
Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

A Comparison of Service-oriented,
Resource-oriented, and Object-oriented

Architecture Styles

Jørgen Thelin
Chief Scientist

Cape Clear Software Inc.

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Abstract

The three common software architecture
styles commonly used in distributed systems
and XML Web Services are compared and
contrasted. In particular, the key differences
between traditional SOAP and REST styles
are explored. Guidelines are presented on
which style is most applicable for certain
application scenarios, and when a
combination of styles is necessary.

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Agenda

Architecture Patterns and Styles

Distributed System Types
Request / Response
Message passing

Architecture styles
Object-oriented architectures
Resource-oriented architectures
Service-oriented architectures

REST

Choosing Architecture Style and Implementation
Technology

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Cape Clear

Start-up founded in 1999 by several executives from
Iona Technologies
Venture capital funding from Greylock and Accel
Partners
Offices in:

Dublin, Ireland
London, UK
San Mateo, CA, USA
Waltham, MA, USA

The company is totally focused on XML Infrastructure,
including Web Services
Products:

WSDL Editor
Web Services Development tool set
XML Integration Server supporting Web Services

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Setting the Scene
– Architecture Patterns and Styles

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

What is a Pattern?

Martin Fowler defines a “Pattern” as:

An “idea” that has been useful in one practical
context and will probably be useful in others”

[Martin Fowler, “Analysis Patterns”, 1997]

The concept of patterns can be applied at
many levels in software projects:

Design / Code Patterns
Analysis / Model Patterns
Architecture Patterns / Architectural Styles

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Pattern Levels – Design / Code Patterns

Lowest level of patterns in software

Based around a reusable chunk of code to
solve a particular problem

Typically implemented through source code
templates and/or code generation

Provides a “template” for implementing a
system function, but requiring elaboration to
complete

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Pattern Levels – Analysis / Model
Patterns

Reusable object models (for example UML)

Typically implemented through UML model
templates or perhaps meta-models

Provides a “template” for a group of related
system functions, but often within a specific
domain (for example Finance)

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Pattern Levels – Architecture Patterns /
Architecture Styles

Reusable system structures, interconnections
and interactions

Typically implemented through architecture
standards and policies

Provides a “template” for subsystem
structure and communications between
subsystems

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

What is Software Architecture?

The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships among them.

[Bass, Clements & Kazman, “Software Architecture in
Practice”, 1998]

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

What is a Software Architecture Style?
#1

An architectural style defines:

a family of systems in terms of a pattern of
structural organization

a vocabulary of components and connectors, with
constraints on how they can be combined

[Shaw & Garlan, “Software Architecture: Perspectives on an
Emerging Discipline”, 1996]

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

What is a Software Architecture Style?
#2

An architecture style:

Describes a class of architectures or significant
architecture pieces

Is found repeatedly in practice

Is a coherent package of design decisions

Has known properties that permit reuse

[Clements, Kazman & Klein, “Evaluating Software Architecture”,
2002]

In other words, architecture styles are like “design
patterns” for the structure and interconnection within
and between software systems.

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Distributed Systems
Architecture Styles

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Distributed Systems Types

Two main types of distributed software
systems:

Request / Response type systems
Also known as “call & return” type systems

Message passing type systems
Also known as “document passing” type systems

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Distributed System Type #1
– Request / Response Systems
Request / Response type systems are:

Call oriented systems
Usually synchronous in nature

Approach:
Operations have input parameters and output / return values

Focus is on:
The particular operation to be invoked
The set of input values
The set of output values
The correlation of replies with requests

No real focus on:
How the individual values are marshalled as a unit
How the output values are produced from the input values
(assuming the correct output is produced!)

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Distributed Systems Type #2
- Message Passing Systems

Message passing type systems are:

Data oriented systems
Usually asynchronous in nature

Approach:
Messages are constructed and send to a destination

Focus is on:
Constructing the message payload in the correct format
How to dispatch the message (transport medium)
Where to dispatch the messages to (endpoint)

No real focus on:
What will happen to messages after they are dispatched
Whether there will be a corresponding reply message

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Architecture Styles for Distributed
Systems

For “call-based” distributed systems, there are three
main architecture styles commonly used:

Object-oriented

Resource-oriented

Service-oriented

Service-oriented architecture styles are frequently
used with “message-passing” systems too

[but further discussion is outside the scope of this presentation]

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Object-Oriented Architectures - 1

Involve communicating with
A particular object instance

Specific operations for object lifecycle
management

E.g. EJB create, EJB remove methods

Communications are implicitly stateful
Talking to a particular previously-created object
instance

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Object-Oriented Architectures - 2

Use middleware specific protocols for
communication

For example: IIOP, DCOM or RMI
Usually not Internet-friendly protocols

Usually require pass-by-reference facilities

Marshalling object references generally
precludes using different types of software
on client-side and server-side

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Object-Oriented Architectures - 3

All state information is held on the server-
side

Each access to the object involves a network
call and round-trip communication

Design patterns have evolved to provide
ways to minimise network calls through bulk
data retrieval

For example “Value Objects” in EJB programming

http://www2.theserverside.com/patterns/thread.jsp?thread_id=79

http://www2.theserverside.com/patterns/thread.jsp?thread_id=79

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Resource-Oriented Architectures - 1

Involve retrieving particular resource instances
Some examples are:

Retrieving a HTML page using HTTP GET request
Retrieving a database table row using a SQL SELECT command

Usually have operations for resource lifecycle
management

E.g. HTTP PUT, HTTP DELETE verbs

Requests are usually stateless
No link between one request and the next
Client manages any concept of “conversation state”

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Resource-Oriented Architectures - 2

Resource instances are identified by some
sort of “address” data included with the
request

Some examples are:
A HTTP URL
a WHERE clause in a SQL SELECT statement

Encoding “parameters” into addresses can
become difficult for complex query resources

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Resource-Oriented Architectures - 3

Retrieving a resource creates a (detached)
snapshot of its current state on the client-
side

“Master copy” of the resource data remains
on the server

Usually can “cache” the resource data for
later reuse within specified expiration times
without having to re-retrieve the data

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Resource-Oriented Architectures - 4

Updates to resources:
Typically involve replacing the previous copy of the
data with a new copy (for example HTTP PUT)
May also be some command verbs for doing
“partial updates” (for example HTTP POST or SQL
UPDATE)

Subsequent changes to the “master copy” of
the resource on the server-side are not
automatically duplicated in the detached
copies of the resource on the client-side

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Resource-Oriented Architectures
- Some Variations

Variations in resource-oriented architecture
style involve “distributed resource copies”

Multiple copies of the resource data exist
Changes and amendments are broadcast to keep
all copies in synchronization
Often done using Publish/Subscribe messaging
techniques
May have single-master, or multiple-masters

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Service-Oriented Architectures - 1

Involve communicating with
A specific application service

All messages/requests are sent to the service “endpoint”

No operations for service lifecycle
management

Communications are implicitly stateless
All requests are sent to the same service endpoint

SOA are generally more scalable due to
stateless nature

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Service-Oriented Architectures - 2

Service endpoint decides how to process
request

Inspects the message data content
– either an “envelope” or the actual “payload” itself

Each service has an interface description
Completely defines the message and payload
formats (for example, a WSDL file)
Creates a loosely-coupled contract between client
and server due to late binding

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

REpresentational State Transfer (REST)

The REST approach is one of the major
resource-oriented approach to building
distributed systems using “pure” web
technology (HTTP, HTML)

REST (REpresentational State Transfer) is a
term coined by Roy Fielding in his PhD
dissertation describing a resource-oriented
architecture style for networked systems

http://www.ebuilt.com/fielding/pubs/dissertation/top.htm

http://www.ebuilt.com/fielding/pubs/dissertation/top.htm

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

REST

Roger Costello has written a useful Tutorial and
Introduction to REST:

http://www.xfront.com/REST.html

Summary of a REST-style interaction:

Find or work out the resource address or URL
Retrieve the web resource using the URL
A representation of the resource is returned (such as a HTML
page or an XML document)
The returned data is processed to place the client in a particular
state (perhaps by rendering the HTML page)
Hyperlinks in the resource data can be used to retrieve related
resources, which transfers the client to a new state (such as
by rendering a different HTML page)

The client application changes state with each resource
representation retrieval --> “Representation State Transfer”

http://www.xfront.com/REST.html

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

REST Example – Stage 1

ServerClient

GET http://www.TheArchitect.co.uk/weblog/index.xml HTTP/1.1

HTTP Request

HTTP response data

Eg. RSS data for my weblog

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

REST - Example return data - 1
<?xml version="1.0" encoding="iso-8859-1"?>
<rss version="2.0">
<channel>

<title>TheArchitect.co.uk - Jorgen Thelin's weblog</title>

<link> http://www.thearchitect.co.uk/weblog/ </link>
<item>

<link> http://www.thearchitect.co.uk/weblog/archives/2003/03/000106.html </link>
<pubDate>Sat, 22 Mar 2003 00:01:00 GMT</pubDate>

<guid> http://www.thearchitect.co.uk/weblog/archives/2003/03/000106.html </guid>
<title>Internet Radio is Cool</title>
<description>

I am sitting here in my hotel room in Salt Lake City finishing off some outstanding work,
and I can listen via the Internet to my local radio station at home - London's Capital FM
Internet radio is so cool!

</description>
<comments>

http://www.thearchitect.co.uk/cgi-bin/mt/mt-comments.cgi?entry_id=106
</comments>

</item>
</channel>
</rss>

http://www.thearchitect.co.uk/cgi-bin/mt/mt-comments.cgi?entry_id=106
http://www.thearchitect.co.uk/weblog/archives/2003/03/000106.html
http://www.thearchitect.co.uk/weblog/archives/2003/03/000106.html
http://www.thearchitect.co.uk/weblog/

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

REST Example – Stage 2

ServerClient

GET http://www.thearchitect.co.uk/weblog/archives/2003/03/000106.html

HTTP Request

HTTP response data

Eg. HTML page for one page in my weblog

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

SOAP vs. REST

SOAP is often seen as a direct rival to a REST-based
architecture, as SOAP v1.1 used a solely Service-oriented
approach, and the debate from both sides has been savage!

http://lists.w3.org/Archives/Public/www-tag/2002Apr/0235.html

In fact, support for a more REST-based architecture style
have been included in the SOAP 1.2 Specification with the
new SOAP Web Method facilities:

http://www.w3.org/TR/soap12-part2/#WebMethodFeature

Using “RESTful SOAP” can be useful for exposing cacheable
(typically read-only or idempotent) SOAP operations

Sam Ruby has written an article comparing SOAP and REST
and showing how they can co-exist peacefully together:

http://www.intertwingly.net/stories/2002/07/20/restSoap.html

http://www.intertwingly.net/stories/2002/07/20/restSoap.html
http://www.w3.org/TR/soap12-part2/#WebMethodFeature
http://lists.w3.org/Archives/Public/www-tag/2002Apr/0235.html

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Web Services vs. REST - 1

There is no real conflict between the general
idea of Web Services and the REST approach

From W3C “Web Services Description
Requirements” document:

Definition:
A Web Service is a software application identified by
a URI [IETF RFC 2396], whose interfaces and binding
are capable of being defined, described and
discovered by XML artifacts and supports direct
interactions with other software applications using
XML based messages via Internet-based protocols.

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Web Services vs. REST - 2

Web Service standards already support many RESTful
features, and are adding more:

HTTP GET bindings in WSDL v1.1
SOAP Web Methods in SOAP v1.2

The total set of Web Service specifications provide a
superset of the REST approach – supporting Service-
oriented as well as Resource-oriented mechanisms

WSDL v1.2 should add facilities to allow the full
description of the payload formats for REST /
Resource-oriented approaches based in URLs

Roger Costello has written an article on “Building Web
Services the REST way” :

http://www.xfront.com/REST-Web-Services.html

http://www.xfront.com/REST-Web-Services.html

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Choosing an Architecture Style

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Comparison of 3 Distributed
Architecture Styles

Specific to this service
– description is
protocol specific (e.g.
WSDL)

Generic to the
request mechanism
(e.g. HTTP verbs)

Specific to this
object / class –
description is
middleware specific
(e.g. IDL)

Application
interface

Creation of request
payloads

Request addressing
(usually URLs)

Marshalling
parameter values

Main Focus

Yes – part of service
description (e.g. XML
Schema in WSDL)

No – nothing directly
linked to address /
URL

Yes – usually
middleware specific
(e.g. IDL)

Payload / data
format description

NoYesNoAre replies
cacheable?

One endpoint address
per service

Unique address per
resource

Routed to unique
object instance

Addressing /
Request routing

Service instancesResource instancesObject instancesGranularity

Service-
oriented

Resource-
oriented

Object-
orientedAttribute

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Choosing – Object Oriented Architectures

Involve tight coupling between client and
server, due to:

Object reference semantics
Object serialization
Early binding to interfaces

Usually best for “closed” systems controlled by
a single organization

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Choosing – Resource Oriented Architectures

Involve loose-coupling between client and server, due to:
Late binding to resource data

Successful use revolves around the cache-ability of resource
data

So most typically used for operations which are:
For read-only or read-mostly data
Involve idempotent (repeatable) operations,
Return results with a “validity window” or “expiration period”

Tend to scale well due to their stateless nature.

Usually best for “linking and referring” across organization
boundaries

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Choosing – Service Oriented Architectures

Involve loose-coupling between client and server, due
to:

Late binding to service interface
Full interface and payload descriptions in interface contract

Generally the most flexible
– can support request/response and message passing
systems

Tend to scale well due to their stateless nature.

Usually best for “shared” systems crossing organization
boundaries

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Combining Architecture Styles

Usually best to stick to a single architecture
style, but combinations are technically
possible

For example, a Web Service application could
use a combination of architecture styles:

Resource-oriented approach for simple data reads
Service-oriented approach for complex data
retrieval operations or data updates

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Summary and Conclusion

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Summary
Two main distributed system types are:

Request / Response
Message passing

Three main Request/Response architecture styles are:
Object-oriented
Resource-oriented
Service-oriented

The choice of architecture style is an important decision for
any software system

Choice of architecture style can have implications on
scalability, re-usability and ease of interconnection with
other systems

Web Services can be written using both Resource-oriented
or Service-oriented approaches

SOAP v1.2 and WSDL v1.2 are helping to unify this

Copyright © 2003 Jorgen Thelin / Cape Clear Software Inc.

Resources

Cape Clear Software
WSDL Editor
Web Services Development tool set
XML Integration Server supporting Web Services
http://www.capeclear.com

CapeScience
Papers, articles, tutorials, and webcasts for Web Services
developers
http://www.capescience.com

Jorgen Thelin’s Weblog
Weblog covering enterprise systems development, and
especially Web Services
http://www.TheArchitect.co.uk/weblog/

http://www.thearchitect.co.uk/weblog/
http://www.capescience.com/
http://www.capeclear.com/

	A Comparison of Service-oriented...
	Abstract
	The three common software archit...

	Agenda
	Architecture Patterns and Styles
	Distributed System Types
	Request / Response
	Message passing
	Architecture styles
	Object-oriented architectures
	Resource-oriented architectures
	Service-oriented architectures
	REST
	Choosing Architecture Style and ...

	Cape Clear
	Start-up founded in 1999 by seve...
	Venture capital funding from Gre...
	Offices in:
	Dublin, Ireland
	London, UK
	San Mateo, CA, USA
	Waltham, MA, USA
	The company is totally focused o...
	Products:
	WSDL Editor
	Web Services Development tool se...
	XML Integration Server supportin...

	Setting the Scene �– Architectur...
	What is a Pattern?
	Martin Fowler defines a “Pattern...
	An “idea” that has been useful i...
	The concept of patterns can be a...
	Design / Code Patterns
	Analysis / Model Patterns
	Architecture Patterns / Architec...

	Pattern Levels – Design / Code P...
	Lowest level of patterns in soft...
	Based around a reusable chunk of...
	Typically implemented through so...
	Provides a “template” for implem...

	Pattern Levels – Analysis / Mode...
	Reusable object models (for exam...
	Typically implemented through UM...
	Provides a “template” for a grou...

	Pattern Levels – Architecture Pa...
	Reusable system structures, inte...
	Typically implemented through ar...
	Provides a “template” for subsys...

	What is Software Architecture?
	What is a Software Architecture ...
	What is a Software Architecture ...
	Distributed Systems �Architectur...
	Distributed Systems Types
	Distributed System Type #1 �– R...
	Request / Response type systems ...
	Call oriented systems
	Usually synchronous in nature
	Approach:
	Operations have input parameters...
	Focus is on:
	The particular operation to be i...
	The set of input values
	The set of output values
	The correlation of replies with ...
	No real focus on:
	How the individual values are ma...
	How the output values are produc...

	Distributed Systems Type #2 �- M...
	Message passing type systems are...
	Data oriented systems
	Usually asynchronous in nature
	Approach:
	Messages are constructed and sen...
	Focus is on:
	Constructing the message payload...
	How to dispatch the message (tra...
	Where to dispatch the messages t...
	No real focus on:
	What will happen to messages aft...
	Whether there will be a correspo...

	Architecture Styles for Distribu...
	For “call-based” distributed sys...
	Object-oriented
	Resource-oriented
	Service-oriented
	Service-oriented architecture st...

	Object-Oriented Architectures - ...
	Involve communicating with
	A particular object instance
	Specific operations for object l...
	E.g. EJB create, EJB remove meth...
	Communications are implicitly st...
	Talking to a particular previous...

	Object-Oriented Architectures - ...
	Use middleware specific protocol...
	For example: IIOP, DCOM or RMI
	Usually not Internet-friendly pr...
	Usually require pass-by-referenc...
	Marshalling object references ge...

	Object-Oriented Architectures - ...
	All state information is held on...
	Each access to the object involv...
	Design patterns have evolved to ...
	For example “Value Objects” in ...

	Resource-Oriented Architectures ...
	Involve retrieving particular re...
	Some examples are:
	Retrieving a HTML page using HTT...
	Retrieving a database table row ...
	Usually have operations for reso...
	E.g. HTTP PUT, HTTP DELETE verbs
	Requests are usually stateless
	No link between one request and ...
	Client manages any concept of “c...

	Resource-Oriented Architectures ...
	Resource instances are identifie...
	Some examples are:
	A HTTP URL
	a WHERE clause in a SQL SELECT s...
	Encoding “parameters” into addre...

	Resource-Oriented Architectures ...
	Retrieving a resource creates a ...
	“Master copy” of the resource da...
	Usually can “cache” the resource...

	Resource-Oriented Architectures ...
	Updates to resources:
	Typically involve replacing the ...
	May also be some command verbs f...
	Subsequent changes to the “maste...

	Resource-Oriented Architectures ...
	Variations in resource-oriented ...
	Multiple copies of the resource ...
	Changes and amendments are broad...
	Often done using Publish/Subscri...
	May have single-master, or multi...

	Service-Oriented Architectures -...
	Involve communicating with
	A specific application service
	All messages/requests are sent t...
	No operations for service lifecy...
	Communications are implicitly st...
	All requests are sent to the sam...
	SOA are generally more scalable ...

	Service-Oriented Architectures -...
	Service endpoint decides how to ...
	Inspects the message data conten...
	Each service has an interface de...
	Completely defines the message a...
	Creates a loosely-coupled contra...

	REpresentational State Transfer ...
	The REST approach is one of the ...
	REST (REpresentational State Tra...

	REST
	Roger Costello has written a use...
	Summary of a REST-style interact...
	Find or work out the resource ad...
	Retrieve the web resource using ...
	A representation of the resource...
	The returned data is processed t...
	Hyperlinks in the resource data ...
	The client application changes s...

	REST Example – Stage 1
	REST - Example return data - 1
	REST Example – Stage 2
	SOAP vs. REST
	SOAP is often seen as a direct r...
	In fact, support for a more REST...
	Using “RESTful SOAP” can be usef...
	Sam Ruby has written an article ...

	Web Services vs. REST - 1
	There is no real conflict betwee...
	From W3C “Web Services Descripti...
	Definition:

	Web Services vs. REST - 2
	Web Service standards already su...
	HTTP GET bindings in WSDL v1.1
	SOAP Web Methods in SOAP v1.2
	The total set of Web Service spe...
	WSDL v1.2 should add facilities ...
	Roger Costello has written an ar...

	Choosing an Architecture Style
	Comparison of 3 Distributed Arch...
	Choosing – Object Oriented Archi...
	Involve tight coupling between c...
	Object reference semantics
	Object serialization
	Early binding to interfaces
	Usually best for “closed” system...
	Choosing – Resource Oriented Arc...
	Involve loose-coupling between c...
	Late binding to resource data
	Successful use revolves around t...
	So most typically used for opera...
	For read-only or read-mostly dat...
	Involve idempotent (repeatable) ...
	Return results with a “validity ...
	Tend to scale well due to their ...
	Usually best for “linking and re...
	Choosing – Service Oriented Arch...
	Involve loose-coupling between c...
	Late binding to service interfac...
	Full interface and payload descr...
	Generally the most flexible
	Tend to scale well due to their ...
	Usually best for “shared” system...
	Combining Architecture Styles
	Usually best to stick to a singl...
	For example, a Web Service appli...
	Resource-oriented approach for s...
	Service-oriented approach for co...

	Summary and Conclusion
	Summary
	Two main distributed system type...
	Request / Response
	Message passing
	Three main Request/Response arch...
	Object-oriented
	Resource-oriented
	Service-oriented
	The choice of architecture style...
	Choice of architecture style can...
	Web Services can be written usin...
	SOAP v1.2 and WSDL v1.2 are help...

	Resources
	Cape Clear Software
	WSDL Editor
	Web Services Development tool se...
	XML Integration Server supportin...
	http://www.capeclear.com
	CapeScience
	Papers, articles, tutorials, and...
	http://www.capescience.com
	Jorgen Thelin’s Weblog
	Weblog covering enterprise syste...
	http://www.TheArchitect.co.uk/we...

