
Modeling non-convex costs in an LP (for
traffic engineering on WANs)

Srikanth Kandula, Brendan Lucier, Ishai Menache, Mohit Singh
Microsoft Research

February 19, 2015

1 Traffic Engineering
We describe a Traffic Engineering (TE) solution which can incorporate non-linear
link costs. TE decides on the actual assignment of requests’ flow to (time, path)
pairs.
Formulation. A byte request, indexed by i, has a quantity of data di to be routed,
and a value per byte vi. The request indicates the source Si and target Ti; data
must be transmitted along a path from Si to Ti. Write Ri for the set of admissible
paths (or routes) for request i. Let Xirt denote the number of bytes from request i
transmitted along route r ∈ Ri at time t. The quantities X = (Xirt) fully describe
a schedule of transfers. The objective of TE is to maximize welfare (values minus
costs). Formally, the objective is

maximize− C(X) +
∑
i

T∑
t=1

∑
r∈Ri

Xirt · vi (1)

subject to
T∑
t=1

∑
r∈Ri

Xirt ≤ di ∀i∑
i

∑
e∈r,r∈Ri

Xirt ≤ ce,t ∀t, e,

where ce,t is the available capacity in link e at time t.
The term C(X) is non-convex. It typically corresponds to the sum of all link

costs, where a link’s cost is linearly proportional to a high-percentile utilization

1

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

A
v
e

ra
g

e
 o

f
to

p
 1

0
%

95%ile utilization

Figure 1: Scatter plot of 95th percentile and average of top 10% utilization values.
Each point corresponds to a link.

over time (we use the 95th percentile1). This non-linear relation makes the opti-
mization challenging. Formally,

Theorem 1. Maximizing (1), where C(X) is linearly proportional to the sum of
95th-percentile utilization in each link, is an NP-hard optimization problem.

The proof follows by a reduction from the NP-had subset-sum problem [2].
Before describing our solution, we note that we use the above formulation as

an exemplar setting for non-convex costs. That is, the techniques we develop here
would be useful even for other objective functions/constraints.
Solution. We deal with the above challenge by using an alternative metric, which
serves as a proxy for 95th percentile. We use the average of the top k utilization
values; e.g., if costs are computed over a time horizon of T = 100 time-steps,
and we are interested in the 95th percentile, then we choose k = 10. Note that if
utilization values are uniformly distributed, the two metrics coincide2. We have
verified experimentally that the two metrics are highly correlated, see Figure 1 for
scatter plots of several links.

In principle we can “code” the sum (hence, the average) of the top k by adding
a linear term to (LP), and a new set of linear inequalities, which result in a new
linear program. Formally, the objective is

∑
i

∑
t

∑
r∈Ri

Xirt · vi −
∑

eCeSe, where

Ce is the per-unit cost, and Se is an upper bound on the k largest utilization values

195-th percentile costs are often used nowadays by operators to lower burst usage.
2We may consider choosing different values of k for heavily-skewed distributions. We have

not yet fully investigated this direction.

2

(since we are minimizing
∑

eCeSe the upper bound becomes tight at an optimal
solution) . The constraints are as follows:

Se ≥
∑
t∈T

fe,t ∀T ⊂ {1, . . . , T}, |T | = k, (2)

where fe,t =
∑
i

∑
r∈Ri:e∈r

Xirt is the flow on edge e at time t. A difficulty is that

the number of constraints in (2) is exponential in T (more precisely,
(
T
k

)
for each

link). The resulting LP is then intractable. We address this by using sorting-
network inequalities (see [1] and references therein), which reduces the number
of constraints to O(kT) per link, without any loss in accuracy. Formally,

Theorem 2. There exists a set of O(kT) linear constraints which expresses an
upper bound on sum of top k values from the set fe,1, . . . fe,T .

In a nutshell, the sorting network mimics the operation of the bubble sort algo-
rithm: each iteration i of the algorithm is mapped to a set of equalities/inequalities
which bubble up (an upper bound of) the sum of the largest i elements. See ap-
pendix for the construction and proof.

References
[1] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic

Engineering with Forward Fault Correction. In SIGCOMM, pages 527–538.
ACM, 2014.

[2] R. G. Michael and S. J. David. Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman & Co., San Francisco, 1979.

A Constructing the Sorting Network

Inspired by the bubble sort algorithm, we construct a set of O(kT) constraints
and show that the construction results in an upper bound Se on the sum of the k
largest utilization levels in each link. Since we are maximizing

∑
i

∑
t

∑
r:r∈Ri

Xirt ·

pi −
∑

e ceSe, we are minimizing each Se and the upper bound becomes tight as
required. We will omit subscript e from our notation.We proceed in k iterations:

3

in the first, we “bubble” the largest element, then the second largest, etc.. Our
constraints mimic the bubbling operations – for each two numbers x, y to be com-
pared, we have a linear comparator, which is manifested through the following
inequalities: x+ y = m+M,m ≤ x,m ≤ y. Note this implies M ≥ max{x, y}
and m ≤ min{x, y}.

Let f i
j denote the minimum of the two outputs of the j-th comparator at the i-th

iteration, and let F i
j denote the maximum of the two values. We use the convention

f 0
j = fj for all j ∈ {1, 2, . . . T}. Accordingly, our first comparator at the first

iteration is given by f 0
1 + f 0

2 = f 1
1 +F 1

1 , f 1
1 ≤ f 0

1 , f 1
1 ≤ f 0

2 . As in bubble sort, the
maximum output is pushed to the next comparator, i.e., the rest of the constraints
for this iteration have following form: f 0

j + F 1
j−2 = f 1

j−1 + F 1
j−1, f

1
j−1 ≤ f 0

j ,
f 1
j−1 ≤ F 1

j−2, for every j ∈ {3, 4, . . . T}. Using all the above constraints, it can be
easily shown that

F 1
T−1 ≥ max{f 0

1 , f
0
2 . . . f

0
T} (3)

f 0
1 + f 0

2 + · · ·+ f 0
T = f 1

1 + f 1
2 + . . . f 1

T−1 + F 1
T−1 (4)

Indeed, (3) follows from a chain of inequalities F 1
j ≥ f 0

j+1, F
1
j ≥ F 1

j−1 for any
2 ≤ j ≤ T − 1 and F 1

1 ≥ f 0
1 , f

0
2 , whereas summing all the above equalities and

canceling out equal terms leads to (4).
The next iteration proceeds with variables f 1

1 , f
1
2 , . . . f

1
T−1 (one less compara-

tor than previous iteration), which similarly leads to

F 2
T−2 ≥ max{f 1

1 , f
1
2 . . . f

1
T−1}

f 1
1 + f 1

2 + · · ·+ f 1
T−1 = f 2

1 + f 2
2 + . . . f 2

T−2 + F 2
T−2

It follows from (4) and the last equality that f 0
1 + f 0

2 + · · · + f 0
T = f 2

1 + f 2
2 +

. . . f 2
T−2 + F 2

T−2 + F 1
T−1.

Proceeding iteratively, we use (T − i) comparators in the i-th iteration (all
outputs of iteration i excluding F i

T−i, are inputs for iteration i + 1). Using (4)
inductively, we have the following equality after k iterations

f 0
1 + · · ·+ f 0

T = fk
1 + . . . fk

T−k + F k
T−k + F k−1

T−k+1 + · · ·+ F 1
T−1. (5)

Finally, we add the constraint S ≥ F k
T−k + F k−1

T−k+1 + · · · + F 1
T−1. Note that we

have a total of O(kT) equalities/inequalities.
In order to formally prove that S is not smaller than sum of k largest elements

we need the following lemma:

4

Lemma 1. For any i and any set of indices Yi ({1, 2 . . . T − i} we can find a
subset of indices Yi+1 ⊆ {1, 2 . . . T−i−1} such that |Yi| = |Yi+1| and

∑
j∈Yi

f i
j ≥∑

j′∈Yi+1
f i+1
j′ .

Proof. The proof follows by a charging argument. Assume that Yi = {a1, a2, . . . , aq}
and a1 < a2 < · · · < aq. Let p be a largest index such that Yi can be represented
as {1, 2, 3 . . . p} ∪ {ap+1, . . . aq}. It follows that ap+1 > p + 1. For Yi+1 we take
{1, 2 . . . p}∪{ap+1− 1, . . . aq− 1}. Inequality

∑
j∈Yi

f i
j ≥

∑
j′∈Yi+1

f i+1
j′ follows

from f i
j ≥ f i+1

j−1 and f i
1 + f i

2 + · · · + f i
p = f i+1

1 + f i+1
2 + . . . f i+1

p−1 + F i+1
p−1, where

F i+1
p−1 ≥ f i

1, . . . , f
i
p.

We are now ready to prove the theorem. We let Y0 be the set of indices cor-
responding to the T − k smallest elements among f 0

1 , f
0
2 , . . . f

0
T . And then conse-

quently construct Y1, Y2 . . . Yk. We obtain that Yk = {1, 2, . . . T − k}. It means
that fk

1 + fk
2 + . . . fk

T−k is not larger than the sum of T −k-smallest numbers from
f 0
1 , f

0
2 , . . . f

0
T . This together with (5) guarantees that F k

T−k +F k−1
T−k+1+ · · ·+F 1

T−1
is greater or equal to sum of k largest elements from f 0

1 , f
0
2 , . . . f

0
T .

5

	Traffic Engineering
	Constructing the Sorting Network

