of undirected edges
so that for any pait, j € C there is a unique path fro#rto j. Then7 is a junction tree fog if any
intersectiorC; (" C; is contained in the subsé}, corresponding to a nodeon the path fromi to ;.
For each directed edde, j) we define the separator set$s; = C; () C,. An example of a CDN
and a corresponding junction tree are shown in Figures 1(b)-
Y
2
1 -0~
ST S Y
3 2) 5) P *}
o
Y oko4 Oed P
I @& 0 . 55
‘4' ® /’/
o E P !
23 Q\:\ . Q
@ (b) (c) (d)
Figure 1:a) An example of a CDN with 7 variable nodes (circles) and ¥efion nodes (diamonds); b) A
junction tree obtained from the CDN of a). Separating setsshown for each edge connecting nodes in the
junction tree, each corresponding to a connected subsetriafiles in the CDN; c), d) CDNs used to model

the rainfall and H1N1 datasets. Nodes and edges in the mmy-IGDNs of [8] are shown in blue and function
nodes/edges that were added to the trees are shown in red.

SinceT is a tree, we can root the tree at some nod€,isayr. Givenr, denote byr/ the subset
of elements of’ that are in the subtree Gf rooted atj and containing. Also, let&; be the set
of neighbors ofi in 7, such thats; = {j|(i,j) € £}. Finally, letCa = (J;c4 Ci. Suppose
My, ---, M, is a partition ofS such that for any = 1,--- ,n, M; consists of alls € S whose
neighbors inG are contained irC; and there is ng > 4 such that all neighbors of € M, are
included inC;. Define the potential function; (xc;) = [[,cy, ¢s(xs) for subsetC;. We can then

write the joint CDF as
F(x) = ¥n(xc,) [[Thx), @)
ke&,

whereT} (x) = [1je.; ¥i(xc,), with ; defined as above. Computing the probabilitix) then
corresponds to computing

. [zmxm 11 77 ()

= axCT |:‘%~ (XC,‘) H axcf):\sn,C [Tkr (X)]

ke, ke,
= axcr [ﬁ%«(xcr) H mk%r(m)‘|) (5)
ke,
where we have defined messages ... (4) = 0Ok, {axcfg\snk[Tg(x)]}, with my_,,.(0) =
Ox e Sy Iy (x)]. It remains to determine how we can efficiently compute ngssén the above

expression. We notice that fany given: € C with A C C; andU; C &;, we can define the

quantitym; (A, U;) = Ox, |¥i(xc,) [Ler, mj%(@)] . Now selectt € U; for the given:: we can

recursively re-write the above as

mi(A,U;) = Ox [(1/1 (xc,) T[] mi—i0))mk—n'(@)] = Oy [M0, U\ Ry (0)]

JEU\Kk
=Y misiBmi(A\ B, UN\k) = Y misi(Bymi(A\ B,U; \ k), (6)
BCA BCANSik
where in the last step we note that whenelBdn S; , = 0, my—;(B) = 0, since by definition
messagen;_,;(A) does not depend on variables @ \ S; ;. From the definition of message
m;—i(A), foranyA C S; ; we also have

Mj—si (A) = aXA axcrﬁ\siyj [T; (X)]

= axAij\Si,' |fb] XC H axc \su le (X)]]

le&;\i
:mj(AUCj\Si_’j,gj\i), (7)

whererj is the subtree dof rooted atj and containing. Thus, we can recursively compute functions
m;, mj—; Dy applying the above updates for each nod& irstarting from from leaf nodes 6f

and up to the root node At the root node, the correct mixed derivative is then gibgrP(x) =

Ox[F (x)] = m.(Cy, &). Note that the messages can be kept in a symbolic form asdasatver
appropriate variables, or, as is the case in the experinsent®n, they can simply be evaluated for
the given datx. In the latter case, each message reduces to a scalar, as eeataate derivatives

of the functions in the model for fixed, 8 and so we do not need to store increasingly complex
symbolic terms.

3.2 Maximum-likelihood learning in junction trees

While computingP (x|0) = J«x[F'(x|0)], we can in parallel obtain the gradient of the likelihood
function. The likelihood is equal to the message(C,, &) at the root node € 7. The computa-
tion of its gradientVem,.(C,., &) can be decomposed in a similar fashion to the decomposition o
the mixed derivative computation. The gradient of each agess:;, m;_,; in the junction tree de-
composition is updated in parallel with the likelihood magss through the use of gradient messages
gi = Vem; andg; ,; = Vem, ;.

The algorithm for computing both the likelihood and its gead, which we call JDiff forjunction
tree differentiationis shown in Algorithm 1. Thus by recursively computing thessages and their
gradients starting from leaf nodes ®fto the root node:, we can obtain the exact likelihood and
gradient vector for the CDF modelled By

3.3 Running time analysis

The space and time complexity of JDiff is dominated by Stefsri Algorithm 1: we quantify this
in the next Theorem.

Theorem 3.2. The time and space complexity of the JDiff algorithm is

O(max(|Mj| +1)1%! + max (|&]—1) 2'01'\5%&'3'5%&\). (8)
J (5,k)e€

Proof. The complexity of Step 1 in Algorithm 1 is given By ¢ | (19N ||k = O((Mj"’l)'cj'),
which is the total number of terms in the expanded sum of prtedform for computing mixed
derivativesix , [¢,] for all A C C;. Step 2 has complexity bounded by

s

. (15561 glens wlot) — (16 1C\S5.] 315 4]
0((|53|—1)*gg}5§;<l HOND2) = (8] — 1)« Olpuax 213 %)) (@)

since the cost of computing derivatives for eatle C; is a function of the size of the intersection
with S; ;. Thus we have the number of ways that an intersection can&ieaftimes the number of
ways that we can choose the variables not in the sepafajaimes the cost for that size of overlap.

Finally, Step 3 has complexity bounded 6y2!%::#1). The total time and space complexity is then
of order given bw(max(|Mj| +1)I%1 4 max (|&] - 1) 2|Cf\si”c|3|sj”<‘). O
J ’ (4,k)€€

5

Algorithm 1: JDiff: A junction tree algorithm for computing the likelilbd < [F(x|0)] and its gradient

V¢0x[F(x|0)] for a CDNG. Lines marked 1,2,3 dominate the space and time complexity.

Input: ACDN G = (V, S, E), ajunction tree] = 7(G) = (£,C) with node set = {1,--- ,n}
and edge seff, where each € C indexes a subs&t; C V. Letr € C be the root of/ and
denote the subtree 6f rooted atj containingk by 77.. Let My, - - - , M, be a partition ofS
such thatM; = {s € S|IN(s) C C;,N(s)Cr =0 Vk < j}.

Data: Observations and parametéxs 6)

Output: Likelihood and gradientox[F(x; 6)], Ve Ox[F (x; 6)])

foreachNodej € C do
Uj — @; wj « HSGIM]‘ ¢81

foreachSubsetd C C; do
m; (Aa @) — 8XA [wj];
8;(A4,0) < VoOx,[¥;];
end
foreachNeighbork € £; (7] do
Sjk = Cj (1 Ch;
foreachSubsetd C C; do
m;i(A,U; Uk) < 2 pcans,, Mr—i(B)ym;(A\ B, Uj);
8i(AU; Uk) < Xopcans,, Mk—i(B)8g;(A\ B,Uj) + gk—;(B)m;(A\ B, Uj);
end
Uj < U; UK
end
if j # rthen
k {l|(€jﬂ7’jl 75 @}, Sj,k — Cj ka;
foreachSubsetd C S; ;, do
mjk(A) = m; (AU Ci\ Sjik: €5\ /f)i

gj—k(4) < g; (A UC5\ Sjk: &\ /f)i
end
else
| return (m,(Cy, &), 8-(Cr. &)
end
end

Note that JDiff reduces to the algorithms of [6, 8] for nowy CDNs and its complexity then
becomes linear in the number of variables. For other typegayhs, the complexity grows expo-
nentially with the tree-width.

4 Experiments

The experiments are divided into two parts. The first partuatas the computational efficiency of
the JDiff algorithm for various graph topologies. The satset of experiments uses rainfall and
H1N1 epidemiology data to demonstrate the practical vallmopy CDNs, which JDiff for the first
time makes practical to learn from data.

4.1 Symbolic differentiation

As a first test, we compared the runtime of JDiff to that of casnig-used symbolic differentiation
tools such as Mathematica [16] and D* [4]. The task here wasytobolically computés [F(x)]
for a variety of CDNs. All three algorithms were run on a maehwith a 2.66 GHz CPU and 16
GB of RAM. The JDiff algorithm was implemented in MATLAB. A pction tree was constructed
by greedily eliminating the variables with the minimal fitl-algorithm and then constructing elim-
ination subsets for nodes in the junction tree [10] usingMi#Ag LAB implementation of [14]. For
square grid-structured CDNs with CDN functions defined gadrs of adjacent variables, Mathe-
matica and D* ran out of memory for grids larger tharx 3. For the3 x 3 grid, JDiff took less
than 1 second to compute the symbolic derivative, whereabdvizatica and D* took.2 s. andd.2

Log-likelihood
e

Log-likelinood
o

(b)

CDN NPN-BDG GBDG-log
(d)

Figure 2: Both a), b) report average test log-likelihoods achievedtfe CDNs, the nonparanormal bidirected
and Markov models (NPN-BDG,NPN-MRF), Gaussian bidirecd@d Markov models for log-transformed
data (GBDG-log,GMRF-log) and the multivariate logistictiibution (MVlogistic) on leave-one-out cross-
validation of the a) rainfall and b) HIN1 datasets; c) Confalots of log-bivariate densities under the CDN
model of Figure 1(c) for rainfall with observed measuremaesttown. Each panel shows the marginal PDF
P(xa,xp) = 0Ou, 4[F(xa,2s)] under the CDN model for each CDN functienand its neighborsy, 5.
Each marginal PDF can be computed analytically by takingtdifiollowed by differentiation; d) Graphs for
the H1N1 datasets with edges weighted according to mutéminmation under the CDN, nonparanormal and
Gaussian BDGs for log-transformed data. Dashed edgesspomd to information of less thanbit.

s. each. We also found that JDiff could tractably (i.e.: sslé¢han 20 min. of CPU time) compute
derivatives for graphs as large @ 9. We also compared the time to compute mixed derivatives
in loops of lengthn = 10, 11, - - - , 20. The time required by JDiff varied frofi81 s. t02.83 s. to
compute the total mixed derivative, whereas the time regluiy Mathematica varied froin2 s. to

580 s. and for D*,6.7 s. t012.7 s.

4.2 Learning models for rainfall and HIN1 data

The JDiff algorithm allows us to compute mixed derivativédsagjoint CDF for applications in
which we may need to learn multivariate heavy-tailed distiibns defined on loopy graphs. The
graphical structures in our examples are based on geogedpbcation of variables that impose
dependence constraints based on spatial proximity. To hpades of heavy-tailed variables, we
used the bivariate logistic distribution with Gumbel masgj2], given by

T—Hx,s _Y—Hy,s

(2, y) = exp (L)f’s), Oas>0,0,,>0,0<0,<1. (10)

Models constructed by computing products of functions ef &bbove type have the properties of
both being heavy-tailed multivariate distributions antisfging marginal independence constraints
between variables that share no function nodes [8]. Herexanmimed the data studied in [8], which
consisted of spatial measurements for rainfall and for Hirdttality. The rainfall dataset consists
of 61 daily measurements of rainfall at 22 sites in China &edi1N1 dataset consists of 29 weekly
mortality rates in 11 cities in the Northeastern US durirgg2B08-2009 epidemic. Starting from the
non-loopy CDNs used in [8] (Figures 1(c) and 1(d), shown urelp] we added function nodes and
edges to construct loopy CDNs (shown in red in Figures 1(d)Xd)) to construct CDNs capable

of expressing many more marginal dependencies at the costating numerous loops in the graph.
All CDN models (non-loopy and loopy) were learned from datang stochastic gradients to update
model parameters using settings described in the Supptahteformation.

The loopy CDN model was compared via leave-one-out crobdaten to non-loopy CDNSs of [8]
and disconnected CDNs corresponding to independence madaetompare with other multivariate
approaches for modelling heavy-tailed data, we also tabtetbllowing:

e Gaussian bi-directed (BDG) and Markov (MRF) models with siagne topology as the loopy
CDN:s for log-transformed data with = log(z + ¢;) fore; = 10747 = 1,2, 3, 4,5, where we
show the results farthat yielded the best test likelihood. Models were fitteshgghe algorithms
of [3] and [15]. For the Gaussian BDGs, the covariance medr} were constrained so that
(X)a,s = 0 only if there is no edge connecting variable nodeg. For the Gaussian MRF, the

constraints weréx) }; = 0).

e Structured nonparanormal distributions [11], which useagaian copula model, where the struc-
ture was specified by the same BDG and MRF graphs and estm@dtihe covariance was per-
formed using the algorithms for Gaussian MRFs and BDGs offimearly transformed data. The
nonlinear transformation is given b, (z,) = fia + 6a® (Fa(2,)) where® is the normal

CDF, F,, is the Winsorized estimator [11] of the CDF for random valeaki, and parameters

[la, 0o are the empirical mean and standard deviationX¥qr Although the nonparanormal al-

lows for structure learning as part of model fitting, for tlaée of comparison the structure of the
model was set to be same as those of the BDG and MRF models.

e The multivariate logistic CDF [13] that is heavy-tailed llates not model local dependencies.

Here we designed the BDG and MRF models to have the same gahpitiucture as the loopy
CDN model such that all three model classes represent the satrof local dependencies even
though the set of global dependencies is different for a BM&F and CDN of the same connec-
tivity. Additional details about these comparisons arevigted in the Supplemental Information.
The resulting average test log-likelihoods on leave-omecooss-validation achieved by the above
models are shown in Figures 2(a) and 2(b). Here, capturiagdditional local dependencies and
heavy-tailedness using loopy CDNs leads to significantttebéits (p < 10~8, two-sided sign test).

To further explore the loopy CDN model, we can visualize teeaf log-bivariate densities ob-
tained from the loopy CDN model for the rainfall data in tamdeith observed data (Figure 2(c)).
The marginal bivariate density for each pair of neighbormagables is obtained by taking limits
of the learned multivariate CDF and differentiating theutesg bivariate CDF. We can also exam-
ine the resulting models by comparing the mutual infornrafidl) between pairs of neighboring
variables in the graphical models for the HIN1 dataset. Eh#&hown in Figure 2(d) in the form
of undirected weighted graphs where edges are weightedgiopal to the Ml between the two
variable nodes connected by that edge. For the CDN, Ml wagated by drawing 50,000 sam-
ples from the resulting density model via the Metropolisoaidnm; for Gaussian models, the Ml
was obtained analytically. As can be seen, the loopy CDN mdiffers significantly from the
nonparanormal and Gaussian BDGs for log-transformed dattzei M| between pairs of variables
(Figure 2(d)). Not only are the Ml values under the loopy CDNdal significantly higher as com-
pared to those under the Gaussian models, but also high Mkigreed to the edge corresponding
to the Newark,NJ/Philadelphia,PA air corridor, which islkely source of HIN1 transmission be-
tween cities [1] (edge shown in black in Figure 2(d)). In cant, this edge is largely missed by the
nonparanormal and log-transformed Gaussian BDGs.

5 Discussion

The above results for the rainfall and H1IN1 datasets, coatbimith the lower runtime of JDiff
compared to standard symbolic differentiation algorithimghlight A) the usefulness of JDiff as an
algorithm for exact inference and learning for loopy CDNsl &) the usefulness of loopy CDNs
in which multiple local functions can be used to model locapeindencies between variables in
the model. Future work could include learning the structafreompact probability models in the
sense of graphs with bounded treewidth, with practicaliapfibns to other problem domains (e.qg.:
finance, seismology) in which data are heavy-tailed and-tigiensional and comparisons to exist-
ing techniques for doing this [11]. Another line of reseanaiuld be to further study the connection
between CDNs and other copula-based models (e.g.: [9]alliigiven the demonstrated value of
adding dependency constraints to CDNs, further developofdaster approximate algorithms for
loopy CDNs will also be of practical value.

References

[1] Colizza, V., Barrat, A., Barthelemy, M. and Vespignai,(2006) Prediction and predictability
of global epidemics: the role of the airline transportati@mtwork.Proceedings of the National
Academy of Sciences USA (PNAS} 2015-2020.

[2] de Haan, L. and Ferreira, A. (200BExtreme value theorgpringer.

[3] Drton, M. and Richardson, T.S. (2004) Iterative coratitl fitting for Gaussian ancestral graph
models.Proceedings of the Twentieth Conference on Uncertaintytifiédal Intelligence (UAI)
130-137.

[4] Guenter, B. (2007) Efficient symbolic differentiatioarfgraphics application®dCM Transac-
tions on Graphic26(3).

[5] Hardy, M. (2006) Combinatorics of partial derivativ&dectronic Journal of Combinatorick3.

[6] Huang, J.C. and Frey, B.J. (2008) Cumulative distribatnetworks and the derivative-sum-
product algorithmProceedings of the Twenty-Fourth Conference on UncestaimtArtificial
Intelligence (UAI) 290-297.

[7] Huang, J.C. (2009Cumulative distribution networks: Inference, estimatard applications
of graphical models for cumulative distribution functiotniversity of Toronto Ph.D. thesis.
http://hdl.handle.net/1807/19194

[8] Huang, J.C. and Jojic, N. (2010) Maximum-likelihoodreag of cumulative distribution func-
tions on graphslournal of Machine Learning Research W&CP Sefe842-349.

[9] Kirschner, S. (2007) Learning with tree-averaged déesand distributiongAdvances in Neural
Information Systems Processing (NIR2B) 761-768.

[10] Koller, D. and Friedman, N. (2009Probabilistic Graphical Models: Principles and Tech-
niques MIT Press.

[11] Liu, H., Lafferty, J. and Wasserman, L. (2009) The naap@rmal: Semiparametric estimation
of high dimensional undirected graplisurnal of Machine Learning Research (JMLE) 2295-
2328.

[12] Lauritzen, S.L. and Spiegelhalter, D.J. (1988) Lo@ahputations with probabilities on graph-
ical structures and their application to expert systejosirnal of the Royal Statistical Society
Series B (Methodologica§0(2), 157224.

[13] Malik, H.J. and Abraham, B. (1978) Multivariate logesdistributions.Annals of Statistics
1(3), 588-590.

[14] Murphy, K.P. (2001) The Bayes Net Toolbox for MATLAB.omputing science and statistics

[15] Speed, T.S. and Kiiveri, H.T. (1986) Gaussian Markatrifbutions over finite graph#&nnals
of Statisticsl4(1), 138-150.

[16] Wolfram Research, Inc. (2008) Mathematica, Versidh Thampaign, IL.

