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Abstract
Many problem domains including climatology and epidemiology require models
that can capture both heavy-tailed statistics and local dependencies. Specifying
such distributions using graphical models for probabilitydensity functions (PDFs)
generally lead to intractable inference and learning. Cumulative distribution net-
works (CDNs) provide a means to tractably specify multivariate heavy-tailed mod-
els as a product of cumulative distribution functions (CDFs). Existing algorithms
for inference and learning in CDNs are limited to those with tree-structured (non-
loopy) graphs. In this paper, we develop inference and learning algorithms for
CDNs with arbitrary topology. Our approach to inference andlearning relies on
recursively decomposing the computation of mixed derivatives based on a junction
trees over the cumulative distribution functions. We demonstrate that our system-
atic approach to utilizing the sparsity represented by the junction tree yields sig-
nificant performance improvements over the general symbolic differentiation pro-
grams Mathematica and D*. Using two real-world datasets, wedemonstrate that
non-tree structured (loopy) CDNs are able to provide significantly better fits to the
data as compared to tree-structured and unstructured CDNs and other heavy-tailed
multivariate distributions such as the multivariate copula and logistic models.

1 Introduction
The last two decades have been marked by significant advancesin modeling multivariate probability
density functions (PDFs) on graphs. Various inference and learning algorithms have been success-
fully developed that take advantage of known variable dependence which can be used to simplify
computations and avoid overtraining. A major source of difficulty for such algorithms is the need to
compute a normalization term, as graphical models generally assume a factorized form for the joint
PDF. To make these models tractable, the factors themselvescan be chosen to have tractable forms
such as Gaussians. Such choices may then make the model unsuitable for many types of data, such
as data with heavy-tailed statistics that are a quintessential feature in many application areas such as
climatology and epidemiology. Recently, a number of techniques have been proposed to allow for
both heavy-tailed/non-Gaussian distributions with a specifiable variable dependence structure. Most
of these methods are based on transforming the data to make itmore easily modeled by Gaussian
PDF-fitting techniques, an example of which is the Gaussian copula [11] parameterized as a CDF
defined on nonlinearly transformed variables. In addition to copula models, many non-Gaussian
distributions are conveniently parameterized as CDFs [2].Most existing CDF models, however,
do not allow the specification of local dependence structures and thus can only be applied to very
low-dimensional problems.

Recently, a class of multiplicative CDF models has been proposed as a way of modeling structured
CDFs. The cumulative distribution networks (CDNs) model a multivariate CDF as a product over
functions, each dependent on a small subset of variables andeach having a CDF form [6, 7]. One
of the key advantages of this approach is that it eliminates the need to enforce normalization con-
straints that complicate inference and learning in graphical models of PDFs. An example of a CDN
is shown in Figure 1(a), where diamonds correspond to CDN functions and circles represent vari-
ables. In a CDN, inference and learning involves computation of derivatives of the joint CDF with
respect to model variables and parameters. The graphical model then allows us to efficiently perform
inference and learning for non-loopy CDNs using message-passing [6, 8]. Models of this form have
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been applied to multivariate heavy-tailed data in climatology and epidemiology where they have
demonstrated improved predictive performance as comparedto several graphical models for PDFs
despite the restriction to tree-structured CDNs. Non-loopy CDNs may however be limited models
and adding functions to the CDN may provide significantly more expressive models, with the caveat
that the resulting CDN may become loopy and previous algorithms for inference and learning in
CDNs then cease to be exact..

Our aim in this paper is to provide an effective algorithm forlearning and inference in loopy CDNs,
thus improving on previous approaches which were limited toCDNs with non-loopy dependencies.
In principle, symbolic differentiation algorithms such asMathematica [16] and D* [4] could be used
for inference and learning for loopy CDNs. However, as we demonstrate, such generic algorithms
quickly become intractable for larger models. In this paper, we develop the JDiff algorithm which
uses the graphical structure to simplify the computation ofthe derivative and enables both inference
and learning for CDNs of arbitrary topology. In addition, weprovide an analysis of the time and
space complexity of the algorithm and provide experiments comparing JDiff to Mathematica and
D*, in which we show that JDiff runs in less time and can handlesignificantly larger graphs. We
also provide an empirical comparison of several methods formodeling multivariate distributions as
applied to rainfall data and H1N1 data. We show that loopy CDNs provide significantly better model
fits for multivariate heavy-tailed data than non-loopy CDNs. Furthermore, these models outperform
models based on Gaussian copulas [11], as well as multivariate heavy tailed models that do not allow
for structure specification.

2 Cumulative distribution networks
In this section we establish preliminaries about learning and inference for CDNs [6, 7, 8]. Letx be
a vector of observed values for random variables in the setV and letx�,xA denote the observed
values for variable node� ∈ V and variable setA ⊆ V . LetN (s) be the set of neighboring variable
nodes for function nodes. Define the operator∂xA

[⋅] as the mixed derivative operator with respect to
variables in setA. For example,∂x1,2,3

[F (x1, x2, x3)] ≡
∂3F

∂x1∂x2∂x3

. Throughout the paper we will
be dealing primarily with continuous random variables and so we will generally deal with PDFs,
with probability mass functions (PMFs) as a special case. Wealso assume in the sequel that all
derivatives of a CDF with respect to any and all arguments exist and are continuous and as a result
any mixed derivative of the CDF is invariant to the order of differentiation (Schwarz’ theorem).

Definition 2.1. The cumulative distribution network (CDN) consists of (1) an undirected bipartite
graphical model consisting of a bipartite graphG = (V, S,E), whereV denotes variable nodes and
S denotes function nodes, with edges inE connecting function nodes to variable nodes and (2) a
specification of functions�s(xs) for each function nodes ∈ S, wherexs ≡ xN (s), ∪s∈SN (s) = V

and each function�s : ℝ∣N (s)∣ 7→ [0, 1] satisfies the properties of a CDF. The joint CDF over the
variables in the CDN is then given by the product of CDFs�s, or F (x) =

∏

s∈S �s(xs), where
each CDF�s is defined over neighboring variable nodesN (s). □

For example, in the CDN of Figure 1(a), each diamond corresponds to a function�s defined over
neighboring pairs of variable nodes, such that the product of functions satisfies the properties of
a CDF. In the sequel we will assume that bothF and CDN functions�s are parametric functions
of parameter vector� and soF ≡ F (x) ≡ F (x∣�) and�s ≡ �s(xs) ≡ �s(xs; �). In a CDN,
the marginal CDF for any subsetA ⊆ V is obtained simply by taking limits such thatF (xA) =

lim
xV ∖A→∞

F (x), which can be done in constant time for each variable.

2.1 Inference and learning in CDNs as differentiation
For a joint CDF, the problems of inference and likelihood evaluation, or computing conditional CDFs
and marginal PDFs, both correspond to mixed differentiation of the joint CDF [6]. In particular, the
conditional CDFF (xB ∣xA) is related to the mixed derivative∂xA

[F (xA,xB)] by F (xB∣xA) =
∂xA

[F (xA,xB)]

∂xA
[F (xA)] . In the case of evaluating the likelihood corresponding to the model, we note that

for CDF F (x∣�), the PDF is defined asP (x∣�) = ∂x[F (x∣�)]. In order to perform maximum-
likelihood estimation, we require the gradient vector∇� logP (x∣�) = 1

P (x∣�)∇�P (x∣�), which
requires us to compute a vector of single derivatives∂�i [P (x∣�)] of the joint CDF with respect to
parameters in the model.
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2.2 Message-passing algorithms for differentiation in non-loopy graphs
As described above, inference and learning in a CDN corresponds to computing derivatives of the
CDF with respect to subsets of variables and/or model parameters. For inference in non-loopy
CDNs, computing mixed derivatives of the form∂xA

[F (x)] for some subset of nodesA ⊆ V can
be solved efficiently by the derivative-sum-product (DSP) algorithm of [6]. In analogy to the way
in which marginalization in graphical models for PDFs can bedecomposed into a series of local
computations, the DSP algorithm decomposes the global computation of thetotal mixed deriva-
tive ∂x[F (x)] into a series of local computations by the passing of messages that correspond to
mixed derivatives ofF (x) with respect to subsets of variables in the model. To evaluate the model
likelihood, messages are passed from leaf nodes to the root variable node and the product of in-
coming root messages is differentiated. This procedure provably produces the correct likelihood
P (x∣�) = ∂x[F (x∣�)] for non-loopy CDNs [6].
To estimate model parameters� for which the likelihood over i.i.d. data samplesx1, ⋅ ⋅ ⋅ ,xN is
optimized, we can further make use of the gradient of the log-likelihood∇� logP (x∣�) within
a gradient-based optimization algorithm. As in the DSP inference algorithm, the computation of
the gradient can also be broken down into a series of local gradient computations. The gradient-
derivative-product (GDP) algorithm [8] updates thegradientsof the messages from the DSP algo-
rithm and passes these from leaf nodes to the root variable node in the CDN, provably obtaining the
correct gradient of the log-likelihood of a particular set of observationsx for a non-loopy CDN.

3 Differentiation in loopy graphs
For loopy graphs, the DSP and GDP algorithms are not guaranteed to yield the correct derivative
computations. For the general case of differentiating a product of CDFs, computing the total mixed
derivative requires time and space exponential in the number of variables. To see this, consider the
simple example of the derivative of a product of two functionsf, g, both of which are functions of
x = [x1, ⋅ ⋅ ⋅ , xK ]. The mixed derivative of the product is then given by [5]

∂x[f(x)g(x)] =
∑

U⊆{1,⋅⋅⋅ ,K}

∂xU
[f(x)]∂x{1,⋅⋅⋅ ,K}∖U

[g(x)], (1)

a summation that contains2K terms. As computing the mixed derivative of a product of more
functions will entail even greater complexity, the naı̈ve approach will in general be intractable.
However, as we show in this paper, a CDN’s sparse graphical structure may often point to ways
to computing these derivatives efficiently, with non-loopygraphs being special, previously-studied
cases. To motivate our approach, consider the following lemma that follows in straightforward
fashion from the product rule of differentiation:

Lemma 3.1. Let G = (V, S,E) be a CDN and letF (x) =
∏

s∈S

�s(xs) be defined over variables

in V . LetM1,M2 be a partition of the function nodesS and letG1(xC1
) =

∏

s∈M1
�s(xs) and

G2(xC2
) =

∏

s∈M2
�s(xs), whereC1 =

∪

s∈M1
N (s) andC2 =

∪

s∈M2
N (s) are the variables

that are arguments toG1, G2. LetS1,2 = C1

∩

C2. Then

∂x[G1(xC1
)G2(xC2

)] =
∑

A⊆S1,2

∂xC1∖S1,2

[

∂xA
[G1(xC1

)]
]

∂xC2∖S1,2

[

∂xS1,2∖A
[G2(xC2

)]
]

. (2)

Proof. DefineL = C1 ∖ S1,2 andR = C2 ∖ S1,2. Then

∂x[F (x)] = ∂x[G1(xC1
)G2(xC2

)] =
∑

U⊆V

∂xU
[G1(xC1

)]∂xV ∖U
[G2(xC2

)]

=
∑

A⊆S1,2

∑

B⊆L

∑

C⊆R

∂xA,B,C
[G1(xC1

)]∂xS1,2∖A,L∖B,R∖C
[G2(xC2

)]

=
∑

A⊆S1,2

∂xA,L
[G1(xC1

)]∂xS1,2∖A,R
[G2(xC2

)]. (3)

The last step follows from identifying all derivatives thatare zero, as we note that in the above,
∂xC

[G1(xC1
)] = 0 for C ∕= ∅ and similarly,∂xL∖B

[G2(xC2
)] = 0 for L ∖B ∕= ∅.

The number of individual steps needed to complete the differentiation in (2) depends on the size of
the variable intersection setS1,2 = C1

∩

C2. When the two factorsG1, G2 depend on two variable
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sets that do not intersect, then the differentiation can be simplified by independently computing
derivatives for each factor and multiplying. For example, for the CDN in Figure 1(a), partitioning
the problem such thatC1 = {2, 3, 4, 6}, C2 = {1, 2, 5, 7} yields a more efficient computation than
the brute force approach. Significant computational advantages exist even whenS ∕= ∅, provided
∣S1,2∣ is small. This suggests that we can recursively decompose the total mixed derivative and
gradient computations into a series of simpler computations so that∂x[F (x)] reduces to a sum that
contains far fewer terms than that required by brute force. In such a recursion, the total product of
factors is always broken into parts that share as few variables as possible. This is efficient for most
CDNs of interest that consist of a large number of factors that each depend on a small subset of
variables. Such a recursive decomposition is naturally represented using a junction tree [12] for the
CDN in which we will pass messages corresponding to local derivative computations.

3.1 Differentiation in junction trees
In a CDN G = (V, S,E), let {C1, ⋅ ⋅ ⋅ , Cn} be a set ofn subsets of variable nodes inV , where
∪n

i=1 Ci = V . Let C = {1, ⋅ ⋅ ⋅ , n} andT = (ℰ , C) be a tree whereℰ is the set of undirected edges
so that for any pairi, j ∈ C there is a unique path fromi to j. ThenT is a junction tree forG if any
intersectionCi

∩

Cj is contained in the subsetCk corresponding to a nodek on the path fromi to j.
For each directed edge(i, j) we define the separator set asSi,j = Ci

∩

Cj . An example of a CDN
and a corresponding junction tree are shown in Figures 1(a),1(b).

(a) (b) (c) (d)

Figure 1: a) An example of a CDN with 7 variable nodes (circles) and 15 function nodes (diamonds); b) A
junction tree obtained from the CDN of a). Separating sets are shown for each edge connecting nodes in the
junction tree, each corresponding to a connected subset of variables in the CDN; c), d) CDNs used to model
the rainfall and H1N1 datasets. Nodes and edges in the non-loopy CDNs of [8] are shown in blue and function
nodes/edges that were added to the trees are shown in red.

SinceT is a tree, we can root the tree at some node inC, sayr. Givenr, denote by� ji the subset
of elements ofC that are in the subtree ofT rooted atj and containingi. Also, letℰi be the set
of neighbors ofi in T , such thatℰi = {j∣(i, j) ∈ ℰ}. Finally, let CA =

∪

i∈A Ci. Suppose
M1, ⋅ ⋅ ⋅ ,Mn is a partition ofS such that for anyi = 1, ⋅ ⋅ ⋅ , n, Mi consists of alls ∈ S whose
neighbors inG are contained inCi and there is noj > i such that all neighbors ofs ∈ Mi are
included inCj . Define the potential function i(xCi

) =
∏

s∈Mi
�s(xs) for subsetCi. We can then

write the joint CDF as
F (x) =  r(xCr

)
∏

k∈ℰr

T r
k (x), (4)

whereT r
k

(

x
)

=
∏

j∈�r
k
 j(xCj

), with  j defined as above. Computing the probabilityP (x) then
corresponds to computing

∂x

[

 r(xCr
)
∏

k∈ℰr

T r
k

(

x
)

]

= ∂xCr

[

 r(xCr
)
∏

k∈ℰr

∂xC�r
k

∖Sr,k
[T r

k

(

x
)

]

]

= ∂xCr

[

 r(xCr
)
∏

k∈ℰr

mk→r(∅)

]

, (5)

where we have defined messagesmk→r(A) ≡ ∂xA

[

∂xC�r
k

∖Sr,k
[T r

k

(

x
)

]
]

, with mk→r(∅) =

∂xC�r
k

∖Sr,k
[T r

k

(

x
)

]. It remains to determine how we can efficiently compute messages in the above

expression. We notice that forany given i ∈ C with A ⊆ Ci andUi ⊆ ℰi, we can define the
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quantitymi(A,Ui) ≡ ∂xA

[

 i(xCi
)
∏

j∈Ui
mj→i(∅)

]

. Now selectk ∈ Ui for the giveni: we can

recursively re-write the above as

mi(A,Ui) = ∂xA

[

(

 i(xCi
)

∏

j∈Ui∖k

mj→i(∅)
)

mk→i(∅)

]

= ∂xA

[

mi(∅, Ui ∖ k)mk→i(∅)
]

=
∑

B⊆A

mk→i(B)mi(A ∖B,Ui ∖ k) =
∑

B⊆A
∩

Si,k

mk→i(B)mi(A ∖B,Ui ∖ k), (6)

where in the last step we note that wheneverB
∩

Si,k = ∅, mk→i(B) = 0, since by definition
messagemk→i(A) does not depend on variables inCi ∖ Si,k. From the definition of message
mj→i(A), for anyA ⊆ Si,j we also have

mj→i(A) = ∂xA

[

∂xC
�i
j

∖Si,j
[T i

j

(

x
)

]

]

= ∂xA,Cj∖Si,j

[

 j(xCj
)

∏

l∈ℰj∖i

∂xC
�
j
l

∖Sl,j
[T j

l

(

x
)

]

]

= mj

(

A
∪

Cj ∖ Si,j , ℰj ∖ i
)

, (7)

where� jl is the subtree ofT rooted atj and containingl. Thus, we can recursively compute functions
mi,mj→i by applying the above updates for each node inT , starting from from leaf nodes ofT
and up to the root noder. At the root node, the correct mixed derivative is then givenby P (x) =
∂x[F (x)] = mr(Cr, ℰr). Note that the messages can be kept in a symbolic form as functions over
appropriate variables, or, as is the case in the experimentssection, they can simply be evaluated for
the given datax. In the latter case, each message reduces to a scalar, as we can evaluate derivatives
of the functions in the model for fixedx, � and so we do not need to store increasingly complex
symbolic terms.

3.2 Maximum-likelihood learning in junction trees
While computingP (x∣�) = ∂x[F (x∣�)], we can in parallel obtain the gradient of the likelihood
function. The likelihood is equal to the messagemr(Cr, ℰr) at the root noder ∈ T . The computa-
tion of its gradient∇�mr(Cr, ℰr) can be decomposed in a similar fashion to the decomposition of
the mixed derivative computation. The gradient of each messagemi,mj→i in the junction tree de-
composition is updated in parallel with the likelihood messages through the use of gradient messages
gi ≡ ∇�mi andgj→i ≡ ∇�mj→i.

The algorithm for computing both the likelihood and its gradient, which we call JDiff forjunction
tree differentiation, is shown in Algorithm 1. Thus by recursively computing the messages and their
gradients starting from leaf nodes ofT to the root noder, we can obtain the exact likelihood and
gradient vector for the CDF modelled byG.

3.3 Running time analysis
The space and time complexity of JDiff is dominated by Steps 1-3 in Algorithm 1: we quantify this
in the next Theorem.

Theorem 3.2. The time and space complexity of the JDiff algorithm is

O
(

max
j

(∣Mj∣+ 1)∣Cj∣ + max
(j,k)∈ℰ

(∣ℰj ∣ − 1) ∗ 2∣Cj∖Sj,k∣3∣Sj,k∣
)

. (8)

Proof. The complexity of Step 1 in Algorithm 1 is given by
∑Cj

k=1

(

∣Cj∣
k

)

∣Mj∣k = O
(

(Mj+1)∣Cj∣
)

,

which is the total number of terms in the expanded sum of products form for computing mixed
derivatives∂xA

[ j ] for all A ⊆ Cj . Step 2 has complexity bounded by

O
(

(∣ℰj ∣ − 1) ∗max
k∈ℰj

Sj,k
∑

l=0

(

∣Sj,k∣

l

)

2∣Cj∖Sj,k∣2l
)

= (∣ℰj ∣ − 1) ∗O(max
k∈ℰj

2∣Cj∖Sj,k∣3∣Sj,k∣) (9)

since the cost of computing derivatives for eachA ⊆ Cj is a function of the size of the intersection
with Si,j . Thus we have the number of ways that an intersection can be ofsizel times the number of
ways that we can choose the variables not in the separatorSj,k times the cost for that size of overlap.
Finally, Step 3 has complexity bounded byO(2∣Sj,k∣). The total time and space complexity is then

of order given byO
(

max
j

(∣Mj ∣+ 1)∣Cj∣ + max
(j,k)∈ℰ

(∣ℰj ∣ − 1) ∗ 2∣Cj∖Sj,k∣3∣Sj,k∣
)

.
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Algorithm 1: JDiff: A junction tree algorithm for computing the likelihood ∂x[F (x∣�)] and its gradient
∇�∂x[F (x∣�)] for a CDNG. Lines marked 1,2,3 dominate the space and time complexity.

Input : A CDN G = (V, S,E), a junction treeT ≡ T (G) = (ℰ , C) with node setC = {1, ⋅ ⋅ ⋅ , n}
and edge setℰ , where eachi ∈ C indexes a subsetCi ⊆ V . Let r ∈ C be the root ofT and
denote the subtree ofT rooted atj containingk by � jk . LetM1, ⋅ ⋅ ⋅ ,Mn be a partition ofS
such thatMj = {s ∈ S∣N (s) ⊆ Cj ,N (s)

∩

Ck = ∅ ∀k < j}.
Data: Observations and parameters(x, �)
Output : Likelihood and gradient

(

∂x[F (x; �)],∇�∂x[F (x; �)]
)

foreachNodej ∈ C do
Uj ← ∅;  j ←

∏

s∈Mj
�s;

1 foreachSubsetA ⊆ Cj do
mj(A, ∅)← ∂xA

[ j ];
gj(A, ∅)← ∇�∂xA

[ j ];
end

2 foreachNeighbork ∈ ℰj
∩

�
j
k do

Sj,k ← Cj

∩

Ck;
foreachSubsetA ⊆ Cj do

mj(A,Uj

∪

k)←
∑

B⊆A
∩

Sj,k
mk→j(B)mj(A ∖B,Uj);

gj(A,Uj

∪

k)←
∑

B⊆A
∩

Sj,k
mk→j(B)gj(A ∖B,Uj) + gk→j(B)mj(A ∖B,Uj);

end
Uj ← Uj

∪

k;
end
if j ∕= r then

k ← {l∣ℰj
∩

� lj ∕= ∅}; Sj,k ← Cj

∩

Ck;
3 foreachSubsetA ⊆ Sj,k do

mj→k(A)← mj

(

A
∪

Cj ∖ Sj,k, ℰj ∖ k
)

;

gj→k(A)← gj

(

A
∪

Cj ∖ Sj,k, ℰj ∖ k
)

;

end
else

return
(

mr(Cr, ℰr),gr(Cr, ℰr)
)

end
end

Note that JDiff reduces to the algorithms of [6, 8] for non-loopy CDNs and its complexity then
becomes linear in the number of variables. For other types ofgraphs, the complexity grows expo-
nentially with the tree-width.

4 Experiments
The experiments are divided into two parts. The first part evaluates the computational efficiency of
the JDiff algorithm for various graph topologies. The second set of experiments uses rainfall and
H1N1 epidemiology data to demonstrate the practical value of loopy CDNs, which JDiff for the first
time makes practical to learn from data.

4.1 Symbolic differentiation
As a first test, we compared the runtime of JDiff to that of commonly-used symbolic differentiation
tools such as Mathematica [16] and D* [4]. The task here was tosymbolically compute∂x[F (x)]
for a variety of CDNs. All three algorithms were run on a machine with a 2.66 GHz CPU and 16
GB of RAM. The JDiff algorithm was implemented in MATLAB. A junction tree was constructed
by greedily eliminating the variables with the minimal fill-in algorithm and then constructing elim-
ination subsets for nodes in the junction tree [10] using theMATLAB implementation of [14]. For
square grid-structured CDNs with CDN functions defined overpairs of adjacent variables, Mathe-
matica and D* ran out of memory for grids larger than3 × 3. For the3 × 3 grid, JDiff took less
than 1 second to compute the symbolic derivative, whereas Mathematica and D* took6.2 s. and9.2
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Figure 2: Both a), b) report average test log-likelihoods achieved for the CDNs, the nonparanormal bidirected
and Markov models (NPN-BDG,NPN-MRF), Gaussian bidirectedand Markov models for log-transformed
data (GBDG-log,GMRF-log) and the multivariate logistic distribution (MVlogistic) on leave-one-out cross-
validation of the a) rainfall and b) H1N1 datasets; c) Contour plots of log-bivariate densities under the CDN
model of Figure 1(c) for rainfall with observed measurements shown. Each panel shows the marginal PDF
P (x�, x�) = ∂x�,�

[F (x�, x�)] under the CDN model for each CDN functions and its neighbors�, �.
Each marginal PDF can be computed analytically by taking limits followed by differentiation; d) Graphs for
the H1N1 datasets with edges weighted according to mutual information under the CDN, nonparanormal and
Gaussian BDGs for log-transformed data. Dashed edges correspond to information of less than1 bit.

s. each. We also found that JDiff could tractably (i.e.: in less than 20 min. of CPU time) compute
derivatives for graphs as large as9 × 9. We also compared the time to compute mixed derivatives
in loops of lengthn = 10, 11, ⋅ ⋅ ⋅ , 20. The time required by JDiff varied from0.81 s. to2.83 s. to
compute the total mixed derivative, whereas the time required by Mathematica varied from1.2 s. to
580 s. and for D*,6.7 s. to12.7 s.

4.2 Learning models for rainfall and H1N1 data
The JDiff algorithm allows us to compute mixed derivatives of a joint CDF for applications in
which we may need to learn multivariate heavy-tailed distributions defined on loopy graphs. The
graphical structures in our examples are based on geographical location of variables that impose
dependence constraints based on spatial proximity. To model pairs of heavy-tailed variables, we
used the bivariate logistic distribution with Gumbel margins [2], given by

�s(x, y) = exp
(

−
(

e
−

x−�x,s
�x,s�s + e

−
y−�y,s
�y,s�s

)�s
)

, �x,s > 0, �y,s > 0, 0 < �s < 1. (10)

Models constructed by computing products of functions of the above type have the properties of
both being heavy-tailed multivariate distributions and satisfying marginal independence constraints
between variables that share no function nodes [8]. Here we examined the data studied in [8], which
consisted of spatial measurements for rainfall and for H1N1mortality. The rainfall dataset consists
of 61 daily measurements of rainfall at 22 sites in China and the H1N1 dataset consists of 29 weekly
mortality rates in 11 cities in the Northeastern US during the 2008-2009 epidemic. Starting from the
non-loopy CDNs used in [8] (Figures 1(c) and 1(d), shown in blue), we added function nodes and
edges to construct loopy CDNs (shown in red in Figures 1(c) and 1(d)) to construct CDNs capable
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of expressing many more marginal dependencies at the cost ofcreating numerous loops in the graph.
All CDN models (non-loopy and loopy) were learned from data using stochastic gradients to update
model parameters using settings described in the Supplemental Information.

The loopy CDN model was compared via leave-one-out cross-validation to non-loopy CDNs of [8]
and disconnected CDNs corresponding to independence models. To compare with other multivariate
approaches for modelling heavy-tailed data, we also testedthe following:
∙ Gaussian bi-directed (BDG) and Markov (MRF) models with thesame topology as the loopy

CDNs for log-transformed data with̃x = log(x + �i) for �i = 10−i, i = 1, 2, 3, 4, 5, where we
show the results fori that yielded the best test likelihood. Models were fitted using the algorithms
of [3] and [15]. For the Gaussian BDGs, the covariance matricesΣ were constrained so that
(Σ)�,� = 0 only if there is no edge connecting variable nodes�, �. For the Gaussian MRF, the
constraints were(Σ)−1

�,� = 0).

∙ Structured nonparanormal distributions [11], which use a Gaussian copula model, where the struc-
ture was specified by the same BDG and MRF graphs and estimation of the covariance was per-
formed using the algorithms for Gaussian MRFs and BDGs on nonlinearly transformed data. The
nonlinear transformation is given byf�(x�) = �̃� + �̃�Φ

−1(F̃�(x�)) whereΦ is the normal
CDF, F̃� is the Winsorized estimator [11] of the CDF for random variable X� and parameters
�̃�, �̃� are the empirical mean and standard deviation forX�. Although the nonparanormal al-
lows for structure learning as part of model fitting, for the sake of comparison the structure of the
model was set to be same as those of the BDG and MRF models.

∙ The multivariate logistic CDF [13] that is heavy-tailed butdoes not model local dependencies.
Here we designed the BDG and MRF models to have the same graphical structure as the loopy
CDN model such that all three model classes represent the same set of local dependencies even
though the set of global dependencies is different for a BDG,MRF and CDN of the same connec-
tivity. Additional details about these comparisons are provided in the Supplemental Information.
The resulting average test log-likelihoods on leave-one-out cross-validation achieved by the above
models are shown in Figures 2(a) and 2(b). Here, capturing the additional local dependencies and
heavy-tailedness using loopy CDNs leads to significantly better fits (p < 10−8, two-sided sign test).
To further explore the loopy CDN model, we can visualize the set of log-bivariate densities ob-
tained from the loopy CDN model for the rainfall data in tandem with observed data (Figure 2(c)).
The marginal bivariate density for each pair of neighboringvariables is obtained by taking limits
of the learned multivariate CDF and differentiating the resulting bivariate CDF. We can also exam-
ine the resulting models by comparing the mutual information (MI) between pairs of neighboring
variables in the graphical models for the H1N1 dataset. Thisis shown in Figure 2(d) in the form
of undirected weighted graphs where edges are weighted proportional to the MI between the two
variable nodes connected by that edge. For the CDN, MI was computed by drawing 50,000 sam-
ples from the resulting density model via the Metropolis algorithm; for Gaussian models, the MI
was obtained analytically. As can be seen, the loopy CDN model differs significantly from the
nonparanormal and Gaussian BDGs for log-transformed data in the MI between pairs of variables
(Figure 2(d)). Not only are the MI values under the loopy CDN model significantly higher as com-
pared to those under the Gaussian models, but also high MI is assigned to the edge corresponding
to the Newark,NJ/Philadelphia,PA air corridor, which is a likely source of H1N1 transmission be-
tween cities [1] (edge shown in black in Figure 2(d)). In contrast, this edge is largely missed by the
nonparanormal and log-transformed Gaussian BDGs.

5 Discussion
The above results for the rainfall and H1N1 datasets, combined with the lower runtime of JDiff
compared to standard symbolic differentiation algorithms, highlight A) the usefulness of JDiff as an
algorithm for exact inference and learning for loopy CDNs and B) the usefulness of loopy CDNs
in which multiple local functions can be used to model local dependencies between variables in
the model. Future work could include learning the structureof compact probability models in the
sense of graphs with bounded treewidth, with practical applications to other problem domains (e.g.:
finance, seismology) in which data are heavy-tailed and high-dimensional and comparisons to exist-
ing techniques for doing this [11]. Another line of researchwould be to further study the connection
between CDNs and other copula-based models (e.g.: [9]). Finally, given the demonstrated value of
adding dependency constraints to CDNs, further development of faster approximate algorithms for
loopy CDNs will also be of practical value.
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