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ABSTRACT

Cloud services inevitably fail: machines lose power, net-
works become disconnected, pesky software bugs cause
sporadic crashes, and so on. Unfortunately, failure recov-
ery itself is often faulty; e.g. recovery can accidentally re-
cursively replicate small failures to other machines until
the entire cloud service fails in a catastrophic outage, am-
plifying a small cold into a contagious deadly plague! We
propose that failure recovery should be engineered fore-
most according to the maxim of primum non nocere,
that it “does no harm.” Accordingly, we must consider
the system holistically when failure occurs and recover
only when observed activity safely allows for it.

1 FAILURES OF FAILURE RECOVERY

[27] Leap day 2012, Microsoft’s Azure cloud experi-
enced a serious outage when a small number of servers
were killed due to a virtual machine initialization bug
that was incorrectly attributed to hosting servers. Failure
recovery then reincarnated a dead server’s virtual ma-
chines to other healthy servers, unwittingly replicating
the bug across the cluster ad infinitum.

[4] April 2011, Amazon’s EC2 experienced a disruption
when, after a network outage, data store nodes recovered
from the seeming death of their replicas by requesting
storage to create new ones. However, the still-alive repli-
cas held onto data, and hence storage, until these new
replicas were ready, causing storage exhaustion.

[13] September 2010, Facebook disconnected many
users when an invalid configuration value in a database
caused clients to recover by re-requesting it, quickly
overwhelming the database. Failed database queries
themselves then caused invalidation of good configura-
tion values retrieved after the database was fixed, causing
a vicious feedback loop only fixed by a complete reboot.

[17] September 2009, Google’s Gmail suffered a
widespread outage when a few Gmail servers were taken
offline for routine maintenance. Load was underesti-
mated after a recent upgrade so affected request routers
became overloaded. Recovery pushed traffic to other re-
quest routers, causing them to become overloaded them-
selves. Within minutes all routers were overloaded.

2 PRIMUM NON NOCERE

In the previous cases, the cure of failure recovery was
worse than the diseases of failure being treated. Although
these cases might seem exceptional, our investigation
of major outages in the last few years (including [3–
5, 13, 17, 18, 27, 32]) reveals that “death by failure recov-
ery” is a common problem: recovery mechanisms often
amplify and prolong failures rather than resolve them.
Much work has already explored common problems in
distributed systems [6, 14, 19–21, 28, 29] and improving
failure recovery (e.g. [25, 30]); this paper instead focuses
on a much less discussed topic: how can failure recovery
avoid making things worse? Failure recovery should ad-
here to a modified version of primum non nocere:

Given an existing failure, it may be better not
to do something, or even to do nothing, than to
accidentally risk inducing catastrophic failure.

Recovery from failure is just secondary to the goal of not
killing the system. Each event in Section 1 violated this
maxim: Microsoft [27] replicated a machine-killing bug
to many machines; Amazon [4] exhausted storage via
catch-22 replica allocation; Facebook [13] clients over-
whelmed a databases with pointless configuration value
refresh requests; and Google [17] request routers were
recursively overloaded all. On the other hand, no failure
recovery at all would mean tolerating rather than treating
failures–some virtual machine work would be dropped,
data would be inaccessible, configuration values would
be incorrect, and mailboxes would be unviewable–but at
least the systems would continue to work.

Should we seriously consider “do nothing” failure re-
covery, i.e. a placebo? Probably not: we prefer that our
systems actually recover from failures to minimize ser-
vice degradation and maximize availability. The rest of
this paper explores when failure recovery goes wrong
and how it can be safer with respect to “do no harm.”

3 SYSTEMS THINKING

We often design failure recovery to react to specific fail-
ure events in specific parts of a system. However, these
designs lead to unanticipated interactions with the rest
of the system that can result in adverse consequences;
e.g. recovery after correlated failures can easily exhaust



system resources, causing more failures. We observe that
safer failure recovery must emphasize systems think-
ing [11] to consider the context of failure recovery’s re-
lationship and impact on the system as a whole, focusing
on cyclical, rather than linear, cause and effect. The rest
of this section describes significant classes of malignant
failure recovery along with strategies for solving these
problems that involve coarsely assessing non-local sys-
tem conditions before deciding if recovery is reasonable.

Resource Contention

Failure recovery often consumes a significant amount of
resources such as CPU time to access a database, net-
work bandwidth to read or write a replica, and storage
space to replicate data. Consuming these resources is be-
nign if systems are provisioned with enough extra re-
sources in support of failure recovery. Unfortunately, sin-
gle events often trigger many concurrent failures; e.g.,
nodes share software bugs or bad data or, after a power
outage, regain power at the same time. Nodes recover-
ing from the same failure can easily consume the same
resources to the point of exhaustion given that the same
recovery code executes to recover from these failures.

Consider how in April 2011, Amazon’s EC2 (Elastic
Compute Cloud) experienced a significant service dis-
ruption [4] due to a network outage where data store
nodes lost connections to their replicas and mistakenly
assumed that they had died. When the network was re-
stored, these nodes began recovering by rapidly request-
ing disk space to create new replicas. Storage capac-
ity quickly became exhausted given many nodes looking
for new storage, coupled with the unfortunate precaution
that the old replicas, actually still alive, were required
to hold onto replicated data until new replicas replaced
them. Many nodes then became stuck waiting for free
space while clients became stuck waiting for the nodes.

Failure detection often consists of liveness checks
that misdiagnose unresponsive machines as failed be-
cause they are contending for resources. A Microsoft
data center in March 2011 experienced an outage due
to a bug where jobs were not deleted from a persis-
tent queue after being completed by a databus service.
After the databus service was upgraded, many threads
were created to concurrently process all of these stale
jobs, quickly overloading the servers, which were then
detected as dead due to their unresponsiveness. Other
servers began recovery by replicating data that was con-
sidered lost, but were soon detected as dead since the
large amount of replication overloaded them.

In the above examples, failure recovery caused ex-
traordinary resource contention within the system. Be-

yond provisioning and preserving resources for failure
recovery, usage can be throttled to avoid demand spikes,
i.e. “slower is faster.” In both the Amazon and Microsoft
cases, concurrent replications could be restricted in num-
ber so that progress in recovery could occur if albeit more
slowly. Also in the Microsoft case, failure detection was
falsely triggered, which could be alleviated by isolating
the resource usage of failure detection.

Misguided Admission Control
Admission control recovers from service overload by
preventing the processing of new requests. Although this
mechanism has been deeply studied [21, 28], we found
that admission control itself can cause catastrophic fail-
ure by propagating overloading conditions in a globally
overloaded system where rebalancing is not effective.

In September 2009, Google’s Gmail suffered a
widespread outage [17] when a few servers were taken
offline for routine maintenance. Unfortunately, load was
underestimated after a recent upgrade, causing affected
request routers to become overloaded. Recovery mecha-
nism redirected all traffic to other request routers, which
then became overloaded themselves. All request routers
eventually became overloaded, causing an outage until
more capacity was added.

As another example, consider a Skype outage [32]
in December of 2010 when 20% of all Skype clients
crashed because of a software bug. These crashes, not
catastrophic in themselves, affected 25%–30% of all
clients that acted as “supernodes” by providing directory
services. Given the many failed supernodes combined
with many crashed clients restarting and accessing di-
rectory services, the remaining supernodes became over-
loaded and, as a form of admission control, were shut-
down to protect their hosting machines—the system was
trapped in a catastrophic feedback loop.

Although admission control policies are often correct
locally, they are less robust within the context of the en-
tire system that can be entirely overloaded. In this case,
admission control should not introduce a drastic phase
change in traffic volumes for servers. Rather than deny
admission completely, admission control should steady
a server’s processing rate, and deny the incoming traffic
that is beyond the capacity of the server.

Misidentified Failure Scope
Failure recovery can unintentionally amplify failures by
misidentifying the cause, or scope, of a failure and taking
unnecessary recovery action. In many cases, recovery ac-
tion leads to the same failure occurring again, creating a
vicious feedback cycle between failure and recovery ac-
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tions that quickly brings the system to its knees. Recov-
ery actions that replicate or reincarnate jobs are particu-
larly dangerous because they provide a vector for failure
contagion; i.e. spreading a failure throughout the system.

Consider Microsofts Azure 2012 leap day out-
age [27] that was caused by a bug that prevented vir-
tual machine initialization. While not fatal in itself, the
system incorrectly attributed the bug to the virtual ma-
chines hosting server, killing it and all virtual machines
on it. Failure recovery then reincarnated these virtual ma-
chines to other healthy servers, unintentionally replicat-
ing the same bug to these servers, causing more server
shutdowns and more reincarnations to healthy servers,
ad infinitum until catastrophic failure occurred.

In September 2010, Facebook suffered a serious out-
age [13]. An automated system fixes invalid configura-
tion values in a cache by replacing them with fresh values
from a database. In this case, however, the configuration
value in the database was itself invalid, causing clients to
continuously recover by requesting it from the database,
which quickly became overwhelmed. Worse still, the un-
responsive database was detected as failed by clients,
causing continued cache invalidation and further recov-
ery even as the value had already been manually fixed in
the database. The system entered a vicious feedback loop
that was only stopped through a complete shutdown.

Failure misidentifications are bugs in failure recov-
ery logic that are difficult to detect and fix proactively
because they arise from difficult-to-anticipate or unusual
failure scenarios. Beyond more carefully identifying the
cause and scope of failures, failure recovery should also
be aware of how failures were identified so positive feed-
back cycles can be detected. When a feedback cycle is
detected, failure recovery can decide that an intended re-
covery action is doing more harm than good, and instead
do nothing. Such an action does not resolve the real fail-
ure, but it frees up resources needed to resolve the failure
manually without taking down entire systems.

4 OTHER RECOVERY PROBLEMS

The following misbehaviors are not direct cases of failed
failure recovery, but are related in adverse effects.

“Recovered” Software Bugs
Failure recovery can hide rare software bugs as a side
affect so that the system can continue working. This is
good for maintaining the system’s availability but can
hide bugs from developers. Take the Amazon case [4]
above as an example: when a large number of replica
groups were aggressively searching for storage space to
restore “stuck” replicas, a race condition was triggered

causing even more nodes to become stuck, leading to an
eventual brownout. It is likely that this race condition had
manifested before but was masked by failure recovery.

As another example, a Google Paxos cluster was mis-
configured such that one of the replica could never join
the replication group successfully because its identity
was misspelled in the config file [8]. Paxos can toler-
ate failures from less than majority of group members,
which therefore masked this configuration error. How-
ever, the system’s resilience to failure is degraded from
two server failures to only one, making it less reliable.

As shown in the above cases, failure recovery masks
software bugs, making systems more fragile during fail-
ure recovery. Even worse, these bugs often surface when
the system is in a critical state. It is then unwise to
cover up these bugs using failure recovery, and we advo-
cate that an audit mechanism should be present to check
whether the recovered failure is previously known or not.

Service Dependency

A dependency between two subsystems can result in fail-
ure amplification when a failure in one propagates to the
other. The dependencies can either be explicitly designed
or inadvertently introduced due to hidden resource shar-
ing between otherwise independent services.

Many popular distributed database services are built
on top of replicated file systems: consider Google’s
BigTable [10] on top of the Google File System
(GFS) [10]; Amazon’s Replicated Database Service
(RDS) [2] on top of the Elastic Block Service (EBS) [1];
and Microsoft Azure’s table abstraction on top of its
stream layer [7]. Although such layering simplifies han-
dling of failure in the upper layer, it does not consider
the intricate interplay between layers during failure. In
the above Amazon case [4], a large number (13%) of the
underlying EBS services were down due to a network
misconfiguration. However, there was a much bigger por-
tion of the RDS population (e.g., 41%) that was “stuck”
in IO than the corresponding failed EBS volume popula-
tion. This occurred because one RDS instance makes use
of multiple EBS volumes, meaning that failure in any of
the participating EBS volumes can make the RDS un-
available. Ironically, one goal of making use of multiple
EBS volumes should be fast failure recovery as the sys-
tem can copy the state from multiple places simultane-
ously, which however in this case amplifies failure.

The same Amazon case above also provides an exam-
ple of a failure propagation between seemingly indepen-
dent services. RDS and EBS clusters belonging to differ-
ent availability zones (AZ) used the same control plane;
failures in one AZ quickly saturated request queues in the
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shared control plane. This blocked requests to other AZs,
in effect propagating the failure across fault domains.

One way to alleviate this problem is to remove and
degrade service dependencies when possible; e.g. the re-
covery of the replication groups in replicated file systems
can be autonomous using Paxos [24] instead of count-
ing on a meta service as a commanding brain. When a
dependency is indispensable, service dependencies must
be managed carefully to avoid any potential failure am-
plification. For example, in a layered design, small set of
machines can be organized into “containers,” where the
instances of the upper layer in a container depend only
on the instances of the lower layer in the same container.
This kind of alignment allows for a constrained, yet
still effective, parallel recovery, while at the same time
preventing failure from propagating beyond container
boundaries. Similarly, when multiple services are shar-
ing the same resource, such as a request queue, carefully-
designed admission-control policies should isolate one
service from excessive resource usage by the other.

5 TOWARDS SAFE FAILURE RECOVERY

Section 3 discussed how common failure recovery prob-
lems can be mitigated by reacting more conservatively
according to global system contexts. Unfortunately, this
insight is not a panacea: as a distributed system is very
complex, how could failure recovery ever know enough
about its system context to decide if it is doing more harm
than good? We close this paper with potential research
directions that could help ensure more safety through au-
tomatic detection of failure recovery problems.

Global Reasoning with Abstract Models
As failure amplification requires global system reason-
ing, one possible approach is to build and analyze ab-
stract models of the whole system. We first explore solv-
ing this problem with system dynamics [15] that aims to
understand complex system behavior over time by deal-
ing with internal feedback loops and time delays that af-
fect an entire system. Figure 1 shows a graph for a sim-
plified model of system dynamics for Section 3’s Skype
case [32] that demonstrates the consequences of mis-
guided admission control. The graph is a causal loop di-
agram where vertices are key variables in the system and
edges represent feedback between two connected vari-
ables. When the number of live Skype supernodes de-
creases, the number of disconnected regular nodes in-
creases (minus “-” sign edges). Similarly, when the num-
ber of disconnected regular nodes increases, the number
of regular nodes that are trying to connect to supern-
odes also increases (plus “+” sign edges). The admis-
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Supernode# 

Disconnected
Regular Node#

Connecting
Regular Node#

Connected
Regular Node#

- -
> THRESHOLD

-
<= THRESHOLD

+ +
A

B

Figure 1: A simplified Skype model using System Dynamics.

sion control policy is depicted as two outgoing edges
from Connected Regular Node#: when the number
of the regular nodes connected to a supernode exceeds a
THRESHOLD, the supernode shuts down and so decreases
the number of live supernodes; when the threshold is not
exceeded, the regular nodes connect successfully there-
fore the number of disconnected regular nodes decreases.
We then find two A and B feedback loops in the graph.
Feedback loops with an odd count of - transitions [23]
are negative that result in a stable system, while loops
with even count represent self-reinforcing processes that
can destabilize the system. When the system triggers the
B feedback loop, the number of live supernodes can even-
tually approach zero, causing service outage.

Our experience reveals several challenges with this
abstract modeling approach. (i) The variables required in
the model are not directly present in the system design
documents or implementations as the latter usually fo-
cuses on single node behavior, while the former requires
variables that represent global system state. (ii) Precise
analysis of the model requires quantitative relationships
between key variables. Moreover, some of these rela-
tionships involve sets of discrete values; e.g. replication
group membership in the Amazon EC2 case. One pos-
sible approach is to extend system dynamics with Petri
Net [16]. (iii) The system contains multiple behavioral
phases represented by different relationships between
system components. A simple example is a request queue
filling up on load, resulting in increased latency, but once
full, the queue starts dropping requests. (iv) The model
must explicitly define what is failed failure recovery. Al-
though easy for System Dynamics (as positive feedback
loops), it is difficult for others like Petri Nets.

Finally, inferring a model automatically and keep-
ing it consistent as the system evolves is challenging.
Our initial effort at automatically inferring a model
through disciplined intervention experiments [12] pro-
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Figure 2: Automatically inferred model of failure propagation
across different availability zones.

vided promising results. Figure 2 shows the inferred
model in a failure scenario similar to the Amazon EC2
failure on our own distributed storage system. For in-
stance, by injecting artificial latency to requests in avail-
ability zone (AZ) 1 in Figure 2, we are able to infer that
the control plane queue length increases. Surprisingly,
we also discovered that such intervention produces ex-
traneous “Heisenberg” dependencies; e.g. by increasing
thread utilization in a machine artificially, we inadver-
tently reduced the utilization of downstream services as
the slow machine sent less requests. Pruning such false
dependencies in the inferred model remains challenging.

Testing and Model Checking

Runtime testing is limited because it is always incom-
plete and the system is not under failure recovery’s
control. As a result, some failure scenarios cannot be
produced as expected even with failure injection tech-
niques. Implementation-level model checking such as
MoDist [33] addresses this problem by controlling the
whole environment (e.g. scheduling, network message
lost, and ordering) through an extra layer that intercepts
system calls between the distributed system and the un-
derlying operating system. Our experience productizing
MoDist reveals that real systems may use undocumented
APIs or shared memory to boost system performance,
imposing many challenges for using MoDist. However,
for many popular cloud services such as distributed stor-
age systems and large-scale, data-parallel computation
engines, such complexity is unnecessary. In fact, these
systems can easily be built on top of a small program-
ming model that includes only network messaging, disk
IO, thread pools, locks, and timers; see the Tribble [22]
project that implements many of these systems.

To further support model checking for failed failure
recovery, our experience indicates that the challenges lie
in the fidelity of: (i) injected failures, especially corre-
lated failures occurring on multiple nodes; (ii) simulated
high workload. We adopt simulated “symbolic” work-
loads to avoid state space explosions, and our prototype
is then feasible due to a small programming model.

Runtime Global Monitoring
The proposals in Section 3 require monitoring global sys-
tem state to detect and prevent outage. However, such
monitoring is distributed and fragile to common dis-
tributed system failures. Our past experience with online
distributed system checkers like D3S [26] suggests the
following challenges to address: (i) consistency between
the world learned by the target system and the world
learned by the monitoring facility, including both the sin-
gle node state (e.g. if a node is dead) and the state across
multiple nodes (e.g. if the invariance between variable
A on node X and variable B on node Y holds); (ii) real-
time state report for quick decision making even when
the system is overloaded; (iii) fault-tolerance.

Existing failure detection mechanisms in the target
system can be reused to ensure local node state consis-
tency; state reports can be attached to failure detection
messages to achieve timeliness; distributed consistent cut
algorithms, e.g. Chandy-Lamport [9] as adopted in D3S,
can guarantee global state consistency; and streaming en-
gines [31] can aid with reliability. Recent work by Pi-
geon [25] provide a good starting point by echoing these
challenges of accuracy, timeliness, and coverage.

6 CONCLUSION

Failure will occur and so failure recovery is an integral
part of a fault-tolerant cloud service. Unfortunately, fail-
ure recovery can cause more problems than it solves, and
so must be engineered explicitly according to a “do no
harm” requirement. Our work focuses and classifies var-
ious failure recovery misbehaviors, and proposes using
more global reasoning about the system as opposed to
local reasoning about the failure. Preventing failure re-
covery from going bad will become a more important re-
search topic as service availability becomes a point that
cloud service providers are increasingly judged on.
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