
Network-Aware Scheduling
for Data-Parallel Jobs: Plan When You Can

Virajith Jalaparti† Peter Bodik‡ Ishai Menache‡
Sriram Rao‡ Konstantin Makarychev‡ Matthew Caesar†

†University of Illinois, Urbana-Champaign ‡Microsoft

Abstract
To reduce the impact of network congestion on big data
jobs, cluster management frameworks use various heuristics
to schedule compute tasks and/or network flows. Most of
these schedulers consider the job input data fixed and greed-
ily schedule the tasks and flows that are ready to run. How-
ever, a large fraction of production jobs are recurring with
predictable characteristics, which allows us to plan ahead for
them. Coordinating the placement of data and tasks of these
jobs allows for significantly improving their network local-
ity and freeing up bandwidth, which can be used by other
jobs running on the cluster. With this intuition, we develop
Corral, a scheduling framework that uses characteristics of
future workloads to determine an offline schedule which (i)
jointly places data and compute to achieve better data local-
ity, and (ii) isolates jobs both spatially (by scheduling them
in different parts of the cluster) and temporally, improving
their performance. We implement Corral on Apache Yarn,
and evaluate it on a 210 machine cluster using production
workloads. Compared to Yarn’s capacity scheduler, Corral
reduces the makespan of these workloads up to 33% and the
median completion time up to 56%, with 20-90% reduction
in data transferred across racks.

CCS Concepts
•Networks→Data center networks; •Computer systems
organization→ Cloud computing;

Keywords
Data-intensive applications; Cluster schedulers; Joint data
and compute placement; Cross-layer optimization
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787488

1 Introduction
Over the past decade, large big data compute clusters run-
ning thousands of servers have become increasingly com-
mon. Organizations such as Facebook, Google, Microsoft,
and Yahoo! have deployed highly scalable data-parallel
frameworks like MapReduce [25] and Cosmos [20] to pro-
cess several petabytes of data every day, running tens of
thousands of jobs [5].

These big data jobs are often constrained by the network
for several reasons. First, they involve network-intensive
stages such as shuffle and join, which transfer large amounts
of data across the network. Second, while there is full bisec-
tion bandwidth within a rack, modern data intensive comput-
ing clusters typically have oversubscription values ranging
from 3:1 to 10:1 from the racks to the core [22, 23, 24]. This
trend is likely to continue in the future to limit operational
costs. Finally, a large fraction of the cross-rack bandwidth
(up to 50%) can be used for background data transfers [22],
reducing the bandwidth available for these jobs even more.

Existing cluster schedulers try to overcome this problem
by optimizing the placement of compute tasks or by schedul-
ing network flows, while assuming that the input data loca-
tions are fixed. However, different stages in these big data
jobs can still run into network bottlenecks. Techniques like
delay scheduling [48] and flow-based scheduling [36] try to
place individual tasks (e.g., maps) on the machines or racks
where most of their input data is located. As this data is
spread over the cluster randomly in a distributed file system
(such as HDFS [6]), the subsequent job stages (e.g., shuf-
fle) have to read data using cross-rack links, which are often
heavily congested [22]. Recently introduced techniques like
ShuffleWatcher [16] attempt to localize the shuffle of a job
to one or a few racks, but end up using the cross-rack band-
width to read input data. The benefits from using network
flow-level techniques, such as in Varys [24] or Baraat [26],
are also limited, as they only schedule network transfers af-
ter both the source and destination are fixed. Sinbad [22]
schedules flows around network contention but its benefits
are limited to file system writes.

However, a large number of business-critical jobs are re-
curring, with pre-defined submission times and predictable
resource requirements, allowing us to carefully place job in-
put data to improve network locality. For example, it has
been reported that production workloads contain up to 40%

http://dx.doi.org/10.1145/2785956.2787488

recurring jobs, which are run periodically as new data be-
comes available [15, 30]. In fact, we show that future job
characteristics (e.g., input data size) for such jobs can be pre-
dicted with an error as low as 6.5% (Section 2). Using these
characteristics, we can plan ahead and determine where the
input data of a job can be placed in the cluster, e.g., in a par-
ticular subset of racks. By coordinating such data placement
with job task placement, most small jobs can be run entirely
within one rack with all their tasks achieving rack-level net-
work locality and no oversubscription. As these small jobs
do not use cross-rack links, larger jobs running across multi-
ple racks will also benefit due to more available bandwidth.
Further, by running jobs entirely within a subset of racks
rather than across the whole cluster, we can achieve better
performance isolation across jobs.

With this intuition, we design Corral, a scheduling frame-
work that exploits the predictability of future workloads to
jointly optimize the placement of data and compute in big
data clusters, and improve job performance. Corral includes
an offline planner which uses the characteristics of jobs (e.g.,
amount of data read, CPU and memory demands) that will
run on the cluster to determine which set of racks should
be used to run each job and when the job should start. Job
execution is decoupled from the planner and only uses the
planner’s output as guidelines for placing data and tasks.

The goal of the offline planner is to optimize job execu-
tion while addressing important challenges. First, it needs
to determine which racks to assign to a job to maximize net-
work locality while providing sufficient parallelism. Second,
it needs to ensure that jobs and their input data are spread
across the cluster without overloading any part of it. We for-
mulate this planning problem as a malleable job scheduling
problem [19, 27, 45] and develop simple heuristics to solve
it efficiently. We show that these heuristics achieve perfor-
mance close (within 3-15%) to the solution of a Linear Pro-
gram (LP) relaxation, which serves as a lower-bound to any
algorithm used for the planning problem (which assigns re-
sources to jobs at the granularity of racks). Using a data
imbalance cost (Section 4.5) allows our heuristics to ensure
that the input data is balanced across all racks in the cluster.

The offline planner optimizes for both recurring jobs and
jobs whose arrival and characteristics are known in advance.
Corral executes ad hoc jobs, whose characteristics cannot be
predicted, using otherwise idle cluster resources. As the jobs
planned with Corral finish faster, additional resources will be
available for these ad hoc jobs and hence, they will also fin-
ish earlier. The techniques in Corral apply to both simple
MapReduce jobs as well as complex DAG-structured work-
loads such as Hive [44] queries.

We note that during job execution, we do not exclusively
allocate whole racks to a single job. Instead, given the set of
racks assigned to a job by the offline planner, one replica of
job input data is placed within those racks and all tasks of the
job are restricted to run within those racks. This forces all
job data transfers to stay within those racks. The remaining
slots within these racks are used by ad hoc jobs and other
planned jobs assigned to the same racks. When a signifi-
cant fraction of machines in these racks fail (beyond a con-

figured threshold), Corral ignores these constraints and uses
any available resources in the cluster to run the planned jobs.

We have implemented Corral as an extension of Yarn [8]
and deployed it on a 210 machine cluster. Using four dif-
ferent workloads including traces from Yahoo [21], Mi-
crosoft Cosmos (Section 6), and Hive queries derived from
TPC-H benchmarks [12], we show that Corral reduces the
makespan of a batch of jobs by 10-33% and the median job
completion time by 30-56% compared to the Yarn capacity
scheduler [7]. Further, using large-scale simulations over a
2000 machine topology, we show that Corral achieves bet-
ter performance than flow-level techniques (such as those in
Varys [24]) and that their gains are orthogonal.

In summary, our contributions are as follows.
(1) We quantify the high predictability of job characteristics
in production clusters.
(2) We formulate the joint data and compute placement prob-
lem in big data clusters as a malleable job scheduling prob-
lem and solve it using efficient heuristics, which lead to sig-
nificant benefits in practice.
(3) We design, implement and evaluate Corral, a data-driven
planning framework which leverages the predictability of fu-
ture workloads to assign resources to jobs, leading to signif-
icant performance improvements.
(4) We show that the benefits of Corral are more than those
from just using network flow-level scheduling techniques,
and that Corral can work together with such techniques to
provide further performance benefits.

2 Motivation
Big data clusters use frameworks like Hadoop [3], Hive [44],
or Scope [50] to run simple MapReduce [25] jobs, and more
complex, DAG-structured jobs. Each job consists of stages,
such as map or reduce, linked by data dependencies. Each
stage consists of several tasks, which process the input data
in parallel. When a task has all its inputs ready, it is allo-
cated a slot on a machine in the cluster, which gives it a pre-
defined amount of memory and CPU to execute. The input
data for these jobs is stored in a distributed file system like
HDFS [6]. The data is divided into multiple chunks, each of
which is typically replicated three times across different ma-
chines in the cluster. For fault tolerance, two of the chunks
reside on the same rack, while the third one is on a differ-
ent rack. Each chunk is placed independently of the other
chunks. In this section, we present observations about exist-
ing cluster frameworks that motivate the design of Corral.
Current schedulers do not jointly optimize over data and
compute location. The location of data replicas in the dis-
tributed file system is typically determined by the file system
itself, irrespective of the computation performed on it (as de-
scribed above). Thus, the input chunks for a job are spread
across the compute nodes uniformly at random.

At the job scheduling level, much effort has been de-
voted to avoiding and scheduling around network con-
tention, given a fixed location of task input data. For ex-
ample, Hadoop prefers running map tasks on machines with
their input data, instead of loading the data over the network.

In
p

u
t

d
a

ta
 s

iz
e

(l
o

g
 1

0
 s

c
a

le
)

Time

Figure 1: Normalized input data size of six different jobs dur-
ing a ten-day period. X-axis shows time; each tick is a day. Y-
axis shows input size in log10 scale; each tick is a 10x increase.

Quincy [36] aims at improving on this greedy heuristic by
modeling the tradeoffs between latency and locality1 prefer-
ences of all runnable tasks, and determines their placement
using a holistic optimization framework. As the input data
is randomly spread across several racks in the cluster, such
approaches generally achieve locality for earlier stages of a
job (e.g., map in MapReduce, Extract in Scope) but not for
the subsequent stages (e.g., shuffle), which typically end up
reading data across most of the racks. Given a fixed place-
ment of both input data and tasks, systems such as Orches-
tra [23], Varys [24], and Baraat [26] schedule network flows
to minimize makespan or average job duration. Improper
placement of data and tasks can cause flows to utilize con-
gested network links, limiting their potential benefits.
Job input data can be placed in designated locations be-
fore job execution. We identify two important scenarios
where it is possible to place job input data. First, it is
fairly typical in datacenters that data is continuously up-
loaded from front-end servers into the cluster (e.g., click
logs), and data-processing jobs are triggered as new data be-
comes available [5]. As this data is being uploaded, it is
possible to place it at the desired location.

Secondly, in some deployment scenarios (such as running
Hadoop in Azure [9] or AWS [2]), the job input data is stored
in a separate storage cluster (Azure Storage [10, 13] or Ama-
zon S3 [1]). When a job starts, it processes data by fetching
it from the remote storage cluster. By constraining tasks of
the job to execute inside a particular subset of racks, we can
ensure that the data is placed on those racks.
Job characteristics can often be accurately predicted.
Cluster workloads are known to contain a significant number
(up to 40%) of recurring jobs [15, 30]. A recurring job is one
in which the same script runs whenever new data becomes
available. Consequently, for every instance of that job, it has
a fixed structure and similar characteristics (e.g., amount of
data transferred in shuffle, or CPU and memory demands).

We confirm and quantify this intuition by examining
twenty business-critical jobs from our production clusters
(these jobs are part of the workload W3 described in Sec-
tion 6). For each job, we compute the input data size of its
instances during a recent one-month period. Figure 1 shows
the normalized job sizes as a time series for six of those jobs
over a 10-day period. Overall, these jobs have input sizes
ranging from several gigabytes to tens of terabytes. To pre-
1We use the term locality to refer to the fact that a task has been scheduled
on the machine or rack containing most of its input data.

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
u
m

u
la

ti
v
e

 f
ra

c
ti
o
n

Number of slots per job

1 rack

Figure 2: Cumulative fraction of the number of compute slots
requested by jobs across three production clusters. The vertical
line represents 240 slots, the size of one rack.

dict the input size of a job which is submitted at a particular
time (e.g., 2PM), we average the input size of the same job
type at the same time during several previous days. In partic-
ular, if the current day of the week is a weekday (weekend),
we average only over weekday (weekend) instances. Using
this, we can estimate the job input data size with a small
error of 6.5% on average. We observe similar predictabil-
ity of the intermediate (or shuffle) data and output data. In
turn, this allows us to predict the amount of data transferred
during job execution and utilization of network links.
It is possible to run a bulk of jobs within a few racks with-
out losing parallelism. Figure 2 plots the requested number
of slots for various jobs across three of our largest produc-
tion clusters, each of them with more than 10,000 machines.
While some jobs require up to 10,000 slots, we find that
across these three clusters, 75%, 87%, and 95% of the jobs
require less than one rack worth of compute resources (240
slots). Similar observations have been reported earlier [28].
Thus, a large number of jobs can each be run within a single
rack without sacrificing their parallelism. This allows these
jobs to communicate at full NIC speeds.

In summary, we can achieve better data locality by jointly
optimizing the placement of data and compute in big data
clusters. The ability to predict the future workload allows
us to plan ahead, place job input data in specific racks and
subsequently run its tasks in those racks. Thus, we can take
advantage of running many small jobs in individual racks,
freeing up more core bandwidth for large or ad hoc jobs.

3 Corral design principles
In this section, we describe the architecture of Corral (Sec-
tion 3.1), design considerations for its offline planning com-
ponent (Section 3.2), and our approach to formalizing and
solving the planning problem (Section 3.3). We leave the
details of the planning algorithm to Section 4.

3.1 System architecture
Corral consists of two components – (a) an offline planner
and (b) a cluster scheduler (Figure 3). The offline planner re-
ceives estimates of characteristics of jobs (e.g., arrival time,
input data size etc.) that will be submitted to the cluster in
future (step 1). It uses these characteristics to estimate job
latencies and solve an offline planning problem with the goal
of minimizing a specified metric (e.g., makespan or average
job completion time). The planner creates a schedule which

Cluster scheduler:

storage + compute

Offline

planner

Future workload

estimates

Data

placement

policy

Task

placement

policy

Data

upload

Submitted

jobs

Offline

Online

1

23

Figure 3: Corral system architecture.

consists of a tuple {Rj , pj} for each job j, where Rj is the
set of racks on which job j has to run and pj is its priority.

The cluster scheduler uses the schedule from the offline
planner as guidelines to place data and tasks when running
jobs on the cluster. As the input data of a job j is uploaded
into the cluster (step 2) and stored in a distributed filesystem
(such as HDFS), Corral places one replica of each data chunk
in a randomly chosen rack from Rj . The remaining replicas
are placed on another rack in the cluster, which is randomly
chosen from the entire set of racks excluding the one chosen
so far. We note that these choices are consistent with the
per-chunk fault tolerance policy typically used in HDFS.

Finally, when job j is submitted to the cluster (step 3), the
cluster scheduler constrains its tasks to be scheduled within
the racks in Rj . Whenever a slot becomes empty in any
rack, Corral’s scheduler examines all jobs which have been
assigned that rack and assigns the slot to the job with the
highest priority2. With such placement of data and tasks in
the same set of racks, Corral ensures that not only the initial
stage (e.g., map, extract) but also subsequent stages of a job
(e.g., reduce, join) achieve data locality. The priority (pj) of
a job ensures that the order in which jobs are scheduled by
the cluster scheduler conforms to that assigned by the offline
planner.

The offline planner will periodically receive updated esti-
mates of future workload, rerun the planning problem, and
update the guidelines to the cluster scheduler. Note that the
cluster conditions might change after the guidelines are gen-
erated (e.g., racks/machines failing). If the assigned loca-
tions are not available for any job, the scheduler will ignore
the guidelines for that job and use randomly selected ma-
chines in the cluster to hold its data (while ensuring fault
tolerance using a policy similar to HDFS) and run its tasks.

The above scheduling approach in Corral applies not only
to recurring jobs but also to jobs known a-priori and having
predictable characteristics. For ad hoc jobs (whose charac-
teristics are not known in advance), Corral places the input
data using regular HDFS policies. The tasks of such jobs are
scheduled using existing techniques [48].

3.2 Design considerations
Objective. The goal of the offline planner is to provide
guidelines to the cluster scheduler for placing data and com-
2To ensure machine-level locality, we use the same techniques as in delay
scheduling [48].

pute tasks. The objective is to optimize the network locality
of each job and thus, improve the overall performance.
Scenarios. Based on the different cases that arise in prac-
tice, we consider two scenarios. In the batch scenario, we
run a batch of jobs that are all submitted to the cluster at the
same time (e.g., a collection of log analysis jobs). Here, our
goal is to minimize their makespan, i.e., the time to finish the
execution of all the jobs in the batch. In the online scenario,
the jobs arrive over a longer period of time with known ar-
rival times. In this case, our goal is to minimize the average
job completion time.
Challenges. Designing the planner raises three important
questions. First, at what granularity should the guidelines be
provided? For example, one option is to provide a target ma-
chine for each task of the job. Second, how to formalize the
planning problem to make it tractable at the scale of current
big data systems? Finally, as the planner needs to choose
among different data and task placement options, how do
we estimate the job latency of a particular configuration?

Next, we outline how we address these challenges.

3.3 Solution approach
In order to formulate a tractable offline planning problem,
we make several simplifying assumptions, highlighted be-
low. We note that these assumptions apply only to the offline
planner, and not to the actual job execution on the cluster.
Planning at the granularity of jobs and racks. The so-
lution to the planning problem can be specified at different
granularities. At one extreme, it can prescribe which task
of a job should run on which machine in the cluster. How-
ever, generating such a solution is non-trivial. This is be-
cause while job input sizes can be predicted with small er-
ror, the input sizes of individual tasks depend on how the
data is partitioned across tasks in a stage and thus, much less
predictable. Further, the number of tasks can be several or-
ders of magnitude more than the number of jobs, making the
problem practically intractable.

Instead of planning at the level of tasks, one can plan at
a stage level, i.e., specify which rack(s) each stage in a job
should use. Complex, DAG-structured jobs could potentially
benefit from stage-level planning; e.g., two parallel shuffles
in a DAG could run in two separate racks, both benefiting
from locality. However, after examining a large number of
production jobs in our clusters, we found very few DAG jobs
where such stage-level planning provides locality benefits.

Therefore, to improve scalability and robustness of the of-
fline plan, we pose the planning problem at the granularity
of racks and jobs. Further, most production clusters have full
bisection bandwidth within a rack and oversubscribed links
from the racks to the core [22, 23, 24]. Planning at the gran-
ularity of racks, allows us to assume that all tasks in a rack
can communicate at NIC speeds, which in turn simplifies the
modeling of job latency.
Planning as malleable job scheduling. We formulate
the planning problem as a malleable job scheduling prob-
lem [19, 27, 45]. A malleable job is a job whose latency de-
pends on the amount of resources allocated to it. While each

job typically has a fixed requirement for the total number
of compute slots, the planner’s decision on over how many
racks the job will execute would affect its latency.

To illustrate the dependency of job latency on the number
of racks it uses, consider the shuffle stage in a MapReduce
job with a total of S bytes spread over r racks (latency mod-
els for an entire job are described in Section 4.3). Suppose
each rack has an internal bandwidth ofB, and racks are con-
nected with oversubscription ratio V ; assume that network
is the bottleneck resource affecting latency. When r = 1,
almost all of S bytes have to be transferred across machines
in the rack, with total latency of S/B. For r > 1, assuming
symmetry for simplicity, each rack sends (r − 1)/r frac-
tion of its data to other racks. Hence, the whole shuffle has
to transfer S(r − 1)/r bytes using aggregate bandwidth of
rB/V (from rack to core), resulting in approximate latency
of (r−1)SV

r2B which approaches V
r

S
B for large r. Thus, the

shuffle latency reduces with r in this example.
Characterizing job latency using simple response func-
tions. With the above intuition, we model job latency using
latency response functions Lj(r), where j is the job index
and r is the number of racks allocated to j. In particular,
we model job latency as depending on the number of racks
allocated, and also on fixed job characteristics such as the
amount of data transferred between tasks, amount of CPU
resources required, and the maximum parallelism of the job.
Using these job characteristics, which can be estimated from
earlier runs of the job, we derive simple analytical models to
compute job latency (Section 4.3).

The actual job latencies can depend on additional runtime
factors such as failures, outliers, and other jobs which run si-
multaneously on the same rack(s). However, as our latency
approximation is used only for offline planning (and these
factors affect all jobs), we tradeoff accurate (absolute) la-
tency values for simpler and practical planning algorithms.
As seen in our evaluation, using approximate latency models
suffices for significant latency improvements.

These latency response functions also help us abstract var-
ious factors that affect job latency (e.g., number of maps
or reducers) and enable us to plan for jobs to minimize
the required metric. Such abstraction allows us to account
for other factors such as data imbalance across racks (Sec-
tion 4.5) without modifying our core algorithms.

4 Offline planning in Corral

In this section, we first formally present Corral’s planning
problem (Section 4.1). We then describe our heuristics to
solve it (Section 4.2). Next, we provide details on how to
calculate the functions, which are used to estimate job la-
tency (Section 4.3). We then discuss the complexity of our
heuristics (Section 4.4), and conclude by describing how we
account for potential input data imbalance across racks.

4.1 Problem formulation
Given the design choices in Section 3, Corral’s offline plan-
ning problem is formulated as follows. A set of jobs J
(of size J) has to be scheduled on a cluster of R racks.

Each job j is characterized by a latency response function
Lj : [1, R] → <+, which gives the (expected) job com-
pletion time as a function of the number of racks assigned
to the job. Our model assumes that once a subset of racks
is allocated to a job, it is used by the job until completion.
That is, we do not allow preemption or a change in the al-
location throughout the execution of the job. This assump-
tion simplifies our problem formulation significantly. To en-
sure work conservation during job execution, Corral’s clus-
ter scheduler does not enforce these constraints. Our evalu-
ation results (Section 6) show that even with this deviation
from the assumptions, Corral significantly outperforms exist-
ing schedulers. In the batch scenario, the goal is to minimize
the makespan, i.e., the time it takes to complete all jobs. In
the online scenario, each job has its own arrival time. The
goal now is to minimize the average completion time, i.e.,
the average time from the arrival of a job until its comple-
tion. Both problems are NP-hard [27, 45]. Hence, we design
efficient heuristics that run in low polynomial time.

4.2 Planning heuristics
Solving the planning problem consists of determining (a) the
amount of resources (number of racks) to be allocated to a
job, and (b) where in the cluster these resources have to be al-
located. To address each of these sub-problems and use ideas
from existing techniques (e.g., LIST scheduling [31]), we
decouple the planning problem into two phases – the provi-
sioning phase and the prioritization phase. In the provision-
ing phase, for each job j, we determine rj , the number of
racks allocated to the job. In the prioritization phase, given
rj for all jobs, we determine Rj , the specific subset of racks
for j, and Tj , the time when j would start execution. We use
Tj to determine the priority ordering of jobs (Section 3.1).
Provisioning phase. Initially, we set rj = 1 for each job.
This represents a schedule where each job runs on a single
rack. In each iteration of this phase, we find the job j which
is allocated less than R racks and has the longest execution
time (according to the current rj allocations), and increase
its allocation by one rack. When a job is already allocated
R racks it cannot receive additional racks. We proceed iter-
atively until all jobs reach rj = R.

Intuitively, by spreading the longest job across more
racks, we shorten the job that is “sticking out” the most.
Note that if the latency of the longest job increases when
its allocation is increased by one rack, it will continue to be
the longest and thus, its allocation will be increased again in
the next iteration. For the latency response curves we ob-
served it practice, we found that the latency of the longest
job eventually decreases.

As each job in J can be allocated any number of racks
between 1 and R, a total of RJ different allocations exist
for the provisioning phase. The above heuristic is designed
to explore a plausible polynomial-size subset of candidate
allocations (J · R), which can be evaluated within practi-
cal time constraints. For each such allocation, we run the
prioritization phase described below and pick the allocation
(and respective schedule) which yields the lowest value for

Input: Set of jobs J of size J ; ∀j ∈ J , rj , the number
of racks to be assigned to job j for Lj(rj) time units
and Aj , the arrival time of job j (0 in batch case).
Output: ∀j ∈ J , Rj , the set of racks allocated to
job j and Tj , the start time of job j.
Initialization: Sort and re-index jobs according to the
scenario (batch or online).
j := 0
Fi := 0 for all racks i = 1 . . . R
while j < J do
Rj :=set of rj racks with smallest Fi

Tj := max{maxi∈Rj
Fi, Aj}

for i ∈ Rj , Fi := Tj + Lj(rj)
j := j + 1

end while

Figure 4: Prioritization phase.

the relevant objective (makespan for batch scenario, average
completion time for online scenario).

We note that this heuristic is similar to the one used
in [19] for scheduling malleable jobs with the objective of
makespan minimization. [19] terminates the heuristic when∑

j|rj>1 rj = R, and obtains an approximation ratio of
roughly 2 on the makespan, by using LIST scheduling [31]
on top of the provisioning heuristic. However, as each itera-
tion is fast, we allow ourselves to run the heuristic for more
iterations compared to [19], until reaching rj = R for every
job j. This allows us to explore more options, and to obtain
adequate results (including for the objective of average com-
pletion time, for which [19] does not provide guarantees).

Prioritization phase. If all jobs are constrained to run on
a single rack, the longest processing time first (LPT) algo-
rithm [31] is a well-known scheduling algorithm one could
use to minimize makespan. However, jobs can run on multi-
ple racks in Corral. We extend LPT to account for this case
(pseudo-code in Figure 4).

In the batch scenario, we first sort jobs in decreasing or-
der of number of racks allocated to them (rj), i.e., widest-job
first. Then, to break ties, we sort them in decreasing order of
their processing times (similar to LPT). The widest-job first
order helps us avoid “holes" in the schedule – for example, a
job allocatedR racks will not have to wait for a job allocated
just one rack to complete, which would result in wasted re-
sources. We then iterate over the jobs in this sorted order,
assigning the required number of racks. We keep track of
Fi, the time when rack i finishes running previously sched-
uled jobs. For each job j, we allocate the required set of
racks by selecting the first rj racks that are available (based
on Fi). We then update Fi for the selected racks based on
the start time of the job and its duration.

For the online scenario, we sort jobs in ascending order of
their arrival time; in case of ties, we apply the sorting criteria
of the batch case in the same order described above, and then
use the algorithm described in Figure 4.
Estimating the quality of our heuristics. Decomposing
the planning problem into two phases, as above, can be sub-

optimal. However, it turns out that our approach results in
near-optimal performance. Our simulations (using work-
loads described in Section 6) show that the above heuristic
for the batch (online) scenario finds a schedule with resulting
makespan (average completion time) within 3% (15%) of the
solution of an LP-relaxation to the planning problem. The
LP-relaxation, which is described in the appendix, serves as
a lower-bound to any solution (under the assumptions de-
scribed in Section 4.1)

4.3 Latency response functions
We now demonstrate how to model the latency response
functions for data-parallel jobs, which allow us to approx-
imate the expected latency of a job running on a given num-
ber of racks. We borrow the basic modeling principles from
Bazaar [37], and adapt them to our setting where racks are
the basic allocation units. We would like to emphasize that
the models we present here should be viewed as proxies for
the actual latencies, and need not be highly accurate. More
complex models exist in the literature (e.g., Starfish [34],
MRPerf [46]), but our goal in designing the response func-
tions is to be able to account for job latency using fast models
and simple mathematical expressions.

In what follows, we first present the basic model for
MapReduce jobs, and then show how to extend the MapRe-
duce model to the case of general DAGs.
MapReduce model. We can represent any MapReduce job
j by the 5-tuple 〈DI

j , D
S
j , D

O
j , N

M
j , NR

j 〉, where DI
j is the

input data size, DS
j is the shuffle data size, DO

j is the output
data size, NM

j is the number of map tasks and NR
j is the

number of reduce tasks used by the job.
We model the execution of a MapReduce job as consisting

of three stages: (a) the map stage, (b) the shuffle stage and (c)
the reduce stage. For simplicity we assume here that these
stages run sequentially (we note, however, that it is possible
to extend the model to account for cases where the map and
reduce stage run in parallel). Accordingly, the latency Lj(r)
of job j using r racks can be modeled as the sum of latencies
of the three stages, i.e., Lj(r) = l

map
j (r) + lshuffle

j (r) +

lreduce
j (r).

Given r racks and k machines per rack, the map stage runs

in wmap(r) = dN
M
j

r·k e waves. Using this, the latency of the

map stage is given by lmap
j (r) = wmap(r) · D

I
j /N

M
j

BM
, where

BM is the average rate at which a map task processes data
(this quantity is estimated from previous runs of the same
job). Similarly, the latency of the reduce stage is estimated

as lreduce
j (r) = wreduce(r) · D

O
r /NR

j

BR
, where BR is the av-

erage data processing rate of a reduce task (estimated from

previous runs) and wreduce(r) = dN
R
j

r·k e.
The latency of the shuffle stage is determined by the max-

imum of two components:
(a) Time to transfer data across the core: This is calculated

as lcore
j (r) =

Dcore
j (r)

B/V where B is the bandwidth per ma-
chine, V (> 1) is the oversubscription ratio between the
racks and the core, and Dcore

j is the amount of shuffle data

transferred across the core from a single machine. It is given

by Dcore
j (r) =

DS
j

r·k ·
r−1
r , if r > 1. If r = 1, i.e., the job is

allocated only one rack, Dcore
j (r) = 0.

(b) Time to transfer data within a rack: Along with the
data transferred across the core, each machine transfers data
Dlocal

j (r) within the rack which is given by
DS

j

r·k ·
1
r . While

1
k

th of this data remains on the same machine, the remaining
data is transferred to other machines using a bandwidth of
B − B/V . Thus, the time for transferring data within the

rack is given by llocal
j (r) =

Dlocal
j (r)

B−B/V ·
k−1
k .

Thus, the shuffle latency lshuffle
j (r) is given by

wreduce(r) · max{lcore
j (r), llocal

j (r)}, where wreduce(r) is
the number of reduce waves, as defined above.

For ease of presentation, the above model assumes that
each machine runs only one task at a time. It can be easily
extended to the case where multiple tasks run on a machine
by modifying (i) the number of waves of the map and reduce
stage, and (ii) the amount of bandwidth available per task
during the shuffle stage.
General DAGs. To construct a latency response function
for data-parallel DAGs (generated by frameworks such as
Hive [44] and Tez [4]), we first model every stage of the
DAG as a MapReduce job. Using this abstraction and the
MapReduce model developed above, we then determine the
latency response function Ls(r) for every stage s in the
DAG. Finally, the latency of the DAG is set as the latency
of its critical path P (i.e., a path from a source stage to a
sink stage in the DAG, which takes the longest time to run),
namely Lj(r) =

∑
s∈P Ls(r).

Assumptions. The above latency models make several as-
sumptions. First, latency of each stage is assumed to be pro-
portional to the amount of data processed by it and similar
across all tasks within a particular stage. While this is valid
for a wide variety of jobs [37], it may not hold for cases
where the computation latency depends on the value of the
data read or in the presence of significant data skew across
tasks [39]. Second, the resource demands of the map and
reduce stages are assumed to be similar to previous runs of
the job (on different datasets). We observed this assumption
to hold for a variety of workloads we used in our evaluation
(Section 6), and has also been shown to hold elsewhere [14,
30]. Finally, we assume that the data (both input and inter-
mediate) and tasks of the various stages in a job are spread
uniformly across all the machines in the racks allocated to
the job.

While deviations from the above assumptions can lead to
errors in predicting the latency of a job, our results (Sec-
tion 6) show that Corral is robust to such errors.

4.4 Complexity
The complexity of the prioritization phase is O(JR), be-
cause for each job we make a pass over all R racks to deter-
mine the first rj racks that become available. The provision-
ing phase has JR iterations. Hence, the overall complexity
of our heuristic is O(J2R2). The complexity of calculating

 0
 10
 20
 30
 40
 50
 60

 0 100 200 300 400 500

R
u
n
n
in

g
 t

im
e
 (

se
c)

Number of jobs

Figure 5: Running time of the offline planner heuristic in Cor-
ral for a 4000 machine cluster with varying number of jobs.

the latency response functions is linear in R and thus does
not increase the overall complexity3.

In terms of actual running time, our heuristic is highly
scalable as shown in Figure 5. Running our heuristic on
a single desktop machine with 6 cores and 24GB RAM,
we found that it requires around 55 seconds to generate the
schedule for 500 jobs on a 4000 node cluster with 100 racks
(40 machines per rack). As the planner runs offline, this re-
sults in minimal overhead to the cluster scheduler.

4.5 Accounting for data (im)balance.
Using the latency response functions as described above,
Corral would directly optimize for latency-related metrics,
but would ignore how the input data is spread across differ-
ent racks. Consequently, it is possible that a large fraction
of the input data would be placed in a single rack, leading
to high data imbalance and excess delays (e.g., in reading
the input data). To address this issue and achieve better data
distribution, we add a penalty term to the latency response
function, given by α · DI

j /r, where DI
j /r is the amount of

input data of job j in a single rack and α is a tradeoff coef-
ficient. Accordingly, the modified latency response function
is given by L′j(r) = Lj(r) + α · DI

j /r, where Lj(r) is the
original response function as described in Section 4.3.

In our experiments (Section 6), we set α to be the inverse
of the bandwidth between an individual rack and the core
network. The intuition here is to have the penalty term serve
as a proxy for the time taken to upload the input data of a job
to a rack. Increasing α favors schedules with better data bal-
ance. We note that in practice, we supplement this approach
by greedily placing the last two data replicas on the least
loaded rack. The combination of these approaches leads to a
fairly balanced input data distribution (Section 6.2).

5 Implementation
We implemented Corral on top of the Apache Yarn frame-
work (Hadoop 2.4) [8] and HDFS. Corral’s offline planner
determines the set of racks where (a) the input data of a job
has to be stored and (b) its tasks have to be executed. To en-
sure that these rack preferences are respected (as described
in Section 3.1), we made the following changes to the dif-

3With DAGs, we find critical path via an efficient shortest path algorithm;
using BFS, this adds an O(V+E) to the complexity, where V is the number
of stages and E is the number of edges in the DAG. However, because the
DAGs are typically small compared to number of racks and jobs, this does
not change the complexity of our heuristic.

50%-tile 95%-tile
Number of tasks 180 2,060

Input Data Size (GB) 7.1 162.3
Intermediate data size (GB) 6 71.5

Table 1: Characteristics of workload W3 from Microsoft Cos-
mos [20]

ferent components in Yarn. The changes involve about 300
lines of Java code.
Data placement policy. We modified HDFS’s create()
API to include a set of 〈rack, number of replicas〉 tuples,
which allows Corral to specify the racks where different
replicas of a file’s data chunk are to be placed. These spec-
ifications are passed on to the block placement policy in
HDFS, which was modified to ensure that at least one replica
of the data chunk is placed on a machine which belongs to
the rack specified.
Task placement policy. Every job in Yarn uses an Appli-
cation Manager (AM) to request slots from a centralized
Resource Manager (RM). The AM can also specify prefer-
ences for locations (e.g., specific machine or rack) where it
would like slots to be allocated in the cluster. By default,
the MapReduce AM in Yarn specifies location preferences
for map tasks only and not for the reducers. For Corral, we
modified the Yarn MapReduce AM to specify locality pref-
erences for all tasks of a job.

As the subset of racks where a job needs to be scheduled
is determined by Corral’s offline planner, we pass this to the
AM using a new configuration parameter. This is further
passed to the RM as a location preference. The RM makes
every effort to respect this locality preference while allocat-
ing slots to the job. However, in the event that a majority of
the machines in the racks preferred by a job are unreachable,
the RM will ignore the locality guidelines and allocate slots
on the available nodes in the cluster.

6 Evaluation
We evaluate Corral on a 210 machine cluster, using a vari-
ety of workloads drawn from production traces. Our main
results are as follows.
(a) Compared to Yarn’s capacity scheduler, Corral achieves
10-33% reduction in makespan and 26-36% reduction in
average job completion time for workloads consisting of
MapReduce jobs (Section 6.2). For Hive queries derived
from the TPC-H benchmark [12], Corral improves comple-
tion times by 21% on average (Section 6.3).
(b) When a workload consists of both recurring and ad hoc
jobs, using Corral to schedule the recurring jobs improves
the completion times of the recurring and ad hoc jobs by
33% and 20% (respectively), on average (Section 6.4).
(c) Corral’s improvements increase by more than 2X when
network utilization goes up by 33%, and are robust to errors
in predicted job characteristics (Section 6.5).
(d) Using large-scale simulations, we show that the benefits
from flow-level schedulers like Varys [24] improve signifi-
cantly when used in combination with Corral and that Cor-

-100

W1 W2 W3

%
 r

e
d

u
ct

io
n

 i
n
 m

a
ke

sp
a
n

 0

 15

 30

 45
Corral

LocalShuffle
ShuffleWatcher

Figure 6: Reduction in makespan for different workloads, com-
pared to Yarn-CS in the batch scenario.

ral’s benefits are orthogonal to those of using Varys alone.

6.1 Methodology
Cluster setup. We deployed our implementation of Cor-
ral in Yarn/HDFS on a 210 machine cluster, organized into
7 racks with 30 machines per rack. Each machine has 32
cores, 10Gbps NICs, and runs CentOS 6.4. The racks are
connected in a folded CLOS topology at 5:1 oversubscrip-
tion, i.e., each rack has a 60Gbps connection to the core. To
match network conditions in production clusters, we emu-
late background traffic, accounting for up to 50% of the core
bandwidth usage [5, 22].
Workloads. We first evaluate Corral using the scenario
where all jobs in the workload are assumed to be recurring
(or have predictable characteristics). We then consider work-
loads with both recurring and ad hoc jobs. We use jobs from
the following workloads for our evaluation.
(a) W1: Starting from the Quantcast workloads [42], we con-
structed this workload to incorporate a wider range of job
types, by varying the job size, and task selectivities (i.e., in-
put to output size ratio). The job size is chosen from small
(≤ 50 tasks), medium (≤ 500 tasks) and large (≥ 1000
tasks). The selectivities are chosen between 4:1 and 1:4.
(b) W2: This workload is derived from the SWIM Yahoo
workloads [21] and consists of 400 jobs.
(c) W3: We have chosen 200 jobs, randomly, from a 24
hour trace collected from production big data clusters at Mi-
crosoft and constructed this workload. Some characteristics
of this workload are given in Table 1.
(d) TPC-H: We run queries from the TPC-H benchmark us-
ing Hive [44] to evaluate the performance of Corral for gen-
eral DAG-structured workloads.
Baselines. We compare Corral against three baselines.
(a) the capacity scheduler in Yarn [7] (referred to as Yarn-CS
from now on). The capacity scheduler uses techniques like
delay scheduling [48] to achieve locality for map tasks but
does not plan for data placement. Comparison with Yarn-CS
allows us to show the benefits of achieving better locality for
all stages of a job using Corral.
(b) ShuffleWatcher [16], which schedules each job in a sub-
set of racks to reduce the amount of cross-rack data trans-
ferred by them. ShuffleWatcher does not place the input
data of the job in these racks and as a result, most maps end
up reading their input across the core network. It also fails
to account for contention between jobs and schedules them
independently from each other. Comparison with Shuffle-

 0

 20

 40

 60

 80

 100

 120

W1 W2 W3

%
 r

e
d
u
ct

io
n
 i
n

 c
ro

ss
-r

a
ck

 d
a
ta

Corral
LocalShuffle

ShuffleWatcher

(a)

-5
 0
 5

 10
 15
 20
 25
 30
 35

W1 W2 W3

%
 r

e
d
u
ct

io
n
 i
n

 c
o
m

p
u
te

 h
o
u
rs

Corral
LocalShuffle

ShuffleWatcher

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Time (sec)

Yarn-CS
Corral

(c)

Figure 7: Comparing (a) reduction in cross-rack data transferred and (b) compute hours relative to Yarn-CS, and (c) cumulative
fraction of average reduce time, for workload W1 in the batch scenario.

Watcher allows us to show the benefits of careful planning,
and joint data and compute placement in Corral.
(c) LocalShuffle, which uses the task placement of Corral
but the data placement policy of HDFS. The comparison of
Corral with LocalShuffle allows us to quantify the benefits of
proper placement of input data. We note that, unlike Shuffle-
Watcher, LocalShuffle schedules jobs using the same offline
planning phase as Corral.

For all the above baselines, the input data is placed using
HDFS’s default (random) placement. When using Corral,
we run its offline planner taking data balance into account
(Section 4.5). Using the generated schedule, the input data
of the jobs is placed on the assigned racks while it is up-
loaded and jobs are run using Corral’s task placement policy
(as described in Section 3.1).
Metrics. The primary metrics of interest are (a) makespan,
in the batch scenario, and (b) average job completion time,
in the online scenario.

6.2 MapReduce workloads
In this section, we show the benefits of using Corral to sched-
ule MapReduce jobs in the batch and online scenarios, when
all jobs have predictable characteristics.

6.2.1 Batch scenario
Figure 6 shows the improvement in makespan relative to
Yarn-CS, for different workloads, when run as a batch –
Corral achieves a 10% to 33% reduction. The reduction in
makespan for W2 is lower than that for the other workloads
because W2 is highly skewed. Almost 90% of the jobs are
tiny with less than 200MB (75MB) of input (shuffle) data
and two (out of the 400) jobs are relatively large, reading
nearly 5.5TB each. These large jobs determine the makespan
of W2 and do not suffer significant contention from the tiny
jobs. Out of the 7 racks available, Corral allocates 3 racks
each to the two large jobs and packs most of the tiny jobs on
the remaining rack. Compared to Yarn-CS, the benefits of
Corral stem from running each of the large jobs in isolation,
on separate subsets of racks.

Corral’s improvements are a consequence of its better lo-
cality and reduced contention on the core network. Figure 7a
shows that Corral reduces the amount of cross-rack data
transferred by 20-90% compared to Yarn-CS. This, in turn,
improves task completion times. To quantify this, we use

two additional metrics, namely, (a) compute hours, which
measures the total time spent by all the tasks in the work-
load; compared to Yarn-CS, using Corral reduces the com-
pute hours by up to 20% (Figure 7b), and (b) average reduce
time, which measures the average execution time of all the
reduce tasks in a job. Figure 7c plots the cumulative fraction
(over jobs) of this metric for Corral and Yarn-CS, showing
that Corral is approximately 40% better at the median, with
higher benefits at the tail.

Comparison with other baselines. Corral outperforms Lo-
calShuffle showing that proper input data placement is key
for good performance (Figure 6). Even with better shuffle
locality, LocalShuffle performs worse than Yarn-CS for W2
and W3 due to its lack of input data locality.

ShuffleWatcher optimizes for each job individually and
ends up scheduling several large jobs on the same subset
of racks. This leads to increased completion times for all
those jobs. In the worst case, it can schedule all jobs on
a single rack as it doesn’t directly optimize for makespan
or job completion time but tries to minimize the cross-rack
data transferred. Thus, ShuffleWatcher results in signifi-
cantly worse makespan compared to Yarn-CS for all work-
loads (Figure 6). Note that using ShuffleWatcher results in
lesser cross rack data for W2 compared to Corral (Figure 7a).
This is because the large jobs in W2 have nearly 1.8 times
more shuffle data than input data, and Corral spreads them
on 3 racks each (as mentioned above, for better makespan)
while ShuffleWatcher places them in a single rack.

ShuffleWatcher achieves better compute hours than Corral
(Figure 7b) because it loads racks unevenly with some racks
running significantly lower number of jobs than others. The
tasks of these jobs finish faster, resulting in lower compute
hours. However, as shown in Figure 6, ShuffleWatcher is
significantly worse than Corral for makespan.

Data balance. Corral optimizes for reducing the imbalance
in the data allocated to different racks (Section 4.5). To eval-
uate this, we measure the coefficient of variation (CoV) of
the size of input data stored on each rack. Our results show
that Corral has a low CoV of at most 0.004 and performs bet-
ter than HDFS, which spreads data randomly, resulting in a
CoV of at most 0.014.

4Note that the CoV of a random distribution can be higher than that of
uniform distribution, which is 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS
Corral

LocalShuffle
ShuffleWatcher

(a) W1

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS
Corral

LocalShuffle
ShuffleWatcher

(b) W2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS
Corral

LocalShuffle
ShuffleWatcher

(c) W3

Figure 8: Cumulative fraction of job completion times for different workloads, when jobs arrive online.

-20

 0

 20

 40

 60

Small Medium Large

%
 r

e
d
u
ct

io
n
 i
n

 a
v
e
ra

g
e
 j
o
b
 t

im
e

Job Size

Corral
LocalShuffle

ShuffleWatcher

Figure 9: Reduction in average job completion time relative to
Yarn-CS, for workload W1 in the online scenario.

6.2.2 Online scenario
In this scenario, jobs arrive over a period of time instead of
as a batch. We pick the arrival times uniformly at random
in [0, 60min]. Figure 8 shows the cumulative fraction of job
completion times for workloads W1, W2 and W3. Corral
outperforms Yarn-CS, with 30%-56% improvement at the
median and nearly 26-36% improvement for the average job
time (not shown). Further, Corral equally benefits jobs of all
sizes. Figure 9 shows the reduction in average job comple-
tion time for workload W1, binned by the job size. Corral
achieves 30-36% reduction in average job time across the
various bins.
Comparison with other baselines. Similar to the batch
case, LocalShuffle performs worse than Corral due to the
lack of proper input data placement (Figure 8). While Shuf-
fleWatcher is close to Corral at the lower percentiles, it is
significantly worse at the higher percentiles. ShuffleWatcher
schedules jobs independently. It ends up placing a large
fraction of jobs on a few racks and a smaller fraction of
jobs on the remaining racks. Jobs on the lightly loaded
racks run faster due to lesser contention and those on the
heavily loaded racks slow down. Figure 9 further confirms
this, as ShuffleWatcher reduces the completion times of the
small/medium jobs relative to Yarn-CS but performs worse
for large jobs.

6.3 DAG workloads
To evaluate the benefits of Corral for data-parallel DAGs, we
ran 15 queries from the TPC-H benchmark [12], using Hive
0.14.0 [44]. Each query reads from a 200GB database or-
ganized in ORC format [11]. These queries are assumed to
be recurring, and thus, can be scheduled using Corral. The
queries are submitted over a period of 25 minutes, with ar-
rival times chosen uniformly at random. To emulate condi-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1500 3000 4500 6000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS
Corral

Figure 10: Benefits of running TPC-H queries with Corral.

tions in a real cluster, along with the queries, we also submit
a batch of MapReduce jobs chosen from the workload W1,
which are run using Yarn-CS.

Figure 10 plots the cumulative fraction of the query com-
pletion times for two cases: (i) the queries are run using
Corral (dashed black line) and (ii) the queries are scheduled
using Yarn-CS (solid orange line). We see that Corral re-
duces the median execution time by nearly 18.5% with the
average time being reduced by 21%. We found that these
queries spend only up to 20% of their time in the shuffle
stage, which shows that Corral can also provide benefits for
workloads which are mostly CPU or disk bound.

6.4 Scheduling ad hoc jobs
A significant portion of jobs in a production cluster can be
ad hoc, e.g., those run for research or testing purposes. Such
jobs arrive at arbitrary times and cannot be planned for, in
advance. Corral uses the same scheduling policies as Yarn’s
capacity scheduler (Yarn-CS) for such jobs. To explore the
benefits of Corral in this scenario, we run a mix of 50 ad hoc
and 100 recurring MapReduce jobs, drawn from W1. The ad
hoc jobs are run as a batch with Yarn-CS, while the recurring
jobs arrive uniformly over [0, 60min].

Our observations are two-fold. First, even in the presence
of ad hoc jobs, using Corral to schedule the recurring jobs
is beneficial. Figure 11a shows the cumulative fraction of
completion time for recurring jobs in the workload. Cor-
ral reduces the average (median) completion times by 33%
(27%). Second, using Corral to schedule the recurring jobs
leads to faster execution of ad hoc jobs, especially at the tail
with a 37% reduction at the 90th percentile compared to us-
ing Yarn-CS (Figure 11b). The makespan of the ad hoc jobs
reduces by around 28% (not shown). As jobs run with Corral
use significantly lower core bandwidth and complete earlier,
more network and compute resources are available for the ad

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2500 5000 7500 10000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS
Corral

(a) Recurring jobs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2500 5000 7500

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS
Corral

(b) Ad hoc jobs

Figure 11: Using Corral with a mix of jobs.

 0

 20

 40

 60

 80

 100

30Gbps 35Gbps 40Gbps

%
 r

e
d
u
ct

io
n

Makespan (batch)
Avg. job time (online)

Figure 12: Benefits of using Corral relative to Yarn-CS, as back-
ground traffic increases for workload W1.

hoc jobs, allowing them to also finish faster.
While it is possible to use (a) techniques such as profil-

ing (e.g., [33]) to estimate the latency of ad hoc jobs, or (b)
simple scheduling decisions such as running the next ad hoc
job on the least loaded rack, we leave exploration of such
adaptive techniques to future work.

6.5 Sensitivity analysis
The benefits of Corral depend on (a) the load on the network
and (b) the accuracy with which job characteristics can be
predicted. Here, we evaluate Corral’s robustness to variation
in these factors.
Varying network load. Our results indicate that the gains
of Corral increase significantly as the network utilization in-
creases. For workload W1, Figure 12 shows that as the
per-rack core network usage of background traffic increases
from 30Gbps (50%) to 40Gbps (67%), Corral achieves more
than 2X higher benefits compared to Yarn-CS in makespan
(batch scenario) and average job time (online scenario).
Error in predicted job input data size. Compared to the
6.5% observed in practice (Section 2), we varied the amount
of data processed by jobs up to 50% and found that the ben-
efits of Corral relative to Yarn-CS remain between 25-35%
(Figure 13a). This shows that Corral’s schedule is robust to
errors in job sizes seen in practice.
Error in job start times. In practice, the start of a job can
vary due to various reasons such as (a) input data upload
does not finish in time, or (b) the jobs on which it depends on
are delayed. To evaluate the effect of such error in job start
times, we choose a fraction f of jobs in a workload and add
a random delay between [−t, t], for a fixed t, in their start
times. Figure 13b shows the results of running the online
scenario for workload W1 with such perturbation in arrival
times. We set t at 4 minutes, which is nearly 6.67 times the
expected job inter-arrival time and 20% of the average job
completion time (and thus, represents a significant error).

 0

 10

 20

 30

 40

0 10 20 30 40 50

%
 r

e
d

u
ct

io
n

 i
n

 m
a
k
e
sp

a
n

Error (%)

(a) Error in data size

 0
 10
 20
 30
 40
 50

0 10 20 30 40 50

%
 r

e
d

u
ct

io
n

 i
n

 a

v
e
ra

g
e
 j
o
b

 t
im

e

% jobs delayed

(b) Error in arrival times

Figure 13: Variation in benefits of Corral (relative to Yarn-CS)
with error in job characteristics for workload W1.

Varying f from 0% to 50%, we found that the benefits of
Corral reduce from 40% to at most 25%.

6.6 Using Corral with flow-level schedulers
Corral schedules the tasks in a job with better locality but
does not explicitly schedule the network flows between
them. In all experiments above, we use TCP as the transport
protocol for Corral. However, several flow-level schedulers
proposed in literature (e.g., [24, 26, 35]) have been shown to
outperform TCP in datacenter environments. Here, we eval-
uate how Corral performs when used with such schedulers.

As our cluster does not support such schedulers, we built
a flow-based event simulator for this purpose. The simulator
also allows us to evaluate Corral on larger topologies. We
use pluggable policies for the job and network schedulers.
We have implemented Yarn-CS and Corral to represent job
schedulers. For network schedulers, we implemented a max-
min fair bandwidth allocation mechanism to emulate TCP,
and Varys [24], which uses application communication pat-
terns to better schedule flows.

We simulate a topology of 2000 machines, organized into
50 racks with 40 machines each, connected using the folded
CLOS topology with 5:1 oversubscription. Each machine
can run up to 20 tasks and has a 1Gbps NIC. We run 200
jobs from W1, arriving uniformly over 15min.

Figure 14 shows the cumulative fraction of the job com-
pletion times, when run using all the 4 possible combina-
tions of job and network schedulers. Our main observa-
tions are as follows. First, using Varys with Yarn-CS im-
proves the median job completion time by 46% compared
to Yarn-CS+TCP. This is consistent with the improvements
claimed previously [24]. Second, Corral+TCP outperforms
Yarn-CS+Varys across all jobs, with nearly 45% gains at the
median. This shows that the benefits of using schedulers like
Varys are limited if flow end-points are not placed properly.
On the other hand, Corral schedules jobs in their own set of
racks, reducing their core bandwidth usage and improving
completion times.

Finally, Corral+Varys results in much better job com-
pletion times compared to Corral+TCP or Yarn-CS+Varys.
Thus, Corral’s benefits are orthogonal to those attained with
better flow-level scheduling and combining them performs
better than using either one of them. Also, Corral is agnostic
to the flow-level scheduler used and can potentially perform
even better if its decisions take underlying flow-level sched-
ule into account. Such cross-layer optimizations are part of
our ongoing work.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000

C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

Completion time (sec)

Yarn-CS+TCP

Yarn-CS+Varys

Corral+TCP

Corral+Varys

Figure 14: Simulation results: Cumulative fraction of job com-
pletion times with different flow-level and job schedulers.

7 Discussion
Dealing with failures. While Corral places one copy of job
input data in the racks assigned to it, it spreads the other two
copies across the rest of the cluster (similar to HDFS). This
ensures that even if the assigned racks fail, the dataset can
be recovered. Further, in the event that a majority of the ma-
chines (above a threshold) in a rack fail or a whole rack fails,
Corral reverts back to using the existing placement policies
(e.g., [48]) to run the jobs assigned to that rack, ensuring that
they are not slowed down due to insufficient resources.
Data-job dependencies. Corral assumes that each job reads
its own dataset. This simplifies the offline planning problem
and allows each job to be scheduled independently. How-
ever, in general, the relation between datasets and jobs can
be a complex bipartite graph. This can be incorporated into
Corral by using the schedule of the offline planner and for-
mulating a simple LP with variables representing what frac-
tion of each dataset is allocated to each rack and the cost
function capturing the amount of cross-rack data transferred,
for any partition of datasets across the racks.
In-memory systems. Systems such as Spark [49] try to use
memory to store job input data. While this decreases the
dependence on disk I/O, jobs can still be bottlenecked on the
network. The benefits of Corral extend to such scenarios as
it reduces dependence on the core network and contention
across jobs, by scheduling each of them on only a few racks.
Remote storage. As discussed earlier, in a public cloud set-
ting (e.g., Amazon AWS [2]), the storage is separate from
the compute cluster. This gives rise to the opportunity to
schedule data transfers on the interconnect. One goal here
would be to fully utilize both the interconnect and the com-
pute cluster without having to be blocked on either resource.
Extending Corral to this scenario is part of our ongoing work.

8 Related work
The techniques in Corral are related to the following areas of
research in the context of datacenter applications.
Scheduling techniques for data analytics systems. Im-
proving data-locality in big data clusters has been the fo-
cus of several recent works. Techniques like delay schedul-
ing [48] and Quincy [36] try to improve the locality of in-
dividual tasks (e.g., maps) by scheduling them close to their
input. ShuffleWatcher [16] tries to improve the locality of
the shuffle by scheduling both maps and reducers on the

same set of racks. Others such as Tetris [32] schedule re-
curring jobs to ensure better packing of tasks at machines.
Corral, on the other hand, couples the placement of data and
compute, achieving improved locality for all stages of a job.
Data placement techniques. CoHadoop [29] aims to colo-
cate different datasets processed by a job on the same set of
nodes, but does not guarantee locality for subsequent stages
(e.g., shuffle). PACMan [18] caches repeatedly accessed
data in memory but does not provide locality for interme-
diate data transfers. Techniques like Scarlett [17] use appli-
cation access patterns to determine data replication factor or
replica placement. None of these techniques coordinate data
and compute placement for datacenter applications, which is
the main focus in Corral.
Cross-layer scheduling techniques. The idea of placing
data and compute together has been explored in systems like
CAM [41] and Purlieus [43]. Unlike such systems, Corral
exploits the recurring nature of datacenter applications and
carefully assigns resources to execute them efficiently. Fur-
ther, Corral deals with complex DAG-structured jobs which
have not been considered previously.
Flow-level scheduling techniques. Several network-level
techniques such as D3 [47], PDQ [35], Varys [24] and
Baraat [26] have been proposed to finish network flows or
groups of network flows faster. The benefits from such tech-
niques are inherently limited as the end-points of the net-
work transfers are fixed. Corral exploits the flexibility in
placing input data and the subsequent stages of the jobs, and
provides benefits orthogonal to such network-level sched-
ulers (Section 6.6). Sinbad [22] takes advantage of flexibility
in the placement of output data in big data clusters, but does
not consider other stages in a job.
Malleable job scheduling. The problem of task schedul-
ing across identical servers has been studied for over four
decades (e.g., [38]). The basic formulation appears in [31],
where tasks have precedence constraints and each task can
run on a single server. A different variant of the problem
considers malleable tasks, where each task can run on mul-
tiple servers [19, 40]. Our offline planning algorithm is in-
spired by these papers but none of them addresses the issues
of (a) malleability in the context of shared networks, and (b)
balancing input data required for executing the jobs.

9 Conclusion
In this paper, we argue that current data and compute place-
ment heuristics in big data clusters do not couple the place-
ment of data and compute, and hence, result in increased
contention in an already oversubscribed network. Produc-
tion clusters run a large fraction of recurring jobs with pre-
dictable communication patterns. Leveraging this, we pro-
pose Corral which considers the future workload and jointly
optimizes the location of the job data (during upload) and
tasks (during execution). By solving an offline planning
problem, Corral improves job performance as it separates
large shuffles from each other, reduces network contention
in the cluster and runs jobs across fewer racks, improving
their data locality. We implemented Corral on top of Yarn.

Running production workloads on a 210 machine cluster, we
show that Corral can result in 10-33% reduction in makespan
and 30-56% reduction in median job completion time, com-
pared to Yarn’s capacity scheduler.

Acknowledgements. We thank Ganesh Ananthanarayan,
Hitesh Ballani, Carlo Curino, Chris Douglas, Solom Hed-
daya, Srikanth Kandula, Subramaniam Krishnan, Rahul
Potharaju, Ant Rowstron, Yuan Yu, our shepherd Minlan Yu
and the anonymous SIGCOMM’15 reviewers for their use-
ful feedback.

10 References
[1] Amazon S3. https://aws.amazon.com/s3/.
[2] Amazon Web Services. http://aws.amazon.com/.
[3] Apache Hadoop. http://hadoop.apache.org/.
[4] Apache Tez. http://hortonworks.com/hadoop/tez/.
[5] Facebook data grows by over 500 TB daily.

http://tinyurl.com/96d8oqj/.
[6] Hadoop Distributed Filesystem.

http://hadoop.apache.org/hdfs.
[7] Hadoop mapreduce next generation - capacity

scheduler.
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/
hadoop-yarn-site/CapacityScheduler.html.

[8] Hadoop YARN Project. http://tinyurl.com/bnadg9l.
[9] Microsoft Azure. https://azure.microsoft.com/.

[10] Microsoft Azure Storage.
https://azure.microsoft.com/en-us/services/storage/.

[11] ORC File Format.
http://docs.hortonworks.com/HDPDocuments/HDP2/
HDP-2.0.0.2/ds_Hive/orcfile.html.

[12] TPC Benchmark H. http://www.tpc.org/tpch/.
[13] Windows Azure’s Flat Network Storage and 2012

Scalability Targets. http://bit.ly/1A4Hbjt.
[14] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu,

I. Stoica, and J. Zhou. Re-optimizing Data-parallel
Computing. In NSDI 2012.

[15] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu,
I. Stoica, and J. Zhou. Reoptimizing Data Parallel
Computing. In NSDI’12, 2012.

[16] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. ShuffleWatcher: Shuffle-aware
Scheduling in Multi-tenant MapReduce Clusters. In
USENIX ATC, 2014.

[17] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: Coping with Skewed Content Popularity in
Mapreduce Clusters. In EuroSys, 2011.

[18] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
PACMan: Coordinated Memory Caching for Parallel
Jobs. In NSDI, 2012.

[19] K. P. Belkhale and P. Banerjee. An approximate
algorithm for the partitionable independent task
scheduling problem. Urbana, 51:61801, 1990.

[20] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and
Efficient Parallel Processing of Massive Datasets. In
VLDB, 2008.

[21] Y. Chen, A. Ganapathi, R. Griffith, and Y. Katz. The
Case for Evaluating MapReduce Performance Using
Workload Suites. In MASCOTS, 2011.

[22] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging
Endpoint Flexibility in Data-Intensive Clusters. In
ACM SIGCOMM, 2013.

[23] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing Data Transfers in Computer
Clusters with Orchestra. In ACM SIGCOMM, 2011.

[24] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
Coflow Scheduling with Varys. In ACM SIGCOMM,
2014.

[25] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, 2004.

[26] F. R. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron. Decentralized Task-aware Scheduling
for Data Center Networks. In ACM SIGCOMM,
August 2014.

[27] J. Du and J. Y.-T. Leung. Complexity of Scheduling
Parallel Task Systems. SIAM J. Discret. Math., 1989.

[28] K. Elmeleegy. Piranha: Optimizing Short Jobs in
Hadoop. Proc. VLDB Endow., 2013.

[29] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla,
A. Krettek, and J. McPherson. CoHadoop: Flexible
Data Placement and Its Exploitation in Hadoop. Proc.
VLDB Endow., 2011.

[30] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: Guaranteed Job Latency in Data
Parallel Clusters. In EuroSys, 2012.

[31] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429, 1969.

[32] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella. Multi-resource Packing for Cluster
Schedulers. In SIGCOMM, 2014.

[33] H. Herodotou, F. Dong, and S. Babu. No One
(Cluster) Size Fits All: Automatic Cluster Sizing for
Data-intensive Analytics. In SOCC, 2011.

[34] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A Self-tuning
System for Big Data Analytics. In CIDR, 2011.

[35] C. Y. Hong, M. Caesar, and P. B. Godfrey. Finishing
Flows Quickly with Preemptive Scheduling. In
SIGCOMM, 2012.

[36] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair Scheduling
for Distributed Computing Clusters. In SOSP, 2009.

[37] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Bridging the Tenant-provider Gap in
Cloud Services. In SOCC, 2012.

[38] Y. Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors.

https://aws.amazon.com/s3/
http://aws.amazon.com/
http://hadoop.apache.org/
http://hortonworks.com/hadoop/tez/
http://tinyurl.com/96d8oqj/
http://hadoop.apache.org/hdfs
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://tinyurl.com/bnadg9l
https://azure.microsoft.com/
https://azure.microsoft.com/en-us/services/storage/
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://www.tpc.org/tpch/
http://bit.ly/1A4Hbjt

ACM Computing Surveys (CSUR), 1999.
[39] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.

SkewTune: Mitigating Skew in Mapreduce
Applications. In ACM SIGMOD, 2012.

[40] R. Lepère, D. Trystram, and G. J. Woeginger.
Approximation Algorithms for Scheduling Malleable
Tasks Under Precedence Constraints. International
Journal of Foundations of Computer Science,
13(04):613–627, 2002.

[41] M. Li, D. Subhraveti, A. R. Butt, A. Khasymski, and
P. Sarkar. CAM: A Topology Aware Minimum Cost
Flow Based Resource Manager for MapReduce
Applications in the Cloud. In HPDC, 2012.

[42] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao,
and J. Kelly. The Quantcast File System. Proc. VLDB
Endow.

[43] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus:
Locality-aware Resource Allocation for MapReduce
in a Cloud. In SC, 2011.

[44] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive-
a warehousing solution over a map-reduce framework.
In VLDB, 2009.

[45] J. Turek, J. L. Wolf, and P. S. Yu. Approximate
Algorithms Scheduling Parallelizable Tasks. In SPAA,
1992.

[46] G. Wang, A. Butt, P. Pandey, and K. Gupta. A
Simulation Approach to Evaluating Design Decisions
in MapReduce Setups. In MASCOTS, 2009.

[47] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better Never than Late: Meeting
Deadlines in Datacenter Networks. In ACM
SIGCOMM, 2011.

[48] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A Simple
Technique for Achieving Locality and Fairness in
Cluster Scheduling. In EuroSys, 2010.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In HotCloud, 2010.

[50] J. Zhou, N. Bruno, M.-C. Wu, P.-Å. Larson,
R. Chaiken, and D. Shakib. Scope: parallel databases
meet mapreduce. VLDB J., 21(5):611–636, 2012.

APPENDIX
A LP Relaxation
To estimate the quality of our heuristics for the plan-
ning problem, we formulate a related integer linear pro-
gram (ILP). The ILP would provide a lower bound on the
makespan and the average completion time for any algo-
rithm which plans at the granularity of racks and jobs. How-
ever, as the ILP is computationally expensive to solve in
practice, we relax it to a linear program (LP), whose solution
is still a lower bound to our problem. Thus, if the solution
from our heuristics is close to that of the LP, it is guaranteed
to be close to optimal. We emphasize that the LP relaxation

is not used by Corral, but only serves as a benchmark for the
solutions we developed in Section 4.2.

We first describe the Integer Linear Program (ILP). Let T
be the makespan of the (unknown to us) optimal solution to
the planning problem. For every job j and every number of
racks r ∈ {1, . . . , R}, we introduce a variable xjr ∈ {0, 1}.
In the ILP, xjr equals 1 if job j is assigned r racks, and 0
otherwise. Relaxing the integrality constraint, we obtain the
following LP.

Minimize{xjr} T (LP −Batch) (1)

Subject to
∑
r

xjr = 1, ∀j (2)

T ≥
∑
r

xjrLj(r), ∀j (3)

TR ≥
∑
j,r

xjrLj(r) · r, (4)

xjr ∈ [0, 1],∀j,∀r (5)

The constraint (2) ensures that all jobs are completed. In
the integral solution corresponding to a feasible schedule,
for each j exactly one xjr equals 1, so the constraint (2) is
satisfied. The constraints (3) and (4) give a lower bound on
the makespan. Constraint (3) asserts that the makespan is at
least as large as the completion time of every job j (since
in the integral solution corresponding to a feasible schedule,
the right hand side of (3) exactly equals the running time of
job j). Constraint (4) is a capacity constraint. It indicates
that the capacity used by the LP schedule (the right hand
side of inequality) is at most the available capacity (the left
hand side).

We emphasize that LP-Batch is a relaxation of our orig-
inal planning problem (Section 4.1) as it does not give an
actual schedule (e.g., does not specify the time when a job
should start) but only provides the number of racks a job has
to be allocated. Still, any feasible schedule (particularly, an
optimal schedule) should satisfy the constraints of the LP
and thus, the cost (i.e, makespan) returned by the LP is a
lower bound on the cost of any schedule.

In the online scenario, we are interested in minimizing
the average completion time. Accordingly, we formulate a
mixed integer program with the objective function:

Minimize{xjr},{djr}
1

J

∑
j,r

xjrLj(r)+djr (LP−Online)

(6)
where djr > 0 is the delay in scheduling job j relative to its
arrival. The LP for the online case is more involved and we
omit the full description for brevity.

The above bounds are useful for bounding the gap be-
tween the performance of our heuristics and the optimal
solution to the planning problem (defined in Section 3.3).
They should not be viewed as theoretical guarantees for
the entire Corral framework, which includes also the (work-
conserving) cluster scheduler. Nevertheless, as our exper-
iments indicate, obtaining good solution for the planning
problem leads to overall performance enhancements.

	Introduction
	Motivation
	Corraldesign principles
	System architecture
	Design considerations
	Solution approach

	Offline planning in Corral
	Problem formulation
	Planning heuristics
	Latency response functions
	Complexity
	Accounting for data (im)balance.

	Implementation
	Evaluation
	Methodology
	MapReduce workloads
	Batch scenario
	Online scenario

	DAG workloads
	Scheduling ad hoc jobs
	Sensitivity analysis
	Using Corralwith flow-level schedulers

	Discussion
	Related work
	Conclusion
	References
	LP Relaxation

