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ABSTRACT
K42 is an open-source scalable research operating system
well suited to support systems research. The primary goals
of K42’s design that support such research include flexibility
to allow a multitude of policies and implementations to be
supported simultaneously, extensibility to allow new policies
and implementations to be readily added, and scalability to
enable good performance for both small and large applica-
tions on both small and large multiprocessor systems. The
goals are accomplished via key features including an object-
oriented structure that allows specialized resource manage-
ment implementations and policies on a per-resource, per-
application basis, implementation in user-level servers of
much of the system functionality, and a sophisticated set
of underlying services that provides a programming model
for developing system software in a scalable and modular
fashion.

These characteristics make K42 an attractive framework
for prototyping new operating system ideas. In addition,
K42 has a sophisticated performance monitoring infrastruc-
ture allowing a thorough understanding of new ideas to be
gained. The above framework combined with a consistent
emphasis on scalability makes K42 well suited for high-end
computing initiatives. In this paper, we describe the struc-
ture of K42 which contributes to the advantageous proto-
typing environment, and demonstrate how to utilize it by
describing ongoing research efforts.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design

1. INTRODUCTION
There is a mismatch between resource management on com-
modity operating systems and the requirements of large sci-
entific applications [2] defined by the High End Comput-
ing (HEC) community. As in other areas of computing,
researchers in HEC recognize the value of specializing the
operating system (OS) to address their unique requirements
such as scalability, fault containment, and memory hierarchy
management. Current efforts in supporting new program-
ming models for HEC systems (e.g., X10 [16], Chapel [15],
and Fortress [3]) can benefit from operating systems sup-
port of new customized interfaces, mechanisms, and poli-

cies. Long-lived applications common in HEC environments
benefit from resource management policies that can change
as the application goes through different phases.

The benefits obtained by customizing operating system ser-
vices are attractive. However, OS specialization is hindered
by the fact that operating systems are complex and their de-
velopment and maintenance is expensive. Sustainable spe-
cialization will be more readily achievable given a model that
enables customization in a first-class manner.

Current commodity operating systems were not designed to
scale or to accommodate specialization; most of their com-
ponents utilize global data structures and global policies.
Some of their sub-systems, e.g. the Virtual File System
(VFS) layer [26], are based on a more modular design and
have supported a higher degree of customizability. In gen-
eral though, existing systems have been shown to be difficult
to configure or adapt beyond the basic workloads that were
targetted. For example, the work on scaling commodity op-
erating systems for a large number of processors has shown
that scheduling and memory management algorithms that
work well on small machines may need significant changes to
perform reasonably on larger configurations [14]. This form
of specialization requires much effort and is unlikely to be
re-incorporated into the main code-base because it does not
address mainstream workload scenarios. In the open-source
community, major variants to a mainline Linux kernel are
implemented as patches. The difficulty in specializing Linux
is illustrated by the nature of these patches, where changes
are scattered throughout the kernel sources. For example,
the resource management changes done in VServer [1] to iso-
late users from each other on time-shared servers modifies
211 files and introduces 40 new ones, the device driver recov-
ery provided in the Nooks [37] project includes 108 modified
kernel files and 68 new files [20].

Research on customizable and extensible operating systems
such as Exokernel [19], Spin [11], Vino [35], and K42 [8, 36]
has demonstrated that performance gains can be achieved if
the operating system is customized to the needs of specific
applications. In contrast to K42, the approach taken by the
other projects did not allow for an environment where exist-
ing mainstream applications could run. Thus, K42 provides
a good opportunity for users with significant existing appli-



cations to explore the impact of potential OS customizations
on their applications.

Because we have taken the strategy of providing Linux ABI/-
API functionality in K42, a large number of Linux bina-
ries already execute on K42. We have run applications and
benchmarks such as Apache, dbench, most of SPEC SDET,
SPECfp, SPECint, UMT2K, an ASCII nuclear transport
simulation, test suites such as LTP (Linux Test Project),
the J9 Java virtual machine, SPECjbb, SPECjvm, and the
DB2 database management system. Support for unhandled
system calls may be added on a case-by-case basis to get a
particular application running.

K42 contributes to exploring HEC specialization in the fol-
lowing ways:

1. as a framework where specialized resource manage-
ment approaches can be easily prototyped and eval-
uated through the execution of relevant workloads;

2. as an environment where the experiences and perfor-
mance data gained with the above approaches provide
a stronger case for incorporating that approach into a
mainstream operating system;

3. as a design supporting customization of services thereby
allowing for a better understanding of the trade-offs in
design flexibility. This knowledge can be useful for
determining ways of incrementally changing existing
commodity operating systems to allow for more spe-
cialization.

This paper discusses K42’s support for implementing cus-
tomized services and describes ongoing projects using and
supporting those services. Section 2 presents the aspects
in K42’s design that enable flexibility and simplify the ex-
perimentation work needed to evaluate new ideas. Section 3
illustrates how the infrastructure is used to explore dynamic
adaptation of services. Section 4 describes examples of on-
going operating system research projects by collaborators
using K42. Section 5 discusses advantages and disadvan-
tages of K42’s infrastructure, and Section 6 concludes.

2. K42’S STRUCTURE
K42’s goal was to start with a “clean slate” and examine the
system structure needed to achieve excellent performance in
a scalable, maintainable, and extensible system. We aimed
at fully supporting existing applications, therefore we did
not introduce a new OS personality, but instead made K42
fully Linux API- and ABI-compatible [5].

K42 has explored new approaches in memory management,
scheduling, inter-process and intra-process communication,
event management, file systems, performance monitoring,
scalable data structures, and dynamic adaptation [27]. In
this paper we focus on the design characteristics that di-
rectly impact the customization of services.

The entire system has been designed with an object-oriented
approach. Each virtual resource (e.g., virtual memory re-
gion, network connection, file, process) and physical resource

(e.g., memory bank, network card, processor, disk) is man-
aged by a different set of object instances. Each object en-
capsulates the meta-data necessary to manage the resource
as well as the locks necessary to manipulate the meta-data.
We avoided global locks, data structures, and policies. We
adhered to a very modular design in order to simplify the
addition and evaluation of alternative resource management
strategies. By pursuing the separation of concerns, we en-
able developers to easily add new implementations without
requiring an understanding of the entire system and to con-
fine the impact of these changes to the specific set of modi-
fied components.

K42 provides an enhanced object-oriented model, called clus-
tered objects [6, 21], that can improve access locality by en-
abling selective partitioning, replication, and distribution of
object implementations. The systematic integration of sup-
port for flexible data distribution on a per-object basis has
yielded a simpler, incremental approach to scalable system
design and implementation. The clustered object infrastruc-
ture facilitates the addition of new scalable services by al-
lowing the developer to focus initially on functional aspects
through a non-distributed version, and then extend the im-
plementation incrementally (for example, on a per-method
basis) to a distributed version.

K42’s object model introduces technology to simplify the
synchronization of object access and destruction. Tradition-
ally, the error of using a stale pointer to deleted storage is
avoided by existence locks or use counts to protect pointers.
Full-scale garbage collection can also solve this problem, but
is not appropriate for low-level operating system code. K42
uses an independently-developed mechanism similar to read
copy update (RCU) [29], in which deletion of K42 objects
is deferred until all currently running threads have finished.
This mechanism results in a programming style where an
object releases its locks before calling a method of another
object, thus improving base system performance, increas-
ing scalability, and eliminating the need for complex lock
hierarchies and the resulting complex deadlock avoidance
algorithms.

K42 is structured around a client-server model. Much of
the functionality traditionally implemented in the kernel or
servers is moved to libraries in the application’s address
space. For example, all thread scheduling is done by a
user-level scheduler library that is linked into each process.
This design supports flexibility on a per-application basis.
The specialization of services for a class of applications (e.g.,
games, scientific applications, databases, JVMs) is achieved
by choosing the objects that are appropriate for the require-
ments and packaging them into a library. Security is not
affected because only information that would have been ac-
cessible to an application is stored in the library. Overhead
is reduced in many cases because crossing address space
boundaries to invoke system services can be avoided. Also,
space and time is consumed in the application rather than
in the kernel or servers. For example, an application can
have a large number of threads or file descriptors without
consuming any additional kernel memory.

As multi-core chips become more prevalent, the scalability of
the operating system becomes an important issue. K42 has



been designed to achieve good multiprocessor performance
by maintaining the following characteristics. (1) Indepen-
dent requests to different resources proceed independently
because there are no shared data structures to be traversed
and no shared locks to be accessed, (2) locality is maintained
for resources accessed by a small number of processors, and
(3) the use of clustered-object technology allows widely-
accessed objects be implemented in a distributed fashion.

Because we designed the system from scratch, we were able
to integrate tracing and performance monitoring from the
earliest stages, allowing an efficient, unified, and scalable fa-
cility [39]. This infrastructure encompass all aspects of the
software stack, providing for correctness debugging, perfor-
mance debugging, and performance monitoring of the sys-
tem. The infrastructure allows for cheap and parallel logging
of events by all levels of the system including applications,
libraries, servers, and the kernel. This event log may be ex-
amined, written to disk, or streamed over the network, all
while the system is running. Information in the trace events
can be used to determine system behavior characteristics
that are useful for driving further specialization of services.

3. K42’S SUPPORT FOR DYNAMIC ADAP-
TATION

The elements of K42’s design described in Section 2 are in-
strumental in providing a framework for implementing spe-
cialized services, experimenting with them, and enabling ap-
plications to deploy the best-suited implementations. Al-
though this support for static configuration of system ser-
vices is useful, a more dynamic mechanism is sometimes
needed. There are many applications that can benefit from
further specialization of services when decisions are based
on information available exclusively during execution.

K42 addresses the need for dynamic adaptation by pro-
viding mechanisms to replace object implementations on-
the-fly. K42’s dynamic customization mechanisms are hot-
swapping [36] and dynamic update [8, 9]. Hot-swapping al-
lows individual object instances, that are used to imple-
ment a service, to be tuned to varying service demands.
Hot-swapping replaces an active component instance with a
new component instance that provides the same interface.
To maintain availability and correctness of the service pro-
vided, the new component resumes from where the old one
had paused. Internal state from the old component is trans-
fered to the new one, and external references will resolve to
the new object. Thus, hot-swapping allows component re-
placement without disrupting the entire system and does not
place additional requirements on the clients of the compo-
nent. Dynamic upgrade uses hot-swapping to replace all ob-
jects in the system providing a given service. If an upgrade
was made to the object representing a process, for example,
dynamic upgrade would replace all objects in the system
that represented each process. Thus, it can be viewed as
the hot-swapping of classes rather than objects.

In the High End Computing arena, hot-swapping is useful to
address application behavior characteristics that depend on
input data or vary as the application progresses through its
processing phases. Dynamic upgrade is valuable for apply-
ing changes to the overall system (affecting all applications
using the code being updated) without interrupting long-

running applications to reboot the system.

The following adaptation scenarios illustrate how the sup-
port for flexibility in K42 can be leveraged to handle dy-
namic application requirements, implementing specialized
resource management policies not available in commodity
operating systems today.

1. Performance optimization for common cases:

For many OS resources the common access pattern
is simple and can be implemented efficiently. How-
ever, the implementation becomes expensive when all
complex corner cases must be supported. Dynamic re-
placement allows efficient implementations of common
paths to be used when applicable and less efficient un-
common implementations to be switched in when nec-
essary.

An example of this scenario is the support for file shar-
ing. While most applications have exclusive access to
their files, occasionally files are shared among a set
of applications. In K42, when a file is accessed exclu-
sively by one application, an object in the application’s
address space handles the file control structures, al-
lowing it to take advantage of mapped file I/O. When
the file becomes shared, a new object dynamically re-
places the old, specialized object. This new object
communicates with the file system to maintain the con-
trol information, handling the sharing requirements.
This customization results in a 34% performance im-
provement [36] for Postmark, a benchmark designed to
model a combination of electronic mail, netnews, and
web-based commerce transactions [24].

Other examples where similar optimizations for the
most-common case are possible are a pipe with a single
producer and consumer (in which case the implemen-
tation of the pipe can use shared memory between the
producer and consumer) and network connections that
have a single client on the system (in which case zero-
copy communication can proceed between the server
and the client.)

2. Optimizing for file attributes: Several specialized
file system structures have been proposed to optimize
file layout and caching of files with different attributes
[28, 34]. Dynamic replacement can take advantage of
these different structures by implementing each and
switching between them when appropriate.

For example, while the vast majority of files accessed
are small (< 4KB), OSes must support both large files
and files that grow. Dynamic replacement can take
advantage of file size characteristics to optimize ap-
plication performance. In K42, in the case of a small
unshared file, an object in the application’s address
space services requests to that file thus reducing the
number of interactions between the client and file sys-
tem. Once a file grows to a larger size, the implemen-
tation is dynamically switched to another object that
communicates with the file system to satisfy requests.
Running the Postmark benchmark with the small-file
cache optimization resulted in a 40% improvement on
top of the exclusive-use optimization improvement of
34% [36].



3. Access patterns: There is a plethora of literature fo-
cused on optimizing the caching and prefetching of file
blocks and memory pages from disk based on applica-
tion access patterns [23, 25]. Researchers have shown
up to 30% fewer cache misses by using the appropri-
ate policy. Hot-swapping can exploit these policies by
interposing monitoring code to track access patterns,
and then switching between policies based on the cur-
rent access pattern.

4. Exploiting architecture features: Many features
of modern processors are under-utilized in today’s multi-
platform OSes. To ensure portable code, without mak-
ing global code paths unduly complex, these features
are generally either crippled or ignored entirely be-
cause implementers need to provide a single implemen-
tation to be used across all platforms. For example,
there is only limited support today for large pages even
though a large number of processors support them.
Hot-swapping makes it easier to take advantage of
architectural features because special-purpose objects
can be introduced and used without requiring that all
corner case functionality be implemented in every ob-
ject.

5. Multiprocessor optimizations: In large multipro-
cessor systems, parallel applications can benefit from
processor locality. To exploit this locality, some OSes
implement services in a partitioned fashion. However,
these partitioned implementations consume more mem-
ory and incur larger overheads on some operations,
e.g., file destruction and process destruction. Con-
versely, shared implementations can minimize space
and time overheads for sequential applications. With
hot-swapping, service implementations can be dynam-
ically selected to better match the state of the system
and the dynamic behavior of the applications.

6. Enabling client-specific customization: Extensi-
ble OSes offer new interfaces that enable clients to
customize OS components. By using components op-
timized for a particular application, it is possible to
achieve significant performance improvements in a va-
riety of system services [11,19,32,35]. For example, the
Exokernel’s Cheetah web server demonstrated factor
of two-to-four increases in throughput from network
stack and file cache specializations [22]. Hot-swapping
enables extensibility by allowing applications to re-
place OS components. Hot-swapping improves upon
most existing extensible systems by allowing on-the-
fly switching as well as replacement of generic system
components. On the other hand, previous extensible
systems enabled safe extension of the OS, whereas hot-
swapping requires trusting the loaded code.

7. Exporting system structure information: Tech-
nologies such as compiler-directed I/O prefetching [13]
and storage latency estimation descriptors [30] have
shown over 100% performance increases for applica-
tions, but require detailed knowledge about the state
of system structures. Inserting the necessary profiling
information can affect the performance of applications
that do not require this information. Hot-swapping
allows applications to gather more information about

the state of system structures by interposing monitor-
ing objects into the kernel. By inserting these moni-
tors only when applications will benefit, overall system
performance will not degrade. Without hot-swapping,
the additional cost of monitoring and increased system
complexity hampers a researcher’s ability to consider
algorithms designed for rare conditions that may be
important for certain applications.

8. Supporting specialized workloads: With existing
monolithic systems, optimizations introduced for one
workload often negatively impact the performance of
other workloads. One strategy being considered by
some groups is to ship multiple versions of an OS,
where each version is tuned for a particular critical
workload. Another approach is through incremental
specialization, where specific portions of the kernel are
recompiled to optimize them for a particular work-
load. Using incremental specialization, Pu et al. re-
ported performance improvements as high as 70% for
small amounts of data read from files [33]. Using hot-
swapping, the system can dynamically select or replace
these optimized components to handle each specific
workload.

4. ONGOING PROJECTS
This section highlights some of the projects investigating
new operating system ideas using the K42 platform.

CMP/SMT
K42 is currently being used as a research platform for ex-
ploring the impact of chip multiprocessor (CMP) and si-
multaneous multithreading (SMT) processor architectures
on operating system design. The goal of this research is to
obtain higher performance by exploiting the new hardware
properties of these processors from an operating systems
perspective. As the number of processor cores on an in-
tegrated chip increases, performance scalability issues will
also arise. Established scalability techniques on traditional
shared-memory multiprocessors may be applicable in many
cases. In other cases, new techniques will need to be de-
veloped because the new hardware properties of these pro-
cessors may invalidate past assumptions and design deci-
sions. Currently, modifications to the K42 scheduler are
being explored in an attempt to exploit the significantly
lower costs of execution and data migration among pro-
cessor cores within a single integrated chip. The two-level
scheduler design of K42, inspired by Anderson et al. [4],
separates user-level thread scheduling within an application
from kernel-level process scheduling across different applica-
tions. The advantage of this design is that it suggests a log-
ical strategy of investigating migration possibilities among
threads within a process separately from migration possi-
bilities among processes. Migration at each level has dif-
ferent challenges, costs, and benefits. After exploring each
level, a structured integration and interaction of these two
dimensions can be examined. In summary, K42 facilitates a
divide-and-conquer strategy in this study.



Resource Containers
Resource containers, originally proposed by Banga et al. [7],
were explored on the K42 research platform by a team at
the University of Toronto. The resource container mecha-
nism was implemented to track processor and memory usage
on K42. The microkernel design of K42, where the operating
system consisted of (1) a small exception-handling compo-
nent, (2) a fast inter-process communication (IPC) mecha-
nism, and (3) user-level servers to provide operating system
services, led to two advantages in choosing K42 as the re-
search platform in this study. First, the interaction model of
the microkernel, servers, and applications, all via IPC, natu-
rally suggested a simple model for resource container trans-
fer and tracking; resource containers are remapped upon
IPC events. Second, the microkernel design of K42 mini-
mized the amount of time that would have otherwise been
spent in the kernel of a monolithic operating system. This
property helped to reduce resource container design com-
plexity and potential resource accounting leakage. During
execution within a monolithic kernel, tracking resource us-
age is a more complex task due to the global pooling of
resources and task multiplexing. A major disadvantage of
K42 in this study was the two-level scheduler design, which
closely follows the ideas of Anderson et al. [4]. Although
a two-level scheduler offers flexibility, it was a source of
complexity for resource container integration. In a mul-
tithreaded server application, such as a file-system server,
where each thread belongs to a different resource container,
thread switching at the user-level scheduler requires notify-
ing the kernel of a corresponding resource container switch
in order to maintain accurate resource accounting. This
requirement would eliminate the fast, light-weight thread
switching advantages of a user-level scheduler. In a tradi-
tional one-level scheduler, resource containers can be switched
and resource limits can be enforced while executing in kernel
space, since thread switches are done at the kernel level.

Dynamic Update of Operating Systems
At the University of New South Wales, K42 is being used
for experimenting with dynamic update for operating sys-
tems [9]. The ultimate goal of this work is to be able to
take any update to the OS and apply it to a running system
without loss of service. The choice of K42 as an experi-
mental platform for this work was motivated primarily by
its support for hot-swapping, but additional unanticipated
advantages were found in the process.

In order to be able to update a system, and to contain and
reason about the effects of the update, it is necessary to be
able to define an updatable unit with well-defined interfaces
and boundaries. K42’s object-oriented structure was found
to be extremely useful here; objects are the natural choice
for the updatable unit, and the strong data encapsulation
enforced by the object-oriented design allows us to update
data structures and data formats with ease. In contrast,
in considering the application of the same features to Linux,
the research team found that Linux’s lack of clearly enforced
module boundaries or data encapsulation, while surmount-
able in many cases, made dynamic update more complex to
implement [10].

File Systems
K42 was used at the University of Toronto as a research
platform for examining file-system scalability on large-scale
shared-memory multiprocessors [38]. In order to focus solely
on the file system and to push this component to its scala-
bility limits, a provenly scalable operating system, such as
K42, was needed. Using K42 meant that the underlying
software infrastructure, which is used by file system, would
not be a bottleneck point. Any scalability problems would
be exclusively due to the file system component. Useful
scalable infrastructure provided by K42 included: (1) the
locality-sensitive memory allocation facilities, and (2) lock-
ing facilities optimized for scalability. Experience in this
study showed that K42 (1) provided a scalable operating
system that never became the bottleneck point and (2) no
fundamental design-incompatibility issues were encountered
between K42 and the file system. However, because K42
was in its early development stages during the study, well-
known standard benchmarks and applications could not be
executed on this platform. Since then, K42 has matured to
be capable of running the desired workloads.

A project at the University of São Paulo advanced the cus-
tomization support in K42’s File System (KFS). KFS is a
fine-grained adaptable file system that is customizable at the
granularity of files and directories, allowing K42 to satisfy
the requirements and usage access patterns of various work-
loads [17]. In KFS, each file or directory may have a custom-
tailored service implementation, which can also be replaced
on-the-fly. By doing so, KFS addresses the difficulties found
in traditional file systems, which are typically designed to
handle a specific set of requirements and assumptions about
file characteristics, expected workload, and usage and failure
patterns. This project extended KFS to include meta-data
snapshotting, allowing it to have the properties of a jour-
nalled file system but with significantly lower performance
overhead. KFS was shown to induce less overhead than a
write-ahead journalling file system and to scale better as the
number of clients and file system operations increases [17].
This effort also resulted in KFS becoming available as a file
system for Linux 2.4 with reasonable performance.

Memory Fragmentation
A team at the IBM Linux Technology Centre in Australia
is currently investigating a new memory management tech-
nique to reduce memory fragmentation and better support,
for example, large-pages. Memory is allocated to a consumer
(e.g., a process or group of files) in larger (variable-sized)
chunks and then internally sub-allocated by the consumer
as necessary. All memory given to a single consumer has
the same expected lifetime, e.g., the computation memory
handed to a process has the expected lifetime of that pro-
cess. Hence, allocating contiguous memory to a consumer
naturally avoids fragmentation. Preliminary results are very
promising. We also expect, once we have tuned the imple-
mentation, that allocating and managing memory in larger
units will result in performance improvements due to re-
duced synchronization and more cache-friendly data struc-
tures.

Although ultimately aimed at being implemented in Linux,
K42 was chosen as the platform to prototype this idea be-
cause its object-oriented design was naturally suitable to



this effort. In K42 there are already objects that represent
the key consumers, and requests to allocate memory already
go through these consumers. Hence, caching chunks in these
consumers and causing them to allocate memory in chunks
was a very natural effort. If we determine that the benefits
are large enough, we will do the much larger work to transfer
this technique to Linux.

HEC Support
The SmartApps [18] project offers a framework to achieve
application-centric optimization through dynamic algorith-
mic adaptation, reconfiguration of system parameters, and
tuning of operating system services. SmartApps is integrat-
ing K42’s support for specialization of services into a mid-
dleware stack designed to monitor application behavior and
determine beneficial application restructurings.

At the Lawrence Berkeley National Laboratory, researchers
are leading an effort to investigate the operational architec-
ture of large-scale operating systems by extending the K42
research to clusters.

Researchers at the University of New Mexico are leverag-
ing K42 to support specialized workloads and client cus-
tomizations in the HEC environment. HEC applications are
resource constrained and therefore their performance is de-
termined by the policies and mechanisms under which these
resources are managed.

This research leverages client customization support in K42
to provide HEC applications with: (1) finer-grained control
of resources, and (2) the ability to reconfigure and relocate
OS services. Memory is an example of a resource in which
finer-grained control is beneficial in HEC applications. In-
efficient memory management policies can have a negative
performance impact on HEC applications. As an example,
MPI applications communicate with other nodes through
internal local buffers of the application. The MPI specifica-
tion does not dictate the location of communication buffers
that must reside in the application address space. Many
HEC network interface cards (NICs) are capable of directly
writing and reading data to or from an application’s ad-
dress space. However, these communication buffers must be
pinned, i.e., page mappings must be fixed and present in
memory, before the NIC can access them.

Traditional MPI implementations require kernel interaction
for the pin operation and therefore incur significant over-
head. This overhead includes time to trap into the kernel,
walk and modify page-table entries, and populate pages in
memory (possibly involving swap operations). As communi-
cation buffers change throughout the course of the applica-
tion these operations will adversely affect performance. The
kernel cannot infer a priori the application’s communication
patterns, and therefore cannot optimize memory manage-
ment usage. In contrast, an application knows its commu-
nication patterns and can achieve better performance using
this knowledge. For example, it can maintain an appropri-
ately sized pool of permanently pinned memory which it
can manage for communication operations and thus better
utilize memory resources. Furthermore, an application can
take advantage of memory optimizations such as large page
support, specialized page replacement and pinning policies,

etc., based upon its communication patterns.

Additionally, HEC applications can benefit from the ability
to reconfigure and relocate OS services based on usage pat-
terns and availability. One such example is cache injection,
which allows a device to put data directly into a processor’s
cache, bypassing an expensive fetch from memory. This re-
search focuses on the infrastructure involved to support a
NIC that is capable of cache injection. This infrastructure
involves careful interaction with other OS services such as
scheduling, processor affinity and migration, and memory
management.

5. PROS AND CONS
Operating systems researchers need a platform to implement
and evaluate their ideas. The environment may constrain
how throughly the idea can be explored. As in other areas
of computer science (e.g., programming languages), there
is a choice between pursuing innovation through incremen-
tal evolution of existing frameworks or through brand new
initiatives.

OS researchers can choose between the following options for
working on their goals: (1) working on a commodity op-
erating system, (2) starting the research environment from
scratch, and (3) working on an existing extensible frame-
work.

The advantages of the first approach are that existing oper-
ating systems come with a rich set of workloads and the per-
ception that they are an effective medium to take ideas from
research labs into the real world. Also, the learning curve for
working with these systems is usually not a challenge, be-
cause most of their structuring follows traditional principles
and accepted practices described in textbooks. The disad-
vantage of commodity operating systems as a platform for
experimental work is that they incorporate a large number
of design and implementation decisions that can not be eas-
ily altered. Some new ideas may be infeasible to implement
due to the mechanisms and policies in place. In particular,
theses systems were not designed to accommodate special-
ization of services.

Starting from scratch eliminates the constraints from legacy
approaches, but the required investment is daunting, and
in many cases impossible given the resources available. It
deviates the effort from the main research inquiry into in-
frastructure work. By working on a radically novel environ-
ment, it may be more difficult to prove the applicability of
the new ideas on mainstream systems.

By using an existing extensible operating system as a basis,
it is possible to leverage previous work done to develop the
infrastructure. If the system is able to handle the type of
workload necessary to carry out the research, then the prob-
lem of application availability is also addressed. If the OS is
also flexible enough to accommodate a reasonably efficient
implementation of the research idea, then it constitutes a
promising platform for the investigation. Possible disadvan-
tages of this approach are the lack of stability in the code,
insufficient or uncertain support from the framework’s orig-
inal developers, lack of functionality, and framework com-
plexity.



K42 has been designed to offer a higher degree of static and
dynamic customization and it is able to execute a broad
range of workloads. The experience with K42 so far has
highlighted the following advantages and disadvantages:

Pros
• K42 can provide applications or sub-systems with re-

source management tailored to their needs, because
per-resource object instances allow multiple policies
and implementations to be supported simultaneously
by the system. Because each resource instance is im-
plemented by an independent object, resource manage-
ment policies and implementations can be controlled
on a per-virtual-resource basis, thus different applica-
tions can use different resource management policies.
Even within a given application, different policies may
be supplied for different instances of a given resource.
For example, every open file may have a different pre-
fetching policy, and different page caches may have
different replacement policies.

• The modular nature of the system makes it more main-
tainable by providing a clean model for supporting
new applications and new hardware. For each new
platform or application that K42 supports, additional
objects may be created. Thus, each object remains
simple and easy to program for the given platform or
application. As code does not affect all users in the
system, developers working on features that apply to
a narrow audience may still contribute to K42 because
only those applications for which features are advanta-
geous need to use them. Further, because modifying a
given object does not involve code from many aspects
of the system, non-kernel developers may more easily
develop a new resource management policy for their
application.

• For many subsystems (e.g., memory management) it is
possible to pursue sophisticated new approaches with-
out knowledge of the rest of the system.

• The code structure has allowed new implementations
of objects to support old and new policies with mini-
mal added complexity to the source code.

• The performance monitoring infrastructure is invalu-
able in profiling functionality and identifying major
performance bottlenecks quickly.

• Some of the characteristics of K42 are definite advan-
tages in an experimentation environment: K42 runs on
the Mambo full system simulator [12], it supports the
GDB interfaces necessary for remotely debugging the
running system, and it offers a fast-reboot feature for
rebooting a new K42 kernel image without having to
go through the firmware and bootloader stages. This
K42 feature pre-dates Linux’s similar kexec feature.

Cons
• The effort required in setting up, building, and booting

K42 is non-trivial.

• The limitation on hardware alternatives to run K42
has been an issue. However, the situation has im-
proved recently with the availability of Apple Xserve
machines.

• K42’s learning curve is fairly steep, but once the de-
veloper becomes familiar with the object model and
basic design principles, the difficulties lessen consider-
ably. A side-effect of the object-oriented approach is
the difficulty in gaining an understanding of the sys-
tem by code inspection, because statically the code
path may be non-obvious.

• Parts of the system are very suitable for customiz-
ability (e.g., memory management, scheduling, filesys-
tems), but the parts that consist of Linux components
(e.g., drivers, network stack) are not.

• For fork-intensive workloads, K42 performs much worse
than Linux, due to a performance problem in K42’s
support for fork [5] that has yet to be fixed.

• Because K42 is a research environment that differs
significantly from commodity operating systems, re-
searchers must be able to argue that the results ob-
tained through K42 experiments are representative of
trends on a real system, and that the ideas and results
are applicable on commodity systems.

• As more and more implementations are developed to
represent alternative service specializations, interface
changes and bug fixes may result in maintenance com-
plexity. K42’s regression test suite covers only a few
basic configurations of the system, therefore it may
take several months before we learn that a change
in a base common class has caused one of the avail-
able specializations to fail. Jeff Mogul argues that the
type of flexibility offered by extensible operating sys-
tems seems to create more problems than solutions
[31]. K42’s experience indicates that although there
are many challenges in maintaining and testing a flex-
ible system, the benefits may be worth it.

6. CONCLUSIONS
K42’s design is an attractive platform for conducting operat-
ing systems research because of its built-in support for cus-
tomizability of services, its sophisticated tracing and perfor-
mance monitoring infrastructure, and its ability to execute
a rich, general set of workloads. The experience from several
ongoing projects using K42’s infrastructure so far indicates
that K42’s flexibility can be successfully deployed to explore
and evaluate new approaches to resource management.

K42 is available as open source under an LGPL license.
Please see our home page www.research.ibm.com/K42 for
additional papers on K42 or to participate in this research
project.
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