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costs. Cloud providers offer different pricing options oz {| 1‘ N‘H i . "JJ “H IL -~
to meet computing requirements of a wide variety of .
applications. An attractive option for batch computing ~ #¥* ¥ e e swm e e e A s
is spot-instanceswhich allows users to place bids for rigyre 1: The variation in Amazon EC2 spot market prices
spare computing instances and rentthem at a (often) sultor "large’ computing instances in the US East-coast region
stantially lower price compared to the fixed-demand Linux (left) and Windows (right). The fixed on-demand price
price. However, this raises three main challenges foffor Linux and Windows instances is 0.34 and 0.48, respdgtive
users: how many instances to rent at any time? what
type (on-demand, spot, or both)? and what bid value to

use for spot instances? In particular, renting on-demangice due to its cost-efficiency and flexibility. By allow-
risks h|gh costs while renting SpOt instances risks jOb in'ing mu'tiplexing of |arge resources pools among users,
terruption and delayed completion when the spot markethe cloud enablesgility—the ability to dynamically
price exceeds the bid. This paper introduces an onlingcale-out and scale-in application instances across host-
|eaming algorithm for resource allocation to address th|Sng servers. Major cloud Computing providers include
fundamental tradeoff between computation cost and peramazon EC2, Microsoft’s Windows Azure, Google Ap-
formance. Our algorithm dynamically adapts resourceygngine, and IBM’s Smart Business cloud offerings.
allocation by learning from its performance on prior job The common cloud pricing schemes areréerved
executions while ingorporating hist_ory of spot.prices and(ii) on-demangdand (iii) spot Reserved instances offer
wor_kload characteristics. We provide theoretical bound sers to make a one-time payment for reserving instances
on its performance and prove that the a_"er?@?t Of_ over 1-3 years and then receive discounted hourly pric-
our approach (compared to the best policy in h|nd3|ght}ng on usage. On-demand instances allow users to pay

vanishes to zero with time. Evaluation on traces from &or instances by the hour without any long-term commit-

large datacenter cluster shows that our algorithm OUtperr‘nent. Spot instances, offered by Amazon EC2, allow

forms greedy allocation heuri_stics anq quickly CONVETYES,sers to bid for spare instances and to run them as long as

to a small set of best performing policies. their bid price is above the spot market price. Batch
applicationswith flexibility on when they can run (e.g.,

1 Introduction Mon'Fe Carlo simulqtions, so_ftware te;ting, image pro-
cessing, web crawling), renting spot instances can sig-

This paper presents an online learning approach that apificantly reduce the execution costs. Indeed, several en-
locates resources for executing batch jobs on cloud platterprises claim to save 50%-66% in computing costs by

forms by adaptively managing the tradeoff between the!Sing spot instances over on-demand instances, or their
cost of renting compute instances and the user-centrigombination [4].

utility of finishing jobs by their specified due dates. Reserved instances are most beneficial for hosting
Cloud computing is revolutionizing computing as a ser-long running services (e.g., web applications), and may




also be used for batch jobs, especially if future load carwhich balances the fundamental tradeoff between cloud
be predicted [19]. The focus of this work, however, is oncomputing costs and job due dates. Intuitively, given a
managing the choice between on-demand and spot irset of jobs and resource allocation policies, our algo-
stances, which are suitable for batch jobs that perforntithm continuously adjusts per-policy weights based on
computation for a bounded periodustomers face a fun- their performance on job executions, in order to rein-
damental challenge of how to combine on-demand andiorce best performing policies. In addition, the learning
spot instances to execute their jobs. On one hand, aimethod takes into account prior history of spot prices and
ways renting on-demand incurs high costs. On the othecharacteristics of input jobs to adapt policy weights. Fi-
hand, spot instances with a low bid price risks high de-nally, to prevent overfitting to only a small set of policies,
lay before the job gets started (till the bid is accepted)our approach allows defining a broad range of param-
or frequent interruption during its execution (when theeterized policy combinations (based on discussion with
spot market price exceeds the bid). Figure 1 shows thesers and cloud operators) such as (a) rent on-demand,
variation in Amazon EC2 spot prices for their US eastspot instances, or both; (b) vary spot bid prices in a pre-
coast region for Linux and Windows instances of typedefined range; and (c) choose bid value based on past
'large’. We observe that spot market prices exhibit aspot market prices. Note that these policy combinations
significant fluctuation, and at times exceed even the onare illustrative, not comprehensive, in the sense that ad-
demand price. For batch jobs requiring strict comple-ditional parameterized families of policies can be defined
tion deadlines, this fluctuation can directly impact the re-and integrated into our framework. Likewise, our learn-
sult quality. For example, web search requires frequening approach can incorporate other resource allocation
crawling and update of search index as the freshness gfarameters being provided by cloud platforms e.g., Vir-
this data affects the end-user experience, product putual Machine (VM) instance type, datacenter/region.
chases, and advertisement revenues [2]. Our proposed algorithm is based on machine learning
Unfortunately, most customers resort to simple heurisapproaches (e.g., [9]), which aim to learn good perform-
tics to address these issues while renting computing ining policies given a set of candidate policies. While these
stances; we exemplify this observation by analyzing sevschemes provide performance guarantees with respect to
eral case studies, reported on the Amazon EC2 webthe optimal policy in hindsight, they are not applicable
site [4]. Litmus [16] offers testing tools to marketing as-isto our problem. In particular, they require a payoff
professionals for their web site designs and email camvalue per execution step to measure how well a policy
paigns. Its heuristic for resource allocation is to firstis performing and to tune the learning process. How-
launch spot instances and then on-demand instances §ver, in batch computing, the performance of a policy
spot instances do not get allocated within 20 minutescan only be calculated after the job has completed. Thus,
Their bid price is set to be above the on-demand pricéhese schemes do not explicitly address the issdelay
to improve the probability of their bid getting accepted. in getting feedback on how well a particular policy per-
Similarly, BrowserMob [8], a startup that provides web- formed in executing jobs. Our online learning algorithm
site load testing and monitoring services, attempts td1andles bounded delay and provides formal guarantees
launch spot instances first at a low bid price. If in- on its performance which scales with the amount of de-
stances do not launch within 7 minutes, it switches to onlay and the total number of jobs to be processed.
demand. Other companies manually assign delay sensi- We evaluate our algorithms via simulations on a job
tive jobs to on-demand instances, and delay-tolerant oni§ace from a datacenter cluster and Amazon EC2 spot
to spot instances. In general, these schemes do not prrarket prices. We show that our approach outperforms
vide any payoff guarantees or how far do they Operategreedy resource allocation heuristics in terms of total
from the optimal cost vs. performance point. Further,payoff—in particular, the average regret of our approach
as expected, these approaches are limited in terms of ekcompared to the best policy in hindsight) vanishes to
plored policies, which account for only a small portion zero with time. Further, it provides fast convergence
of the state space. Note that a strawman of simply waitWhile only using a small amount of training data. Fi-
ing for the spot instances at the lowest price and purhally, our algorithm enables interpreting the allocation
chasing in bulk risks delayed job completion, insufficient Strategy of the output policies, allowing users to apply
resources (due to limit on spot instances and job paralthem directly in practice.
lelism constraints), or both. Therefore, given fluctuat-
ing and unpredictable spot_price; (Fig. 1), users do nop Background and System M odel
have an effective way of reinforcing the better perform-
ing policies. In this section we first provide a background on the on-
In this paper, we propose an online learning approachine learning framework and then describe the problem
for automated resource allocation for batch applicationssetup and the parameterized set of policies for resource



allocation. execution yields zero value. (jii) Job sizg (measured
Regret-minimizing online learning. Our online learn- in CPU instance hours to be executed): Note that for
ing framework is based on the substantial body of workmany batch jobs such as parameter sweep applications
on learning algorithms that make repeated decision@nd software testing; is known in advance. Otherwise,
while aiming to minimizeregret The regret of an al- a small bounded over-estimatemfsuffices. (iv) Paral-
gorithm is defined as the difference between the cumulelism constraint;: The maximal degree of parallelism
lative performance of the sequence of its decisions ande., the upper bound on number of instances that can be
the cumulative performance of the best fixed decision insimultaneously assigned to the job. (v) Value function:
hindsight. We present only a brief overview of these al-Vj : N — R, which is a monotonically non-increasing
gorithms due to space constraints. function withV; (1) = 0 ¥T1 > d;.

In general, an online decision problem can be for- Thus, jobj is described by the tuplgA;,d;, zj,c;,V;}.
mulated as a repeated game between a learner (or dedihe job j is said to beactiveat time slotr if less than
sion maker) and the environment. The game proceeds idj hours have passed since its arrivgl and the total
rounds. In each roungl the environment (possibly con- instance hours assigned so far are less #an
trolled by an adversary) assigns a rewdych) to each Allocation updatesEach jobj is allocated computing
possible actiora, which is not revealed beforehand to instances during its execution. Given the existing cloud
the learner. The learner then chooses one of the actiorwicing model of charging based on hourly boundaries,
a;, possibly in a randomized manner. The average payofthe instance allocation of each active job is updated ev-
of an actiorais the average of rewarcilJ-szf:1 fi(a)over  ery hour. The-th allocation update for jol is formally
the time horizonJ, and the learner’s average payoff is defined as a triplet of the forrfol,s,b\). o} denotes
the average received rewafdr]_, fj(a;) over the time  the number of assigned on-demand instansedenotes
horlz?n.JThe averalgeJregret of the learner is defined a§,e humber of assigned spot instances hhaﬂenotes
maxa 5 3j-1 fj(a) — 3 3i-1 fj (@), namely the difference qir pig values. The parallelism constraint translates to
between the average pa)_/off of the best action and thgi_ +d <. Note that a NOP decision i.e., allocating
learner’s sequence of actions. The goal of the learneris! ! S N :
to minimize the average regret, and approach the avera fero resources to ajob, is handled by setohgnd%— 0
gain of the best action. Several learning algorithms have ) ) . )
been proposed that approach zero average regret as theSpOt mstgnces.‘l‘he spot mstz_:mces assigned t(.) a ](.)b
time horizonJ approaches infinity, even against a fully operate until the spot market price excegds the bid price.
adaptive adversary [9]. However, as Figure 1 shows, the spot prices may change

our problem of allocating between on-demand andunpred|ctably implying that spot instances can get ter-

spot instances can be cast as a problem of repeated de{:;ﬂ-Inated at any time. Formally, consider some job

; S . . . t us normalize the hour interval to the closed inter-
sion making in which the resource allocation algorithm - S ) .
o . . . ._val [0,1]. Lety' € [0,1] be the point in time in which
must decide in a repeated fashion over which poI|C|e§ 7 i S
. . ... "" “the spot price exceeded tivh bid for job j; formally,
to use for meeting job due dates while minimizing jobyi inf b here is the Spot price
execution costs. However, our problem also differs from’ =1 _Ye[o_vl]{ps(y) = j}’ w ps() i pot price,
standard online learning, in that the payoff of each policyandylj = lifthe spot price does not exceed the bid. Then
is not revealed immediately after it is chosen, but only af-the cost of utilizing spot instances for 1360r itsi-th al-
ter some delay (due to the time it takes to process a job)ocation is given b)éj * f)'l wherep'fj — foj p; (y)dy, and
This requires us to develop a modified online algorithmthe total amount of work carried out for this job by spot
and analysis. instances is, xy. (with the exception of the time slot in
Problem Setup. Our problem setup focuses on a single which the job is completed, for which the total amount
enterprise whose batch jobs arrive over time. Jobs mawf work is smaller). Note that under spot pricing, the
arrive at any point in time, however job arrival is moni- instance is charged for the full hour even if the job fin-
tored every fixed time interval df minutes e.g.L. = 5.  ishes earlier. However, if the instance is terminated due
For simplicity, we assume that each hour is evenly di-to market price exceeding the bid, the user is not charged
vided into a fixed number of such time intervals (namely,for the last partial hour of executioRurther, we assume
60L). We refer to this fixed time interval asteme slot  that the cloud platform provides advance notification of

(or slot); the time slots are indexed by=1,2,.... the instance revocation in this scenaridzinally, as in
Jobs. Each job| is characterized by five parame-
ters: (i) Arrival slot Aj: If job j arrives at timee 1[23] studies dynamic checkpointing strategies for scesanihere

r_ / YR ) _ customers might incur substantial overheads due to obtebkitua-
[L(t 1),lt )’ thenAJ ="t. (i) Due datedJ €N (mea tion. For simplicity, we do not model such scenarios in thiggr.

SU'_’Ed i_n hOL_"S): |f_ the jO_b is not complet_ed aftitime  However, we note that the techniques developed in [23] anepte
units since its arrivahj, it becomes invalid and further mentary, and can be applied in conjunction to our onlineniear



Amazon EC2, our model allows spot instances to be per- (i) the job specification of: {A;,d;,z;,c;,V;}
sistent, in the sense that the user’s bid will keep being o )

submitted after each instance termination, until the job (ii) the remaining work for the jolz]

gets completed or the user cancels it .

On-Demand instancesThe price for an on-demand N t,
instance is fixed and is denoted py(per-unit per time- T (namelyCj = Zt’:Ajstj P +p-0j, and
interval). As above, the instance hour is paid entirely,
even if the job finishes before the end of the hourly inter-

val. - o _ In return, the policy outputs an allocation.

Utility. The utility for a user is defined as the differ- 5 expected, the set of possible policies define an ex-
ence between the overall value obtained from executingﬂosi\/my large state space. In particular, we must care-
all its jobs and the total costs paid for their ex_ecu.uon.fu"y handle all possible instance types (spot, on-demand,
Formally, letT; be the number of hours for which job 4, o1 NOP), different spot bid prices, and their expo-

j is executed (a_Ct“a' _dura_tlon is rounded up_to _the_ NeXhential number of combinations in all possible job execu-
hour). Note that if the job did not corpplete by its lifetime tion states. Of course, no approach can do an exhaustive
dj, we sefTj = d; + 1 and allocatiora;’ = (0,0,0). search of the policy state space in an efficient manner.

The utility for job j is given by: Therefore, our framework follows a best-effort approach

T to tackle this problem by exploring as many policies as
Uj(al,... ,ajT‘) =Vj(Tj) - Zl{ f)'jéj +p- o'j} 1) pqssmle in theractical operating range.g., a spo.t bid
i= price close to zero has very low probability of being ac-
cepted; similarly, bidding is futile when the spot market
price is above the on-demand price. We address this is-
sue in detail in Section 3.

An elegant way to generate this practical set of poli-
cies is to describe them by a small numbercohtrol
parametersso that any particular choice of parameters
defines a single policy. We consider two basic families
of parameterized policies, which represent different ways
to incorporate the tradeoff between on-demand instances

iii) the total execution cosE; incurred forj up to time
j Jjup

(iv) a history sequencps(-) of past spot prices.

The overall user utility is then simply the sum of job util-
ities: U(a) = ¥ Uj(aj-l,...,aJ-Tj). The objective of our
online learning algorithm is to maximize the total user
utility.

For simplicity, we restrict attention tdeadline value
functions which are value functions of the for¥ (i) =
vj, for all i € [1,...,d;] andV;(i) = O otherwise, i.e.,
completing jobj by its due date has a fixed positive
value. Note that our learning approach can be easily eX3nd spot-instances: (Deadline-CentricThis family of

tended to handle genera_l Va'P‘? functlons_. policies is parameterized by a deadline threshdldIf

_ Rem_ark.We make an implicit a_ssumptlon_that ausery job’s deadline is more thal time units away, the
|mmed.|atelly gets the ar_ngunt of Instance_s it requests I[ob attempts allocating only spot-instances. Otherwise
the “price is right” (i.e., if it pays the required price for (i.e., deadline is getting closer), it uses only on-demand

En—delma?d mstapces, or if its bid IS h'?]her than Marinstances. Further, it rejects jobs if they become non-
et price for spot instances. In practice, however, a use[.r)rofitable (i.e., cost incurred exceeds utility value) or if

might exhibit delays in getting all the required INSIaNCes; cannot finish on time (since deadline value function

especially if it requires a large amount of simultaneousvj will become zero). (2Rate-Centric.This family of

|dns|tanc_e?. While ‘gel COléld sle?mI?ssly mcolipora.te SUCIﬁolicies is parameterized by a fixed rateof allocating
elays into ourmodet and solution framework, We Ignore, ,_qemang instances per round. In each round, the pol-

this aspect here i_n Ordef tp keep the expositi_on simple. icy attempts to assign; instances to johj as follows:
Resource AIIoca_UQn Policies. Our algorlth_m_lc frame- requests  ¢; instances on-demand (for simplicity,
WOI_’k allows def|n|ng_ a broad range _of p_oI|C|es for aII(_)- we ignore rounding issues) at prige It also requests
cating resources to jobs and the objective of our onlin 1- o) *c; spot instancesusing a bid price strategy
learning algorithm is to approach the performance of th hich will é)e described shortlyThe policy monitors the
best policy in hindsight. We describe the parameterize mount of job processed so far, and if there is a risk of

set O_f policies in this sectio_n,_ a”F’ presc_ant the I(_aarninqmt completing the job by its due date, it switches to on-
algorithm to adapt these policies, in detail in Section 3. demand only. As above, it rejects jobs if they become

Fo.r.ea<_:h active job, a poli<_:y takes as i”p‘!t the jObnon—profitable or if it cannot finish on timeA pseudo-
specification and (possibly) history of spot prices, andcode implementing this intuition is presented in Algo-

O?tﬁmi an aII(?cation. Formally, anpoliazi; a rrr:_aﬁp}ing rithm 1. The pseudo-code for the deadline-centric family
of the formrr: 7 x Ry x Ry x RY — o, which for s similar and thus omitted for brevity.

every active jolj at timet takes as input: We next describe two different methods to set the bids
framework. for the spot instances. Each of the policies above can




use each of the methods described belowFified bid.  example, heuristics that place a fixed bid or choose a
A fixed bid valueb is used throughout. (iiVariable  bid at random according to some distribution (both with
bid. The bid price is chosen adaptively based on pasthe option of switching to on-demand instances at some
spot market prices (which makes sense as long as thgoint). These heuristics (and similar others) can be im-
prices are not too fluctuating and unpredictabl@he  plemented by fixing the weights given to the different
variable bid method is parameterized by a weiglaind  policies (e.g., to implement a policy which selects the
a safety parametes to handle small price variations. bid uniformly at random, set equal weights for policies
At each round, the bid price for spot instances is set ashat use the fixed-bid method and zero weights for the
the weighted average of past spot prices (where the efolicies that use the variable-bid method). The learn-
fective horizon is determined by the weigjit plus ¢. ing approach which we describe below is naturally more
For brevity, we shall often use the terrfised-bid poli-  flexible and powerful, as &daptsthe weights of the dif-
ciesor variable-bid policiesto indicate that a policy (ei- ferent policies based on performance. More generally,
ther deadline-centric or rate-centric) uses the fixed-bidve emphasize that our framework can certainly include
method or the variable-bid method, respective®b-  additional families of parameterized policies, while our
serve that variable bid policies represent one simple alfocus on the above two families is for simplicity and
ternative for exploiting the knowledge about past spotproof of concept. In addition, our learning approach can
prices. The design of more “sophisticated” policies thatincorporate other parameters for resource allocation that
utilize price history, such as policies that incorporate po are provided by cloud platforms e.g., VM instance type,
tential seasonality variation, is left as an interesting di datacenter/region. At the same time, some of these pa-

rection for future work. rameters may be set a priori based on user constraints
e.g., an 'extra-large’ instance may be fixed to accommo-
ALGORITHM 1: Ratio-centric Policy date large working sets of an application in memory, and
Parameters (with Fixed-Bid method): On-demand rate & datacenter may be fixed due to application data stored
o €10,1]; bidbe R+ in that location.

Parameters (with Variable-Bid method): On-demand
rateo € [0,1]; weighty € [0, 1]; safety parameter € R,
Input: Job parameterfd;, zj,cj,vj}

If ¢j xdj < zj or px 0 xzj > vj, drop job //Job too large or

3 TheOnline Learning Algorithm

expensive to handle profitably In this section we first give an overview of the algorithm,
for Time slott in which the job is activelo and then describe how the algorithm is derived and pro-
If job is done, return vide theoretical guarantees on its performance.
Let mbe the number of remaining time slots till job ~ Algorithm Overview. The learning algorithm pseudo-
deadline (including the current one) code is presented as Algorithm 2. The algorithm works
Letr be the remaining job size by maintaining a distribution over the set of allocation

Letq be the cost incurred so far in treating the job  policies (described in Section 2). When a job arrives,
/" Check if more on-demand instances needed to ensfésicks a policy at random according to that distribu-
itlfngsﬁlr?]klcf)n;ﬁ:]e{trlog} —r then tion, and useshat policyto handle the job. After the
/I Check if runni7ng_:; job just with on-demand is still job flnlshes Qxecutlon, the performance Of each poll_cy
on that job is evaluated, and its probability weight is

worthwhile o o

if p«r +q < vj then modified in accordance with its performancéhe up-
Request mifr, c;} on-demand instances date is such that high-performing policies (as measured

else by fj(m)) are assigned a relatively higher weight than
Drop job low-performing policies. The multiplicative form of the

end if update ensures strong theoretical guarantees (as shown

else later) and practical performanceThe rate of modifi-
Request «min{r,c; } on-demand instances cation is controlled by a step-size parametgr which

Reques(1—o)«min{r,c; } spotinstances at price: - gjowly decays throughout the algorithm’s run. Our algo-
* Fixed-Bid method: Bid Priceb rithm alsouses a parameterdefined as an upper bound
* Variable-Bid method: 7 J, ps(y)y"dy-+ ¢, where on the number of jobs that arrive during any single job’s
Z = [,y ¥dyis normalization constant . ') . g any singie J¢
end if y execution. Intumvely,d_ is a measure of the delay in-
end for curred between choosing which policy to treat a given
job, till we can evaluate its performance on that job.
Thus,d is closely related to job lifetimed; defined in
Note that these policy sets include, as special case§ection 2. Note that whild; is measured in time units
some simple heuristics that are used in practice [3]; for(e.g., hours)d measures the number of new jobs arriv-




ing during a given job’s execution. We again emphasizeprices are revealed.

that this delay is what sets our setting apart from stan- Let fj(_q) denote the utility function of the policy
dard online learning, where the feedback on each polehoicern;_yq made in round — d. Note that according to
icy’s performance is immediate, and necessitates a modur model, this function can be evaluated given the spot
ified algorithm and analysis. The running time of the prices till roundj. Thus,zf-fl’+d fj(1_q) is our total
algorithm scales linearly with the number of policies andpayoff from all the jobs we handled. We measure the
thus our framework can deal with (polynomially) large algorithm’s performance in terms afferage regretith
sets of policies. It should be mentioned that there existespect to any fixed choice in hindsight, i.e.,

online learning techniques which can efficiently handle

exponentially large policy sets by taking the set structure J+d 1 I

into account (e.g. [9], Chapter 5). Incorporating these max<- fj(m) — 3. f (75-a)-
techniques here remains an interesting direction for fu- J=1td J=ttd

ture work.

_ . Generally speaking, online learning algorithms attempt
We assume, without loss of generality, that the payoffi, minimize this regret, and ensure thathincreases
for each job is bounded in the ranfe1]. If this does ¢ average regret converges to 0, hence the algorithm’s
not hold, then one can simply feed the algorithm with no formance converges to that of the single best policy in
normalized values of the payoffis(j). In practice, it ningsight. A crucial advantage of online learning is that
is enough for the payoffs to be on the orderf on  his can be attained withoamy statistical assumptions
average for the algorithm to work well, as shown in our 5, the job characteristics or the price fluctuations.
experiments in Section 4. Whend = 0, this problem reduces to the standard set-
ting of online learning where we immediately obtain
feedback on the chosen policy’s performance. However,
as discussed in Section 1, this setting does not apply here
because the functiofy does not depend on the learner’s
current policy choicer, but rather on its choice at an
earlier roundjt_q. Hence, there is a delay between the

ALGORITHM 2: Online Learning Algorithm

Input: Set ofn policiest parameterized byl,...,n},
upper boundl on jobs’ lifetime

Initializewy = (1/n,1/n,...,1/n)

for j=1,...,Jdo

Receive jobj N ~ . algorithm’s decision and feedback on the decision’s out-
Pick policy rrwith probabilityw; -, and apply to jokj come
if j <dth ) . . . .
' JW*_ ) -:er» Our algorithm is based on the following randomized
dse e approach. The learner first picks ardimensional dis-

nj == \/2log(n)/d(j —d) tribution vectorw; = (1/n,...,1/n), whose entries are

for m=1,...,ndo
Computef; () to be the utility for jobj —d,
assuming we used poliay
Wi 1,7 = Wi rexp(n; (1))

end for

for m=1,...,ndo

indexed by the policiesr. At every roundj, the learner
chooses a policy; € {1,...,n} with probabilityw; r . If

j <d, the learner letsvj 1 = wj. Otherwise it updates
the distribution according to

wj rexp(n; fj(m))

Wi = W noow; Wijt1m= - TR
end %grl’n b/ Sra Wit > wiiexp(n;fi(i))
enj'}gr'f wheren; is a step-size parameteAgain, this form of

update puts more weight to higher-performing policies,
as measured b ().

Derivation of the Algorithm.Next we provide a formal Theoretical Guarantees. The following result quanti-
derivation of the algorithm as well as theoretical guaran-ies the regret of the algorithm, as well as the (theoreti-
tees. The setting of our learning framework can be ab<ally optimal) choice of the step-size paramejer This
stracted as follows: we divide time into rounds such thatheorem shows that the average regret of the algorithm
round j starts when jobj arrives. At each such round, scales with the jobs’ lifetime bound, and decays to
we make some choice on how to deal with the arrivingzero with the number of job3. Specifically, as] in-

job. The choice is made by picking a policyy from a  creases, the performance of our algorithm converges to
fixed set ofn policies, which will be parameterized by that of the best-performing policy in hindsighthis be-
{1,...,n}. However, initially, we do not know the utility havior is to be expected from a learning algorithm, and
of our policy choice as future spot prices are unknown crucially, occurs without any statistical assumptions on
We can eventually compute this utility in retrospect, butthe jobs characteristics or the price fluctuations. The per-
only after< d rounds have elapsed and the relevant spoformance also depends - but very weakly - on the size



n of our set of policies. From a machine learning per-Sincea € (0,2], this is at most 4/Jlog(n)/a, so we get
spective, the result shows that the muItipIicative—updateae .
mechanism that we build upon can indeed be adapted to a o
delayed feedback setting, by adapting the step-size to thez 4 Zl j.n3 (7T _"E?llnn}] +d 9i(10) < 4v/Jlog(n)/a.
delay bound, thus retaining its simplicity and scalahility

n J+d

The result stated in the lemma follows by re-substituting
gj(m) = 1— f;(m), and using the fact thet ;wj » = 1.
O

Theorem 1. Suppose (without loss of generality) that
fj for all j =1,...,J is bounded in[0,1]. For
the algorithm described above, suppose we pjgk=
v/1log(n)/2d(j —d). Then for anyd € (0,1), it holds  Lemma2. Leta,...,a, € [0,1] andn > 0 be fixed. For
with probability at leastl — & over the algorithm’s ran-  any distribution vectow in the n-simplex, if we define

domness that w’ to be the new distribution vector
& J 17 2dlog(n/d) wrexp(—nar)
m z -z = 1,... W, =
J J Z T[J d = J \V/T[E{ 9 7n}7 m zp:1wrexq_nan)7

To prove Theorem 1, we will use the following two Then|jw —w’|[1 < 4min{1,n}.

lemmas: o
Proof. If n > 1/2, the bound is trivial, since for any two

Lemma 1. Consider the sequence of distribution vectorsdistribution vectorsv,w’, it holds that||w —w/||; < 2.

Wiid, ..., Wyiq defined bywi,q = (1/n,...,1/n) and Thus, let us assume that< 1/2.
We have
o wyrexp(n;fi(m)
Ve {1,...,”}1 Wj+1,7T_ zn Wi nexp(n_f_(n_))a n n
m=1Wij, ity w—w| = > (Wr— W, | = > lw—w'||1
wheren; = y/alog(n)/(j —d) for some & (0,2]. Then N =1 -
it holds that — 5wy (1_ exp(—nan) >‘
J+d J+d 7 =1 Y11 W exp(—nan)
" og(n)

max fj(m) — Z ZWJ,an(n)§4 N e :

ne{l...n} | g j=Trdri=1 a Since||lw||1 = 1, we can apply Holder’s inequality, and

upper bound the above by
Proof. Foranyj =1,...,J, letgj(m) = 1— fj(m). Then

the update step specified in the lemma can be equiva- max|1_ _&P=nan) @)
lently written as i S wrexp(—nag) |
wj,nexp(—n;g;(m) Using the inequality + x < exp(—x) < 1 for all x > 0,

VITE LNy Wigar= SN _ wjzexp(—njgj(m)  we have that

The initialization ofwy 4 and the update step specified A<l exp(—nan) <1 1
above is identical to the exponentially-weighted average nan = ST weexp(—nay) — 1-—nas’
forecaster of [9], also known as the Hedge algorithm

[10]. Using the proof of Theorem 2.3 from [9] (see SO We can upper bound Eq. (2) by

pg. 20), we have that for any parameterif we pick

n; =+/alog(n)/j, then max|1— = max N8n <2nmaxan<2n,
I 1-nax m 1—nay
J+d n J+d
Z > Wingj(m) — min gj(m) using our assumption that; < 1 for all 77, and that
j=TH+dn=1 me{Ln} | T nap<n<1/2. O
~ VaTlog(n) n 2\/(‘] +1)log(n) \/Iog(n). Using these lemmas, we are now ready to prove The-
- 4 a a orem 1:

Since \/(J+1)log(n)/a < y/Jlog(n)/a+ v/log(n)/a,  proof. Our goal is to upper bound
the expression above can be upper bounded by

y J+d J+d
aTlog(n) Jlog(n) log(n) fi( fi(m_q) 3)
4 +2 a + a j thd j Zer
- vaTlog(n) 43 Jlog(n) for any fixedrr. We note thatm, ..., 75 are independent
- 4 a random variables, since their randomness stems only



from the independent sampling of eac from each  can upper bound Eq. (5) by

wj. Thus, the regret can be seen as a function dver

independent random variables. Moreover, for any choice , /Jlog(n) R alog( )
. +4d min< 1,

of m,...,m, if we replacer by any othernjf, the re- Z

gret expression will change by at most 1. Invoking Mc-

Diarmid’s inequality [18], which captures how close to <4 J|09 4d . /alog

their expectation are such “stable” random functions, it - 4

follows that Eq. (3) is at most

Jlog
i 3id <4 — +8d\/aJIog
E
j

4iq fj(n)_j: . d i(T-a)| +v/l0g(1/0)J (4) Picking a = 1/2d, we get that Eq. (5) is at most
8y/2dlog(n)J. Combining this with Eg. (4), and noting

with probability at least - &. it is a probabilistic upper bound on Eq. (3), we get that
We now turn to bound the expectation in Eq. (4). We Jid Jid
have > fim— 5 fj(mq)
§ Jid j=1+d j=1+d
E [ < () — fj(md)] < 8y/2dlog(n)J + /log(1/6)J
j=1d j=1+d < 8y/2dlog(n/d)J + /log(n/5)J

J+d J+d
— fi( Z En_gwiolfi(M-a).  (5) < (8v2d+1)/log(n/8)J < 9+/2dlog(n/d)J.
“+d

J=trd Dividing by J, and noting that the inequality holds si-

On the other hand, by Lemma 1, we have that for anynultaneously with respect to any fixed the theorem
fixed 1, follows. O

J+d Jid 7] _
fj () — Z Erw, [fj ()] < 4 09( ). 6 4 Evaluation
+d

In this section we evaluate the performance of our learn-
where we assumg; = \/W- Thus, the main ing algorithm via simulations on synthetic job (_jata as
component of the proof is to upper bound well as a real da_\taset frqm alarge b_atch compupng clue-

ter. The benefits of using synthetic datasets is that it

J+d allows the flexibility to evaluate our approach under a
Z (Emwj [Fi ()] —Ery_gow;_qlfj (7Tj7d)]) wide range of workloads. Before continuing, we would
j=1+d like to emphasize that the contribution of our paper is be-

J+d n yond the design of particular sets of policies - there are
= ;rd zl(ijd,n_Wj,n) fj (). (7)  many other policies which can potentially be designed
j=l+dm=

for our task. What we provide is a meta-algorithm which
can work on any possible policy set, and in our exper-

By Holder’s inequality and the triangle inequality, thés i | . ) ; . )
y q y g a 4 iments we intend to exemplify this on plausible policy

at most
sets which can be easily understood and interpreted.
J+d J+d d Throughout this section, the parameters of the differ-
_ Z [Wj—a—wjl| < . Z _ZlHWHH — Wi ent policies are set such that the entire range of plausible
j=1+d +di policies is covered (with limitation of discretization)oi-
wieh by Lenma 2 s at mos ST e smothicetmeseresnSecion 2 anges
ST g43Lamin{1,n;i}, where we taken;_; = 0 W ' ' '9- ' Ingly, W

allow the fixed bid$ to range between 0.15 and 0.7 with

5 cents resolution. Higher than 0.7 bids perform exactly
asthe 0.7 bid, hence can be excluded; bids of 0.1 or lower
will always be rejected, hence can be excluded as well.

if j—i< 14d (this refers to the distribution vectors
Wi, ...,Wq, which don’t change, and hence the norm of
their difference is zero). This in turn can be bounded by

Jid J+d
4d Z 4min{1,n;} = 4d Z mln{ aI_og(n)
j=1+d j—d

}. 4.1 Simulationson Synthetic Data

Setup: For all the experiments on synthetic data, we use
Combining this upper bound on Eq. (7) with Eq. (6), we the following setup. Job arrivals are generated accord-



ing to a Poisson distribution with mean 10 minutes; job 08
size zj (in instance-hours) is chosen uniformly and in- y
dependently at random up to a maximum size of 100
and the parallelism constraicitwas fixed at 20 instance-
hours. Job values scale with the job size and the instanc
prices. More precisely, we generate the valugsagx zj,
wherex is a uniform random variable i[0.5, 2], andp is

the on-demand price. Similarly, job deadlines also scal¢ o & .,..m-.'.‘.':
with size and are chosen to ke zj/cj, wherex is uni- 1 e
formly random on[1,2]. As discussed in Section 3, the

on-demand and spot prices are normallz_ed .(d|V|ded bBﬁigure 2: Total payoff for processing 20k jobs across each of
10) to ensure that the averagq pa_yoff per jobis on t_he O'the 408 resource allocation policies (while algorithm’yqféa

der of+-1. The on-demand price isZb per hour, while s shown as a dashed black line). The first 204 policies are
spot prices are updated every 5 minutes (the way we geftate-centric, and the last 204 policies are deadline-icentr

erate spot prices varies across experiments).

Resource allocation pOIiCieSNe generate a parameter' Distribution after 500 Jobs Distribution after 1000 Jobs
0.06

.......

Total Payoff (x 1e5)

.
c .. 2000

. . . . d , . .
50 100 150 200 250 300 350 400
Policy Number

ized set of policies. Specifically, we use 204 deadline- oo2r

centric policies, and a same number of rate-centric poli-  2°°r. Zoos

cies. These policy set uses six values fdr (M e g . S oo

{0,...,5}) and ¢ (0 € {0,0.2,0.4,0.6,0.8)), respec- OO e Tigisi it i i o

tively. % . ?0. 100 150 200 0 . ?0. 100 150 200
For either pol|cy Set' we have policies that use oa Distribution after 2500 Jobs o8 Distribution after 5000 Jobs

the fixed-bid method i € {0.1,0.15,0.2,0.29, and 203 206

policies that use the variable-bid method (weight — §e°2 gos

y € {0,0.2,0.4,0.6,08 and safety parametet & Foag, o2

{0,0.02,0.04,0.06,0.08,0.1 o S - )

Policy Number Policy Number

Simulation results: Experiment 1.In the first experi-
ment, we compare the total payoff across 10k jobs of allFigure 3: Evaluation under stationary spot-price distitu
the 408 policies to our algorithm. Spot prices are cho{mean spot price of 0.1): Probability assigned per politgraf
sen independently and randomly a&®+ 0.05x, where  executing 500, 1000, 2500 and 5000 jobs.
xis a standard Gaussian random variable (negative values
were clipped to 0). The results presented below pertain
to a single run of the algorithm, as they were virtually to 1 for that policy, while outperforming 199 out of total
identical across independent runs. Figure 2 shows the ti204 policies. Further, its average regret is only 1.3 as
tal payoff for the 408 policies for this dataset. The first opposed to 7.5 on average across all policies. Note that
204 policies are rate-centric policies, while the remain-the upper bound on the delay in this experimend is
ing 204 are deadline-centric policies. The performances6, i.e., up to 66 jobs are being processed while a single
of our algorithm is marked using dashed line. As can bgob finishes execution. This shows that our approach can
seen, our algorithm performs close to the best policies irhandle significant delay in getting feedback, while still
hindsight. Further, it is interesting to note that we haveperforming close to the best policy.
both deadline-centric and rate-centric policies among the In this experiment, the best policy in hindsight uses a
best policies, indicating that one needs to consider botlixed-bid of 0.25. This can be explained by considering
sets as candidate policies. the parameters of our simulation: since the on-demand
We perform three additional experiment with similar price is 0.25 and the spot price is always relatively lower,
setup to the above, in order to obtain insights on the propa bid of 0.25 always yields allocation of spot instances
erties and inner-working of the algorithm. To be able tofor the entire hour. This result also highlights the easy in-
dive deeper into the analysis, we use only the 204 rateterpretation of the resource allocation strategy of thé bes
centric policies. The only element that we modify acrosspolicy. Figure 3 shows the probability assignment for
experiments is the statistical properties of the spotgsric each policy over time by our algorithm after executing
sequence. 500, 1000, 2500 and 5000 jobs. We observe that as the
Experiment 2Spot prices are generated as above, exceptumber of processed jobs increase, our algorithm pro-
that we use @ as their mean (opposed to 0.2 above).vides performance close to the best policy in hindsight.
After executing 1000 jobs, our algorithm performs closeExperiment 3.In the next experiment, the spot prices is
to that of the best policy as it assigns probability closeset as above for the first 10% of the jobs, and then the
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Figure 4: Evaluation under non-stationary distributioreém  Figure 5: Evaluation under highly dynamic distribution @y
spot price of 0.2): (a) Total payoff for executing 10k jobsass  spot prices alternate between 0.3 and zero): (a) Total peyrof
each of the 204 policies (while algorithm’s payoff is shoven a processing 10k jobs across each of the 204 policies (atgoist

a dashed black line) and (b) the final probability assigned pe payoff is shown as a dashed black line), and (b) the final prob-
policy by our learning algorithm. ability assigned per policy by our learning algorithm.

mean is increased ta®(rather than @) during the ex-
ecution of the last 90% jobs. This setup correspondsto %
a non-stationary distribution: a learning algorithm which N 17 7.
simply attempts to find the best policy at the beginning o) T S
and stick to it, will be severely penalized when the dy-
namics of spot prices change. Figure 4 shows the eval- _
uation results. We observe that our online algorithm isFigure 6: Evaluation on real dataset: (a) Amazon EC2 spot
able to adapt to changing dynamics and converges to gricing o’Iata (:?ubset Of. data from Figure 1.) for. Linux insesic

. . S S . . of type ’large’. The fixed on-demand price is 0.34; (b) To-
probability weight distribution different from the previ- tal payoff for processing 20k jobs across each of the 504 re-
ous setting; Overall, our algorithm attains an average rez ..o aliocation policies (while algorithm’s payoff isosm
gretof only 0.5, as opposed to 4.8 on average across 204 . qashed black line)
baseline policies.

Total Payoff (xite9)
\

02} 05 >

200 500 600
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Note that in this setting, the best policies are those .
which rely purely on on-demand instances instead of4'2 Evaluation on Real Datasets

spot instances. This is expected because the spot pricgtup: Workload data.We use job traces from a large
tend to be only slightly lower than the on-demand price

d their d . latilit ke th ttractive i 'batch computing cluster for two days consisting of about
and their dynamic volaliity make them unattractive In g MapReduce jobs. Each MapReduce job comprises

deed . here the dil betw hoosi I’\ﬁwultiple phases of execution where the next phase can
eed scenarios where the diiemma between choosing Oldg, only after all tasks in the previous phase have

demand vs. spot instances is important and can signifi-

. . . completed. The trace includes the runtime of the job
cantly impact performance, and that no single instance <o er CPU hourst¢tCPUHours, the total num-
type is always suitable. '

ber of servers allocated to itatServery and the max-

Experiment 4This time we set the spot price to alternate Imum number of servers allocated to a job per phase
between 0.3 for one hour and then zero in the next. Thi§maxServersPerPhapesince our job model differs from
variation is favorable for variable-bid policies with sal the MapReduce model in terms of phase dependency,
y, which use a small history of spot prices to determineWe constrl_Jct the parallelism con§tra|qt from the trace as
their next bid. Such policies quickly adapt when the spot‘:0t|(|:%VL‘J/33 since the average running time of a server is
price drops. In contrast, fixed-bid policies and variable- tosarvers » We et the parallelism bourg for each job

bid policies with largey suffer, as their bid price is not to bec; = maxServersPerPhaségSEsHou™. Note that
sufficiently adaptive. Figure 5 shows the results. Wethis bound is in terms of CPU hours as required. Since
find that the group of highest-payoff policies are thosethe deadline values per job are not specified, we use the
for whichy =0 i.e., they use the last spot price to choosejob completion time as its deadline. For assigning val-
a bid for the current round, and thus quickly adapt toues per job, we generate them using the same approach
changing spot prices. Further, our algorithm quickly de-as for synthetic datasets. Specifically, we assign a ran-
tects and adapts to the best policies in this setting. Théom value for each jolh equal to its total size (in CPU
average regret obtained by our algorithm is 0.8 comparefiours) times the on-demand price tim@s= (a + Nj)

to 4.5 on average for our baseline policies. Moreover, thavherea =5 andN;j € [0, 1] is drawn uniformly at ran-
algorithm’s overall performance is better than 192 out ofdom. The job trace is replicated to generate 20k jobs.

204 policies. Spot Prices. We use a subset of the historical spot

10



price from Amazon EC2 as shown in Figure 1 for 'large’
Linux instances. Figure 6(a) shows the selected sampl P- == T

of spot price history showing significant price variation
over time. Intuitively, we expect that overall that poligie
that use a large ratio of spot instances will perform bet- - = - =
ter since on average, the spot price is about half of the e T .
on-demand price.

Resource Allocation PricesWe generated a total of
504 policies, half rate-centric and half deadline-centric st o0 \
In each half, the first 72 are fixed-bid policies (i.e. poli-
cies that use the fixed-bid method) in increasing or-
der of (on-demand rate, bid price). The remaining o
180 variable-bid policies are in increasing order of (on- o
demand rate, weight, safety parameter). The possi
ble values for the different parameters are as described . . :
for the synthetic data experiments, with the exception':Igure 7 Evaluation on real d.ataset: The pmba.b”'ty s
that we allow more options for the fixed bid pridegc per policy by ourlearmng algon.thm after processing .151[)0' .

3000 and 5000 jobs. The algorithm converges to a singleypolic
{0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.85.,0 (fixed-bid rate-centric policy) marked by an arrow.

Evaluating our online algorithm on the real trace
poses several new challenges compared to the synthetic
datasets in Section 4.1. First, jobs sizes and hence theommensurate with the almost stable pricing curve.
values are highly variable, to the effect that the diffeeenc
in size betweelsmallandlarge jobs can be of six orders
of magnitude. Second, spot prices can exhibit high vari5 Related literature
ability, or alternatively be almost stable towards the end
as exemplified in Figure 6(a). While there exist other potential approaches to our prob-
Simulation results: Figure 6(b) shows the results for lem, we considered an online learning approach due to
a typical run of this experiment. Notably, the payoff its lack of any stochastic assumptions, its online (rather
of our algorithm outperforms the performance of mostthan offline) nature, its capability to work on arbitrary
of individual policies, and obtains comparable perfor-policy sets, and its ability to adapt to delayed feedback.
mance to the best individual policies (which are a sub-The idea of applying online learning algorithms for se-
set of the rate-centric policies). We repeated the exquential decision-making tasks is well known ([10]), and
periment 20 times, and obtained the following results:there are quite a few papers which study various engi-
The average regret per job for our learning algorithm isneering applications (e.g., [11, 6, 12, 15]). However,
2071+ 1143, while the average regret across policies ighese efforts do not deal with the problem of delayed
70654+ 12473. Note that the average regret of our al-feedback as it violates the standard framework of online
gorithm is around 34 times better (on average) than théearning. The issue of delay has been previously con-
average regret across policies. sidered (see [14] and references therein), but are either

Figure 7 shows the evolution of policy weights over not in the context of the online techniques we are using,
time for a typical run, until converging to final policy or propose less-practical solutions such as running many
weights (after handling the entire 20000 jobs). We ob-multiple copies of the algorithm in parallel. In any case,
serve that our algorithm evolves from preferring a rel-we are not aware of any prior study of delay-tolerant on-
atively large subset of both deadline-centric and rateline learning procedures for our application domain.
centric policies (at around 150 jobs) to preferring only  The launch of commercial cloud computing offerings
rate-centric policies, both fixed-bid and variable-bid (athas motivated the systems research community to inves-
around 2000 jobs). Eventually, the algorithm convergedigate how to exploit this market for efficient resource
to a single rate-centric policy with fixed bid. This behav- allocation and cost reductions. Some solution concepts
ior can be explained based on spot pricing data in Figare borrowed from earlier works on executing jobs in
ure 6(a): Due to initially high variability in spot prices, multiple grids (e.g., [20] and references therein). How-
our algorithm “alternates” between fixed-bid policies andever, new techniques are required in the cloud comput-
variable-bid policies, which try to learn from past prices. ing context, which directly incorporate cost considera-
However, since the prices show little variability for the tions and a variety of instance renting options. The have
remaining two thirds of the data, the algorithm progres-been numerous works in this context dealing with dif-
sively adapts its weight for the fixed-bid policy, which is ferent provider and customers scenarios. One branch of

Probability

Distribution after 3000 jobs Distribution after 5000 jobs
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§

of
0 500 600 100 00 500 600

00 300 a0 200 300 &
Policy Number Policy Number

11



papers consider the auto-scaling problem, where an amlgorithm stateful, in the sense that its actions affect the
plication owner has to decide on the right number andpayoffs of policies chosen in the future. This does not ac-
type of VMs to be purchased, and dynamically adapt record with our current theoretical framework, but may be
sources as a function of changing workload conditionshandled using different tools from competitive analysis.
(see, e.g., [17, 7] and references therein).

We focus the reminder of our literature survey on
cloud resource management papers that include spot i
stances as one of the allocation options. Some papers
focus on building statistical models for spot prices whichRefer ences
can be then used to decide when to purchase EC2 spot
instances (see, e.g., [13, 1]). Similarly, [24] examines [1] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M.,
the statistical properties of customer workload with the SCHUSTER A., AND TSAFRIR, D. Deconstructing
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