Modeling non-convex costs in an LP (for
traffic engineering on WANs)

Srikanth Kandula, Brendan Lucier, Ishai Menache, Mohit Singh
Microsoft Research

February 19, 2015

1 Traffic Engineering

We describe a Traffic Engineering (TE) solution which can incorporate non-linear
link costs. TE decides on the actual assignment of requests’ flow to (time, path)
pairs.

Formulation. A byte request, indexed by 7, has a quantity of data d; to be routed,
and a value per byte v;. The request indicates the source .S; and target 7;; data
must be transmitted along a path from S; to 7;. Write R; for the set of admissible
paths (or routes) for request . Let X, denote the number of bytes from request ¢
transmitted along route r € R; at time ¢. The quantities X = (X,;) fully describe
a schedule of transfers. The objective of TE is to maximize welfare (values minus
costs). Formally, the objective is

T
maximize — C'(X) + Z Z Z Xirt + v (1)

i t=1 reR;

T
subject to Z Z X < d; Vi

t=1 T’ERi

Z Z Xirt S Ce,t Vta ¢,

i e€r,reR;

where c., is the available capacity in link e at time ¢.
The term C'(X) is non-convex. It typically corresponds to the sum of all link
costs, where a link’s cost is linearly proportional to a high-percentile utilization

1

1 r o 009
S
S08 o %
=3 &
-90'6 C Oooo
504 | e
(<)) o Ped
02 g6° o
o) %&”

0 0.25 0.5 0.75 1

95%ile utilization

Figure 1: Scatter plot of 95" percentile and average of top 10% utilization values.
Each point corresponds to a link.

over time (we use the 95" percentile'). This non-linear relation makes the opti-
mization challenging. Formally,

Theorem 1. Maximizing (1), where C(X) is linearly proportional to the sum of
95" _percentile utilization in each link, is an NP-hard optimization problem.

The proof follows by a reduction from the NP-had subset-sum problem [2].

Before describing our solution, we note that we use the above formulation as
an exemplar setting for non-convex costs. That is, the techniques we develop here
would be useful even for other objective functions/constraints.
Solution. We deal with the above challenge by using an alternative metric, which
serves as a proxy for 95" percentile. We use the average of the top & utilization
values; e.g., if costs are computed over a time horizon of 7' = 100 time-steps,
and we are interested in the 95" percentile, then we choose k£ = 10. Note that if
utilization values are uniformly distributed, the two metrics coincide?. We have
verified experimentally that the two metrics are highly correlated, see Figure 1 for
scatter plots of several links.

In principle we can “code” the sum (hence, the average) of the top £ by adding
a linear term to (LP), and a new set of linear inequalities, which result in a new

linear program. Formally, the objectiveis > . > > Xy - v; — > CeSe, where
t reR;
Ce is the per-unit cost, and S, is an upper bound on the & largest utilization values

195-th percentile costs are often used nowadays by operators to lower burst usage.
2We may consider choosing different values of k for heavily-skewed distributions. We have
not yet fully investigated this direction.

(since we are minimizing) ., C.S. the upper bound becomes tight at an optimal
solution) . The constraints are as follows:

Se > fer VT C{L,....T}, |T|=F,)

teT

where f.; = Z Z Xt 1s the flow on edge e at time ¢. A difficulty is that
i reER;ecr

the number of constraints in (2) is exponential in 7" (more precisely, (3;) for each

link). The resulting LP is then intractable. We address this by using sorting-

network inequalities (see [1] and references therein), which reduces the number

of constraints to O(kT") per link, without any loss in accuracy. Formally,

Theorem 2. There exists a set of O(kT) linear constraints which expresses an
upper bound on sum of top k values from the set f. 1, ... fer.

In a nutshell, the sorting network mimics the operation of the bubble sort algo-
rithm: each iteration 7 of the algorithm is mapped to a set of equalities/inequalities
which bubble up (an upper bound of) the sum of the largest ¢ elements. See ap-
pendix for the construction and proof.

References

[1] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic
Engineering with Forward Fault Correction. In SIGCOMM, pages 527-538.
ACM, 2014.

[2] R. G. Michael and S. J. David. Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman & Co., San Francisco, 1979.

A Constructing the Sorting Network

Inspired by the bubble sort algorithm, we construct a set of O(kT') constraints
and show that the construction results in an upper bound S, on the sum of the k

largest utilization levels in each link. Since we are maximizing »_ > > X -
t t mreR;

Pi — Y. CeSe, We are minimizing each S, and the upper bound becomes tight as

required. We will omit subscript e from our notation.We proceed in k iterations:

in the first, we “bubble” the largest element, then the second largest, etc.. Our
constraints mimic the bubbling operations — for each two numbers x, y to be com-
pared, we have a linear comparator, which is manifested through the following
inequalities: © +y = m + M, m < x,m < y. Note this implies M > max{z, y}
and m < min{z,y}.

Let f; denote the minimum of the two outputs of the j-th comparator at the :-th
iteration, and let F} denote the maximum of the two values. We use the convention
f][-) = f;forall j € {1,2,...T}. Accordingly, our first comparator at the first
iteration is given by f{ + f9 = fi + F}, f1 < f?, fi < f2. As in bubble sort, the
maximum output is pushed to the next comparator, i.e., the rest of the constraints

for this iteration have following form: f) + F} , = fj | + F' |, f/., < f},
jl_l < Fjl_Q, forevery j € {3,4,...T}. Using all the above constraints, it can be
easily shown that
Froy > max{f{, fy ... fr} 3)
A+fi++fr=f+h+ fra+Fr,)

Indeed, (3) follows from a chain of inequalities F jl >]Q 1 Fj1 > Fjl_1 for any
2<j<T—1and F! > f0 f9, whereas summing all the above equalities and
canceling out equal terms leads to (4).

The next iteration proceeds with variables fi, f5,... f+ , (one less compara-
tor than previous iteration), which similarly leads to

F72“—2 > max{fll,le... fil“—l}
A+t fra=R+H+. i, +Fi,

It follows from (4) and the last equality that f{ + f9 + -+ + fQ = f2 + f2 +
o S+ Fpg + Froy.

Proceeding iteratively, we use (T' — i) comparators in the i-th iteration (all
outputs of iteration 7 excluding F% ., are inputs for iteration 7 + 1). Using (4)
inductively, we have the following equality after k iterations

Rt fp=f+ i+ F+ B+ +Frg)
Finally, we add the constraint S > Fk , + FF—} 1+ -+ F}_;. Note that we
have a total of O(kT') equalities/inequalities.

In order to formally prove that S' is not smaller than sum of k largest elements
we need the following lemma:

Lemma 1. For any i and any set of indices Y; C {1,2...T — i} we can find a
subset of indices Yy C€ {1,2... T—i—1} suchthat |Y;| = [Yi.|and 3oy fi >

+1
ZleYi+1 fJZ')

Proof. The proof follows by a charging argument. Assume thatY; = {ay, as, ..., a,}
and a; < as < --- < a,. Let p be a largest index such that Y; can be represented
as {1,2,3...p} U{apt1,...a,}. It follows that a,.; > p + 1. For Y;;; we take
{L,2...pyU{aps —1,...ap—1}. Inequality -y f > D ey | fi follows
from fi > fifiand fi+ fi+---+ fi= fi"' + 57 + .. [T 4+ F)L, where
>l n
We are now ready to prove the theorem. We let Yj be the set of indices cor-
responding to the 7' — k smallest elements among f2, f2, ... f2. And then conse-
quently construct Y7,Y5...Y,. We obtain that Y, = {1,2,...T — k}. It means
that ff' + f5¥ +... f¥_, is not larger than the sum of 7" — k-smallest numbers from
[, £9,. .. f2. This together with (5) guarantees that F'5_, + Fy~ +- -+ F}_;
is greater or equal to sum of k largest elements from f, f9 ... fo. [

	Traffic Engineering
	Constructing the Sorting Network

