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Abstract

Cloud computing provides an attractive computing
paradigm in which computational resources are rented
on-demand to users with zero capital and maintenance
costs. Cloud providers offer different pricing options
to meet computing requirements of a wide variety of
applications. An attractive option for batch computing
is spot-instances, which allows users to place bids for
spare computing instances and rent them at a (often) sub-
stantially lower price compared to the fixedon-demand
price. However, this raises three main challenges for
users: how many instances to rent at any time? what
type (on-demand, spot, or both)? and what bid value to
use for spot instances? In particular, renting on-demand
risks high costs while renting spot instances risks job in-
terruption and delayed completion when the spot market
price exceeds the bid. This paper introduces an online
learning algorithm for resource allocation to address this
fundamental tradeoff between computation cost and per-
formance. Our algorithm dynamically adapts resource
allocation by learning from its performance on prior job
executions while incorporating history of spot prices and
workload characteristics. We provide theoretical bounds
on its performance and prove that the averageregret of
our approach (compared to the best policy in hindsight)
vanishes to zero with time. Evaluation on traces from a
large datacenter cluster shows that our algorithm outper-
forms greedy allocation heuristics and quickly converges
to a small set of best performing policies.

1 Introduction

This paper presents an online learning approach that al-
locates resources for executing batch jobs on cloud plat-
forms by adaptively managing the tradeoff between the
cost of renting compute instances and the user-centric
utility of finishing jobs by their specified due dates.
Cloud computing is revolutionizing computing as a ser-

Figure 1: The variation in Amazon EC2 spot market prices
for ’large’ computing instances in the US East-coast region:
Linux (left) and Windows (right). The fixed on-demand price
for Linux and Windows instances is 0.34 and 0.48, respectively.

vice due to its cost-efficiency and flexibility. By allow-
ing multiplexing of large resources pools among users,
the cloud enablesagility—the ability to dynamically
scale-out and scale-in application instances across host-
ing servers. Major cloud computing providers include
Amazon EC2, Microsoft’s Windows Azure, Google Ap-
pEngine, and IBM’s Smart Business cloud offerings.

The common cloud pricing schemes are (i)reserved,
(ii) on-demand, and (iii) spot. Reserved instances offer
users to make a one-time payment for reserving instances
over 1-3 years and then receive discounted hourly pric-
ing on usage. On-demand instances allow users to pay
for instances by the hour without any long-term commit-
ment. Spot instances, offered by Amazon EC2, allow
users to bid for spare instances and to run them as long as
their bid price is above the spot market price. Forbatch
applicationswith flexibility on when they can run (e.g.,
Monte Carlo simulations, software testing, image pro-
cessing, web crawling), renting spot instances can sig-
nificantly reduce the execution costs. Indeed, several en-
terprises claim to save 50%-66% in computing costs by
using spot instances over on-demand instances, or their
combination [4].

Reserved instances are most beneficial for hosting
long running services (e.g., web applications), and may
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also be used for batch jobs, especially if future load can
be predicted [19]. The focus of this work, however, is on
managing the choice between on-demand and spot in-
stances, which are suitable for batch jobs that perform
computation for a bounded period.Customers face a fun-
damental challenge of how to combine on-demand and
spot instances to execute their jobs. On one hand, al-
ways renting on-demand incurs high costs. On the other
hand, spot instances with a low bid price risks high de-
lay before the job gets started (till the bid is accepted),
or frequent interruption during its execution (when the
spot market price exceeds the bid). Figure 1 shows the
variation in Amazon EC2 spot prices for their US east
coast region for Linux and Windows instances of type
’large’. We observe that spot market prices exhibit a
significant fluctuation, and at times exceed even the on-
demand price. For batch jobs requiring strict comple-
tion deadlines, this fluctuation can directly impact the re-
sult quality. For example, web search requires frequent
crawling and update of search index as the freshness of
this data affects the end-user experience, product pur-
chases, and advertisement revenues [2].

Unfortunately, most customers resort to simple heuris-
tics to address these issues while renting computing in-
stances; we exemplify this observation by analyzing sev-
eral case studies, reported on the Amazon EC2 web-
site [4]. Litmus [16] offers testing tools to marketing
professionals for their web site designs and email cam-
paigns. Its heuristic for resource allocation is to first
launch spot instances and then on-demand instances if
spot instances do not get allocated within 20 minutes.
Their bid price is set to be above the on-demand price
to improve the probability of their bid getting accepted.
Similarly, BrowserMob [8], a startup that provides web-
site load testing and monitoring services, attempts to
launch spot instances first at a low bid price. If in-
stances do not launch within 7 minutes, it switches to on-
demand. Other companies manually assign delay sensi-
tive jobs to on-demand instances, and delay-tolerant ones
to spot instances. In general, these schemes do not pro-
vide any payoff guarantees or how far do they operate
from the optimal cost vs. performance point. Further,
as expected, these approaches are limited in terms of ex-
plored policies, which account for only a small portion
of the state space. Note that a strawman of simply wait-
ing for the spot instances at the lowest price and pur-
chasing in bulk risks delayed job completion, insufficient
resources (due to limit on spot instances and job paral-
lelism constraints), or both. Therefore, given fluctuat-
ing and unpredictable spot prices (Fig. 1), users do not
have an effective way of reinforcing the better perform-
ing policies.

In this paper, we propose an online learning approach
for automated resource allocation for batch applications,

which balances the fundamental tradeoff between cloud
computing costs and job due dates. Intuitively, given a
set of jobs and resource allocation policies, our algo-
rithm continuously adjusts per-policy weights based on
their performance on job executions, in order to rein-
force best performing policies. In addition, the learning
method takes into account prior history of spot prices and
characteristics of input jobs to adapt policy weights. Fi-
nally, to prevent overfitting to only a small set of policies,
our approach allows defining a broad range of param-
eterized policy combinations (based on discussion with
users and cloud operators) such as (a) rent on-demand,
spot instances, or both; (b) vary spot bid prices in a pre-
defined range; and (c) choose bid value based on past
spot market prices. Note that these policy combinations
are illustrative, not comprehensive, in the sense that ad-
ditional parameterized families of policies can be defined
and integrated into our framework. Likewise, our learn-
ing approach can incorporate other resource allocation
parameters being provided by cloud platforms e.g., Vir-
tual Machine (VM) instance type, datacenter/region.

Our proposed algorithm is based on machine learning
approaches (e.g., [9]), which aim to learn good perform-
ing policies given a set of candidate policies. While these
schemes provide performance guarantees with respect to
the optimal policy in hindsight, they are not applicable
as-isto our problem. In particular, they require a payoff
value per execution step to measure how well a policy
is performing and to tune the learning process. How-
ever, in batch computing, the performance of a policy
can only be calculated after the job has completed. Thus,
these schemes do not explicitly address the issue ofdelay
in getting feedback on how well a particular policy per-
formed in executing jobs. Our online learning algorithm
handles bounded delay and provides formal guarantees
on its performance which scales with the amount of de-
lay and the total number of jobs to be processed.

We evaluate our algorithms via simulations on a job
trace from a datacenter cluster and Amazon EC2 spot
market prices. We show that our approach outperforms
greedy resource allocation heuristics in terms of total
payoff – in particular, the average regret of our approach
(compared to the best policy in hindsight) vanishes to
zero with time. Further, it provides fast convergence
while only using a small amount of training data. Fi-
nally, our algorithm enables interpreting the allocation
strategy of the output policies, allowing users to apply
them directly in practice.

2 Background and System Model

In this section we first provide a background on the on-
line learning framework and then describe the problem
setup and the parameterized set of policies for resource
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allocation.
Regret-minimizing online learning. Our online learn-
ing framework is based on the substantial body of work
on learning algorithms that make repeated decisions
while aiming to minimizeregret. The regret of an al-
gorithm is defined as the difference between the cumu-
lative performance of the sequence of its decisions and
the cumulative performance of the best fixed decision in
hindsight. We present only a brief overview of these al-
gorithms due to space constraints.

In general, an online decision problem can be for-
mulated as a repeated game between a learner (or deci-
sion maker) and the environment. The game proceeds in
rounds. In each roundj, the environment (possibly con-
trolled by an adversary) assigns a rewardf j (a) to each
possible actiona, which is not revealed beforehand to
the learner. The learner then chooses one of the actions
a j , possibly in a randomized manner. The average payoff
of an actiona is the average of rewards1J ∑J

j=1 f j (a) over
the time horizonJ, and the learner’s average payoff is
the average received reward1

J ∑J
j=1 f j (a j) over the time

horizon. The average regret of the learner is defined as
maxa

1
J ∑J

j=1 f j(a)− 1
J ∑J

i=1 f j(a j), namely the difference
between the average payoff of the best action and the
learner’s sequence of actions. The goal of the learner is
to minimize the average regret, and approach the average
gain of the best action. Several learning algorithms have
been proposed that approach zero average regret as the
time horizonJ approaches infinity, even against a fully
adaptive adversary [9].

Our problem of allocating between on-demand and
spot instances can be cast as a problem of repeated deci-
sion making in which the resource allocation algorithm
must decide in a repeated fashion over which policies
to use for meeting job due dates while minimizing job
execution costs. However, our problem also differs from
standard online learning, in that the payoff of each policy
is not revealed immediately after it is chosen, but only af-
ter some delay (due to the time it takes to process a job).
This requires us to develop a modified online algorithm
and analysis.
Problem Setup. Our problem setup focuses on a single
enterprise whose batch jobs arrive over time. Jobs may
arrive at any point in time, however job arrival is moni-
tored every fixed time interval ofL minutes e.g.,L = 5.
For simplicity, we assume that each hour is evenly di-
vided into a fixed number of such time intervals (namely,
60/L). We refer to this fixed time interval as atime slot
(or slot); the time slots are indexed byt = 1,2, . . . .

Jobs. Each job j is characterized by five parame-
ters: (i) Arrival slot A j : If job j arrives at time∈
[L(t ′−1),Lt ′), thenA j = t ′. (ii) Due dated j ∈ N (mea-
sured in hours): If the job is not completed afterd j time
units since its arrivalA j , it becomes invalid and further

execution yields zero value. (iii) Job sizezj (measured
in CPU instance hours to be executed): Note that for
many batch jobs such as parameter sweep applications
and software testing,zj is known in advance. Otherwise,
a small bounded over-estimate ofzj suffices. (iv) Paral-
lelism constraintc j : The maximal degree of parallelism
i.e., the upper bound on number of instances that can be
simultaneously assigned to the job. (v) Value function:
Vj : N → R+, which is a monotonically non-increasing
function withVj(τ) = 0 ∀τ > d j .

Thus, jobj is described by the tuple{A j ,d j ,zj ,c j ,Vj}.
The job j is said to beactiveat time slotτ if less than
d j hours have passed since its arrivalA j , and the total
instance hours assigned so far are less thanzj .

Allocation updates.Each jobj is allocated computing
instances during its execution. Given the existing cloud
pricing model of charging based on hourly boundaries,
the instance allocation of each active job is updated ev-
ery hour. Thei-th allocation update for jobj is formally
defined as a triplet of the form(oi

j ,s
i
j ,b

i
j). oi

j denotes
the number of assigned on-demand instances;si

j denotes
the number of assigned spot instances andbi

j denotes
their bid values. The parallelism constraint translates to
oi

j + si
j ≤ c j . Note that a NOP decision i.e., allocating

zero resources to a job, is handled by settingoi
j andsi

j to
zero.

Spot instances.The spot instances assigned to a job
operate until the spot market price exceeds the bid price.
However, as Figure 1 shows, the spot prices may change
unpredictably implying that spot instances can get ter-
minated at any time. Formally, consider some jobj;
let us normalize the hour interval to the closed inter-
val [0,1]. Let yi

j ∈ [0,1] be the point in time in which
the spot price exceeded thei-th bid for job j; formally,
yi

j = infy∈[0,1]{ps(y)> bi
j}, whereps(·) is the spot price,

andyi
j ≡ 1 if the spot price does not exceed the bid. Then

the cost of utilizing spot instances for jobj for its i-th al-

location is given bysi
j ∗ p̂i

j , wherep̂i
j =

∫ yi
j

0 p j(y)dy, and
the total amount of work carried out for this job by spot
instances issi

j ∗ yi
j (with the exception of the time slot in

which the job is completed, for which the total amount
of work is smaller). Note that under spot pricing, the
instance is charged for the full hour even if the job fin-
ishes earlier. However, if the instance is terminated due
to market price exceeding the bid, the user is not charged
for the last partial hour of execution.Further, we assume
that the cloud platform provides advance notification of
the instance revocation in this scenario.1 Finally, as in

1[23] studies dynamic checkpointing strategies for scenarios where
customers might incur substantial overheads due to out-of-bid situa-
tion. For simplicity, we do not model such scenarios in this paper.
However, we note that the techniques developed in [23] are comple-
mentary, and can be applied in conjunction to our online learning
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Amazon EC2, our model allows spot instances to be per-
sistent, in the sense that the user’s bid will keep being
submitted after each instance termination, until the job
gets completed or the user cancels it .

On-Demand instances.The price for an on-demand
instance is fixed and is denoted byp (per-unit per time-
interval). As above, the instance hour is paid entirely,
even if the job finishes before the end of the hourly inter-
val.

Utility . The utility for a user is defined as the differ-
ence between the overall value obtained from executing
all its jobs and the total costs paid for their execution.
Formally, letTj be the number of hours for which job
j is executed (actual duration is rounded up to the next
hour). Note that if the job did not complete by its lifetime

d j , we setTj = d j +1 and allocationa
Tj
j = (0,0,0).

The utility for job j is given by:

U j(a
1
j , . . . ,a

Tj
j ) =Vj(Tj)−

Tj

∑
i=1

{

p̂i
js

i
j + p ·oi

j

}

(1)

The overall user utility is then simply the sum of job util-

ities: U(a) = ∑ j U j(a1
j , . . . ,a

Tj
j ). The objective of our

online learning algorithm is to maximize the total user
utility.

For simplicity, we restrict attention todeadline value
functions, which are value functions of the formVj(i) =
v j , for all i ∈ [1, . . . ,d j ] andVj(i) = 0 otherwise, i.e.,
completing job j by its due date has a fixed positive
value. Note that our learning approach can be easily ex-
tended to handle general value functions.

Remark.We make an implicit assumption that a user
immediately gets the amount of instances it requests if
the “price is right” (i.e., if it pays the required price for
on-demand instances, or if its bid is higher than mar-
ket price for spot instances. In practice, however, a user
might exhibit delays in getting all the required instances,
especially if it requires a large amount of simultaneous
instances. While we could seamlessly incorporate such
delays into our model and solution framework, we ignore
this aspect here in order to keep the exposition simple.
Resource Allocation Policies. Our algorithmic frame-
work allows defining a broad range of policies for allo-
cating resources to jobs and the objective of our online
learning algorithm is to approach the performance of the
best policy in hindsight. We describe the parameterized
set of policies in this section, and present the learning
algorithm to adapt these policies, in detail in Section 3.

For each active job, a policy takes as input the job
specification and (possibly) history of spot prices, and
outputs an allocation. Formally, a policyπ is a mapping
of the formπ : J ×R+ ×R+ ×R

n
+ → A , which for

every active jobj at timeτ takes as input:

framework.

(i) the job specification ofj: {A j ,d j ,zj ,c j ,Vj}

(ii) the remaining work for the jobzτ
j

(iii) the total execution costCj incurred for j up to time

τ (namely,Cτ
j
△
= ∑τ−1

t′=A j
st′

j p̂t′
j + p ·ot′

j , and

(iv) a history sequenceps(·) of past spot prices.

In return, the policy outputs an allocation.
As expected, the set of possible policies define an ex-

plosively large state space. In particular, we must care-
fully handle all possible instance types (spot, on-demand,
both, or NOP), different spot bid prices, and their expo-
nential number of combinations in all possible job execu-
tion states. Of course, no approach can do an exhaustive
search of the policy state space in an efficient manner.
Therefore, our framework follows a best-effort approach
to tackle this problem by exploring as many policies as
possible in thepractical operating rangee.g., a spot bid
price close to zero has very low probability of being ac-
cepted; similarly, bidding is futile when the spot market
price is above the on-demand price. We address this is-
sue in detail in Section 3.

An elegant way to generate this practical set of poli-
cies is to describe them by a small number ofcontrol
parametersso that any particular choice of parameters
defines a single policy. We consider two basic families
of parameterized policies, which represent different ways
to incorporate the tradeoff between on-demand instances
and spot-instances: (1)Deadline-Centric.This family of
policies is parameterized by a deadline thresholdM. If
the job’s deadline is more thanM time units away, the
job attempts allocating only spot-instances. Otherwise
(i.e., deadline is getting closer), it uses only on-demand
instances. Further, it rejects jobs if they become non-
profitable (i.e., cost incurred exceeds utility value) or if
it cannot finish on time (since deadline value function
Vj will become zero). (2)Rate-Centric.This family of
policies is parameterized by a fixed rateσ of allocating
on-demand instances per round. In each round, the pol-
icy attempts to assignc j instances to jobj as follows:
it requestsσ ∗ c j instances on-demand (for simplicity,
we ignore rounding issues) at pricep. It also requests
(1− σ) ∗ c j spot instances, using a bid price strategy
which will be described shortly. The policy monitors the
amount of job processed so far, and if there is a risk of
not completing the job by its due date, it switches to on-
demand only. As above, it rejects jobs if they become
non-profitable or if it cannot finish on time.A pseudo-
code implementing this intuition is presented in Algo-
rithm 1. The pseudo-code for the deadline-centric family
is similar and thus omitted for brevity.

We next describe two different methods to set the bids
for the spot instances. Each of the policies above can
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use each of the methods described below: (i)Fixed bid.
A fixed bid valueb is used throughout. (ii)Variable
bid. The bid price is chosen adaptively based on past
spot market prices (which makes sense as long as the
prices are not too fluctuating and unpredictable).The
variable bid method is parameterized by a weightγ and
a safety parameterε to handle small price variations.
At each round, the bid price for spot instances is set as
the weighted average of past spot prices (where the ef-
fective horizon is determined by the weightγ) plus ε.
For brevity, we shall often use the termsfixed-bid poli-
ciesor variable-bid policies, to indicate that a policy (ei-
ther deadline-centric or rate-centric) uses the fixed-bid
method or the variable-bid method, respectively.Ob-
serve that variable bid policies represent one simple al-
ternative for exploiting the knowledge about past spot
prices. The design of more “sophisticated” policies that
utilize price history, such as policies that incorporate po-
tential seasonality variation, is left as an interesting di-
rection for future work.

ALGORITHM 1: Ratio-centric Policy
Parameters (with Fixed-Bid method): On-demand rate
σ ∈ [0,1]; bid b∈ R+

Parameters (with Variable-Bid method): On-demand
rateσ ∈ [0,1]; weightγ ∈ [0,1]; safety parameterε ∈ R+

Input: Job parameters{d j ,zj ,c j ,v j}
If c j ∗d j < zj or p∗σ ∗zj > v j , drop job //Job too large or
expensive to handle profitably
for Time slott in which the job is activedo

If job is done, return
Let m be the number of remaining time slots till job
deadline (including the current one)
Let r be the remaining job size
Let q be the cost incurred so far in treating the job
// Check if more on-demand instances needed to ensure
timely job completion
if (σ +m−1)min{r,c j}< r then

// Check if running job just with on-demand is still
worthwhile
if p∗ r +q< v j then

Request min{r,c j} on-demand instances
else

Drop job
end if

else
Requestσ ∗min{r,c j} on-demand instances
Request(1−σ)∗min{r,c j} spot instances at price:
• Fixed-Bid method: Bid Priceb
• Variable-Bid method: 1

Z

∫

y ps(y)γτ−ydy+ ε, where
Z =

∫

y γτ−ydy is normalization constant
end if

end for

Note that these policy sets include, as special cases,
some simple heuristics that are used in practice [3]; for

example, heuristics that place a fixed bid or choose a
bid at random according to some distribution (both with
the option of switching to on-demand instances at some
point). These heuristics (and similar others) can be im-
plemented by fixing the weights given to the different
policies (e.g., to implement a policy which selects the
bid uniformly at random, set equal weights for policies
that use the fixed-bid method and zero weights for the
policies that use the variable-bid method). The learn-
ing approach which we describe below is naturally more
flexible and powerful, as itadaptsthe weights of the dif-
ferent policies based on performance. More generally,
we emphasize that our framework can certainly include
additional families of parameterized policies, while our
focus on the above two families is for simplicity and
proof of concept. In addition, our learning approach can
incorporate other parameters for resource allocation that
are provided by cloud platforms e.g., VM instance type,
datacenter/region. At the same time, some of these pa-
rameters may be set a priori based on user constraints
e.g., an ’extra-large’ instance may be fixed to accommo-
date large working sets of an application in memory, and
a datacenter may be fixed due to application data stored
in that location.

3 The Online Learning Algorithm

In this section we first give an overview of the algorithm,
and then describe how the algorithm is derived and pro-
vide theoretical guarantees on its performance.
Algorithm Overview. The learning algorithm pseudo-
code is presented as Algorithm 2. The algorithm works
by maintaining a distribution over the set of allocation
policies (described in Section 2). When a job arrives,
it picks a policy at random according to that distribu-
tion, and usesthat policy to handle the job. After the
job finishes execution, the performance of each policy
on that job is evaluated, and its probability weight is
modified in accordance with its performance.The up-
date is such that high-performing policies (as measured
by f j(π)) are assigned a relatively higher weight than
low-performing policies. The multiplicative form of the
update ensures strong theoretical guarantees (as shown
later) and practical performance. The rate of modifi-
cation is controlled by a step-size parameterη j , which
slowly decays throughout the algorithm’s run. Our algo-
rithm alsouses a parameterd defined as an upper bound
on the number of jobs that arrive during any single job’s
execution. Intuitively,d is a measure of the delay in-
curred between choosing which policy to treat a given
job, till we can evaluate its performance on that job.
Thus,d is closely related to job lifetimesd j defined in
Section 2. Note that whiled j is measured in time units
(e.g., hours),d measures the number of new jobs arriv-

5



ing during a given job’s execution. We again emphasize
that this delay is what sets our setting apart from stan-
dard online learning, where the feedback on each pol-
icy’s performance is immediate, and necessitates a mod-
ified algorithm and analysis. The running time of the
algorithm scales linearly with the number of policies and
thus our framework can deal with (polynomially) large
sets of policies. It should be mentioned that there exist
online learning techniques which can efficiently handle
exponentially large policy sets by taking the set structure
into account (e.g. [9], Chapter 5). Incorporating these
techniques here remains an interesting direction for fu-
ture work.

We assume, without loss of generality, that the payoff
for each job is bounded in the range[0,1]. If this does
not hold, then one can simply feed the algorithm with
normalized values of the payoffsfi( j). In practice, it
is enough for the payoffs to be on the order of±1 on
average for the algorithm to work well, as shown in our
experiments in Section 4.

ALGORITHM 2: Online Learning Algorithm
Input: Set ofn policiesπ parameterized by{1, . . . ,n},
upper boundd on jobs’ lifetime
Initialize w1 = (1/n,1/n, . . . ,1/n)
for j = 1, . . . ,J do

Receive jobj
Pick policyπ with probabilityw j,π , and apply to jobj
if j ≤ d then

w j+1 := w j

else
η j :=

√

2log(n)/d( j −d)
for π = 1, . . . ,n do

Computef j(π) to be the utility for jobj −d,
assuming we used policyπ
w j+1,π := w j,π exp

(

η j f j(π)
)

end for
for π = 1, . . . ,n do

w j+1,π := w j+1,π/∑n
r=1w j+1,r

end for
end if

end for

Derivation of the Algorithm.Next we provide a formal
derivation of the algorithm as well as theoretical guaran-
tees. The setting of our learning framework can be ab-
stracted as follows: we divide time into rounds such that
round j starts when jobj arrives. At each such round,
we make some choice on how to deal with the arriving
job. The choice is made by picking a policyπ j from a
fixed set ofn policies, which will be parameterized by
{1, . . . ,n}. However, initially, we do not know the utility
of our policy choice as future spot prices are unknown.
We can eventually compute this utility in retrospect, but
only after≤ d rounds have elapsed and the relevant spot

prices are revealed.
Let f j (π j−d) denote the utility function of the policy

choiceπ j−d made in roundj −d. Note that according to
our model, this function can be evaluated given the spot
prices till round j. Thus,∑J+d

j=1+d f j (π j−d) is our total
payoff from all the jobs we handled. We measure the
algorithm’s performance in terms ofaverage regretwith
respect to any fixed choice in hindsight, i.e.,

max
π

1
J

J+d

∑
j=1+d

f j(π)−
1
J

J+d

∑
j=1+d

f j (π j−d).

Generally speaking, online learning algorithms attempt
to minimize this regret, and ensure that asJ increases
the average regret converges to 0, hence the algorithm’s
performance converges to that of the single best policy in
hindsight. A crucial advantage of online learning is that
this can be attained withoutany statistical assumptions
on the job characteristics or the price fluctuations.

Whend = 0, this problem reduces to the standard set-
ting of online learning, where we immediately obtain
feedback on the chosen policy’s performance. However,
as discussed in Section 1, this setting does not apply here
because the functionf j does not depend on the learner’s
current policy choiceπ j , but rather on its choice at an
earlier round,π j−d. Hence, there is a delay between the
algorithm’s decision and feedback on the decision’s out-
come.

Our algorithm is based on the following randomized
approach. The learner first picks ann-dimensional dis-
tribution vectorw1 = (1/n, . . . ,1/n), whose entries are
indexed by the policiesπ . At every roundj, the learner
chooses a policyπ j ∈ {1, . . . ,n} with probabilitywj ,π j . If
j ≤ d, the learner letsw j+1 = w j . Otherwise it updates
the distribution according to

wj+1,π =
wj ,π exp(η j f j (π))

∑n
π=1wj ,i exp(η j f j (i))

,

whereη j is a step-size parameter.Again, this form of
update puts more weight to higher-performing policies,
as measured byf j(π).
Theoretical Guarantees. The following result quanti-
fies the regret of the algorithm, as well as the (theoreti-
cally optimal) choice of the step-size parameterη j . This
theorem shows that the average regret of the algorithm
scales with the jobs’ lifetime boundd, and decays to
zero with the number of jobsJ. Specifically, asJ in-
creases, the performance of our algorithm converges to
that of the best-performing policy in hindsight. This be-
havior is to be expected from a learning algorithm, and
crucially, occurs without any statistical assumptions on
the jobs characteristics or the price fluctuations. The per-
formance also depends - but very weakly - on the size
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n of our set of policies. From a machine learning per-
spective, the result shows that the multiplicative-update
mechanism that we build upon can indeed be adapted to a
delayed feedback setting, by adapting the step-size to the
delay bound, thus retaining its simplicity and scalability.

Theorem 1. Suppose (without loss of generality) that
f j for all j = 1, . . . ,J is bounded in [0,1]. For
the algorithm described above, suppose we pickη j =
√

1log(n)/2d( j −d). Then for anyδ ∈ (0,1), it holds
with probability at least1− δ over the algorithm’s ran-
domness that

max
π

1
J

J

∑
j=1

f j (π)−
1
J

J

∑
j=1

f j (π j−d) ≤ 9

√

2d log(n/δ )
J

.

To prove Theorem 1, we will use the following two
lemmas:

Lemma 1. Consider the sequence of distribution vectors
w1+d, . . . ,wJ+d defined byw1+d = (1/n, . . . ,1/n) and

∀ π ∈ {1, . . . ,n}, wj+1,π =
wj ,π exp(η j f j(π))

∑n
π=1wj ,π exp(η j f j(π))

,

whereη j =
√

alog(n)/( j −d) for some a∈ (0,2]. Then
it holds that

max
π∈{1,...,n}

J+d

∑
j=1+d

f j (π)−
J+d

∑
j=1+d

n

∑
π=1

wj ,π f j (π)≤ 4

√

J log(n)
a

.

Proof. For any j = 1, . . . ,J, let g j(π) = 1− f j(π). Then
the update step specified in the lemma can be equiva-
lently written as

∀ π ∈ {1, . . . ,n}, wj+1,π =
wj ,π exp(−η jg j(π))

∑n
π=1wj ,π exp(−η jg j(π))

.

The initialization ofw1+d and the update step specified
above is identical to the exponentially-weighted average
forecaster of [9], also known as the Hedge algorithm
[10]. Using the proof of Theorem 2.3 from [9] (see
pg. 20), we have that for any parametera, if we pick
η j =

√

alog(n)/ j, then

J+d

∑
j=1+d

n

∑
π=1

wj ,πg j(π)− min
π∈{1,...,n}

J+d

∑
j=1+d

g j(π)

≤
√

aT log(n)
4

+2

√

(J+1) log(n)
a

−
√

log(n)
a

.

Since
√

(J+1) log(n)/a ≤
√

J log(n)/a+
√

log(n)/a,
the expression above can be upper bounded by

√

aT log(n)
4

+2

√

J log(n)
a

+

√

log(n)
a

≤
√

aT log(n)
4

+3

√

J log(n)
a

.

Sincea∈ (0,2], this is at most 4
√

J log(n)/a, so we get

J+d

∑
j=1+d

n

∑
π=1

wj ,πg j(π)− min
π∈{1,...,n}

J+d

∑
j=1+d

g j(π)≤ 4
√

J log(n)/a.

The result stated in the lemma follows by re-substituting
g j(π) = 1− f j(π), and using the fact that∑π wj ,π = 1.

Lemma 2. Let a1, . . . ,an ∈ [0,1] andη > 0 be fixed. For
any distribution vectorw in the n-simplex, if we define
w′ to be the new distribution vector

∀ π ∈ {1, . . . ,n}, w′
π =

wπ exp(−ηaπ)

∑n
r=1 wr exp(−ηaπ)

,

Then‖w−w′‖1 ≤ 4min{1,η}.

Proof. If η > 1/2, the bound is trivial, since for any two
distribution vectorsw,w′, it holds that‖w−w′‖1 ≤ 2.
Thus, let us assume thatη ≤ 1/2.

We have

‖w−w′‖1 =
n

∑
π=1

|wπ −w′
π | =

n

∑
π=1

‖w−w′‖1

=
n

∑
π=1

∣

∣

∣

∣

wπ

(

1− exp(−ηaπ)

∑n
r=1wr exp(−ηaπ)

)
∣

∣

∣

∣

.

Since‖w‖1 = 1, we can apply Hölder’s inequality, and
upper bound the above by

max
π

∣

∣

∣

∣

1− exp(−ηaπ)

∑n
r=1 wr exp(−ηaπ)

∣

∣

∣

∣

. (2)

Using the inequality 1− x≤ exp(−x) ≤ 1 for all x ≥ 0,
we have that

ηaπ ≤ 1− exp(−ηaπ)

∑n
r=1wr exp(−ηaπ)

≤ 1− 1
1−ηaπ

,

so we can upper bound Eq. (2) by

max
π

∣

∣

∣

∣

1− 1
1−ηaπ

∣

∣

∣

∣

= max
π

ηaπ
1−ηaπ

≤ 2η max
π

aπ ≤ 2η ,

using our assumption thataπ ≤ 1 for all π , and that
ηaπ ≤ η ≤ 1/2.

Using these lemmas, we are now ready to prove The-
orem 1:

Proof. Our goal is to upper bound

J+d

∑
j=1+d

f j (π)−
J+d

∑
j=1+d

f j (π j−d) (3)

for any fixedπ . We note thatπ1, . . . ,πJ are independent
random variables, since their randomness stems only
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from the independent sampling of eachπ j from each
w j . Thus, the regret can be seen as a function overJ
independent random variables. Moreover, for any choice
of π1, . . . ,πJ, if we replaceπ j by any otherπ ′

j , the re-
gret expression will change by at most 1. Invoking Mc-
Diarmid’s inequality [18], which captures how close to
their expectation are such “stable” random functions, it
follows that Eq. (3) is at most

E

[

J+d

∑
j=1+d

f j(π)−
J+d

∑
j=1+d

f j(π j−d)

]

+
√

log(1/δ )J (4)

with probability at least 1− δ .
We now turn to bound the expectation in Eq. (4). We

have

E

[

J+d

∑
j=1+d

f j(π)−
J+d

∑
j=1+d

f j(π j−d)

]

=
J+d

∑
j=1+d

f j (π)−
J+d

∑
j=1+d

Eπ j−d∼w j−d [ f j (π j−d)]. (5)

On the other hand, by Lemma 1, we have that for any
fixed π ,

J+d

∑
j=1+d

f j (π)−
J+d

∑
j=1+d

Eπ∼w j [ f j (π)]≤ 4

√

J log(n)
a

. (6)

where we assumeη j =
√

alog(n)/ j . Thus, the main
component of the proof is to upper bound

J+d

∑
j=1+d

(

Eπ∼w j [ f j (π)]−Eπ j−d∼w j−d [ f j (π j−d)]
)

=
J+d

∑
j=1+d

n

∑
π=1

(wj−d,π −wj ,π) f j (π). (7)

By Hölder’s inequality and the triangle inequality, this is
at most

J+d

∑
j=1+d

‖w j−d−w j‖ ≤
J+d

∑
j=1+d

d

∑
i=1

‖w j−i+1−w j−i‖

which by Lemma 2, is at most
∑J+d

j=1+d 4∑d
i=1min{1,η j−i}, where we takeη j−i = 0

if j − i < 1+ d (this refers to the distribution vectors
w1, . . . ,wd, which don’t change, and hence the norm of
their difference is zero). This in turn can be bounded by

4d
J+d

∑
j=1+d

4min{1,η j} = 4d
J+d

∑
j=1+d

min

{

1,

√

alog(n)
j −d

}

.

Combining this upper bound on Eq. (7) with Eq. (6), we

can upper bound Eq. (5) by

4

√

J log(n)
a

+4d
J+d

∑
j=1+d

min

{

1,

√

alog(n)
j −d

}

≤ 4

√

J log(n)
a

+4d
J+d

∑
j=1+d

√

alog(n)
j −d

≤ 4

√

J log(n)
a

+8d
√

aJlog(n).

Picking a = 1/2d, we get that Eq. (5) is at most
8
√

2d log(n)J. Combining this with Eq. (4), and noting
it is a probabilistic upper bound on Eq. (3), we get that

J+d

∑
j=1+d

f j(π)−
J+d

∑
j=1+d

f j (π j−d)

≤ 8
√

2d log(n)J+
√

log(1/δ )J

≤ 8
√

2d log(n/δ )J+
√

log(n/δ )J

≤ (8
√

2d+1)
√

log(n/δ )J ≤ 9
√

2d log(n/δ )J.

Dividing by J, and noting that the inequality holds si-
multaneously with respect to any fixedπ , the theorem
follows.

4 Evaluation

In this section we evaluate the performance of our learn-
ing algorithm via simulations on synthetic job data as
well as a real dataset from a large batch computing clus-
ter. The benefits of using synthetic datasets is that it
allows the flexibility to evaluate our approach under a
wide range of workloads. Before continuing, we would
like to emphasize that the contribution of our paper is be-
yond the design of particular sets of policies - there are
many other policies which can potentially be designed
for our task. What we provide is a meta-algorithm which
can work on any possible policy set, and in our exper-
iments we intend to exemplify this on plausible policy
sets which can be easily understood and interpreted.

Throughout this section, the parameters of the differ-
ent policies are set such that the entire range of plausible
policies is covered (with limitation of discretization). For
example, the spot-price time series in Section 4.2 ranges
between 0.12 and 0.68 (see Fig. 6(a)). Accordingly, we
allow the fixed bidsb to range between 0.15 and 0.7 with
5 cents resolution. Higher than 0.7 bids perform exactly
as the 0.7 bid, hence can be excluded; bids of 0.1 or lower
will always be rejected, hence can be excluded as well.

4.1 Simulations on Synthetic Data

Setup: For all the experiments on synthetic data, we use
the following setup. Job arrivals are generated accord-
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ing to a Poisson distribution with mean 10 minutes; job
size zj (in instance-hours) is chosen uniformly and in-
dependently at random up to a maximum size of 100,
and the parallelism constraintc j was fixed at 20 instance-
hours. Job values scale with the job size and the instance
prices. More precisely, we generate the value asx∗ p∗zj,
wherex is a uniform random variable in[0.5,2], andp is
the on-demand price. Similarly, job deadlines also scale
with size and are chosen to bex∗ zj/c j , wherex is uni-
formly random on[1,2]. As discussed in Section 3, the
on-demand and spot prices are normalized (divided by
10) to ensure that the average payoff per job is on the or-
der of±1. The on-demand price is 0.25 per hour, while
spot prices are updated every 5 minutes (the way we gen-
erate spot prices varies across experiments).
Resource allocation policies.We generate a parameter-
ized set of policies. Specifically, we use 204 deadline-
centric policies, and a same number of rate-centric poli-
cies. These policy set uses six values forM (M ∈
{0, . . . ,5}) and σ (σ ∈ {0,0.2,0.4,0.6,0.8,1}), respec-
tively.

For either policy set, we have policies that use
the fixed-bid method (b ∈ {0.1,0.15,0.2,0.25}), and
policies that use the variable-bid method (weight
γ ∈ {0,0.2,0.4,0.6,0.8}, and safety parameterε ∈
{0,0.02,0.04,0.06,0.08,0.1}).
Simulation results: Experiment 1. In the first experi-
ment, we compare the total payoff across 10k jobs of all
the 408 policies to our algorithm. Spot prices are cho-
sen independently and randomly as 0.15+0.05x, where
x is a standard Gaussian random variable (negative values
were clipped to 0). The results presented below pertain
to a single run of the algorithm, as they were virtually
identical across independent runs. Figure 2 shows the to-
tal payoff for the 408 policies for this dataset. The first
204 policies are rate-centric policies, while the remain-
ing 204 are deadline-centric policies. The performance
of our algorithm is marked using dashed line. As can be
seen, our algorithm performs close to the best policies in
hindsight. Further, it is interesting to note that we have
both deadline-centric and rate-centric policies among the
best policies, indicating that one needs to consider both
sets as candidate policies.

We perform three additional experiment with similar
setup to the above, in order to obtain insights on the prop-
erties and inner-working of the algorithm. To be able to
dive deeper into the analysis, we use only the 204 rate-
centric policies. The only element that we modify across
experiments is the statistical properties of the spot-prices
sequence.
Experiment 2.Spot prices are generated as above, except
that we use 0.1 as their mean (opposed to 0.2 above).
After executing 1000 jobs, our algorithm performs close
to that of the best policy as it assigns probability close
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Figure 2: Total payoff for processing 20k jobs across each of
the 408 resource allocation policies (while algorithm’s payoff
is shown as a dashed black line). The first 204 policies are
rate-centric, and the last 204 policies are deadline-centric.
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Figure 3: Evaluation under stationary spot-price distribution
(mean spot price of 0.1): Probability assigned per policy after
executing 500, 1000, 2500 and 5000 jobs.

to 1 for that policy, while outperforming 199 out of total
204 policies. Further, its average regret is only 1.3 as
opposed to 7.5 on average across all policies. Note that
the upper bound on the delay in this experiment isd =
66, i.e., up to 66 jobs are being processed while a single
job finishes execution. This shows that our approach can
handle significant delay in getting feedback, while still
performing close to the best policy.

In this experiment, the best policy in hindsight uses a
fixed-bid of 0.25. This can be explained by considering
the parameters of our simulation: since the on-demand
price is 0.25 and the spot price is always relatively lower,
a bid of 0.25 always yields allocation of spot instances
for the entire hour. This result also highlights the easy in-
terpretation of the resource allocation strategy of the best
policy. Figure 3 shows the probability assignment for
each policy over time by our algorithm after executing
500, 1000, 2500 and 5000 jobs. We observe that as the
number of processed jobs increase, our algorithm pro-
vides performance close to the best policy in hindsight.
Experiment 3.In the next experiment, the spot prices is
set as above for the first 10% of the jobs, and then the
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Figure 4: Evaluation under non-stationary distribution (mean
spot price of 0.2): (a) Total payoff for executing 10k jobs across
each of the 204 policies (while algorithm’s payoff is shown as
a dashed black line) and (b) the final probability assigned per
policy by our learning algorithm.

mean is increased to 0.2 (rather than 0.1) during the ex-
ecution of the last 90% jobs. This setup corresponds to
a non-stationary distribution: a learning algorithm which
simply attempts to find the best policy at the beginning
and stick to it, will be severely penalized when the dy-
namics of spot prices change. Figure 4 shows the eval-
uation results. We observe that our online algorithm is
able to adapt to changing dynamics and converges to a
probability weight distribution different from the previ-
ous setting; Overall, our algorithm attains an average re-
gret of only 0.5, as opposed to 4.8 on average across 204
baseline policies.

Note that in this setting, the best policies are those
which rely purely on on-demand instances instead of
spot instances. This is expected because the spot prices
tend to be only slightly lower than the on-demand price,
and their dynamic volatility make them unattractive in
comparison. This result demonstrates that there are in-
deed scenarios where the dilemma between choosing on-
demand vs. spot instances is important and can signifi-
cantly impact performance, and that no single instance
type is always suitable.

Experiment 4.This time we set the spot price to alternate
between 0.3 for one hour and then zero in the next. This
variation is favorable for variable-bid policies with small
γ, which use a small history of spot prices to determine
their next bid. Such policies quickly adapt when the spot
price drops. In contrast, fixed-bid policies and variable-
bid policies with largeγ suffer, as their bid price is not
sufficiently adaptive. Figure 5 shows the results. We
find that the group of highest-payoff policies are those
for whichγ = 0 i.e., they use the last spot price to choose
a bid for the current round, and thus quickly adapt to
changing spot prices. Further, our algorithm quickly de-
tects and adapts to the best policies in this setting. The
average regret obtained by our algorithm is 0.8 compared
to 4.5 on average for our baseline policies. Moreover, the
algorithm’s overall performance is better than 192 out of
204 policies.
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Figure 5: Evaluation under highly dynamic distribution (hourly
spot prices alternate between 0.3 and zero): (a) Total payoff for
processing 10k jobs across each of the 204 policies (algorithm’s
payoff is shown as a dashed black line), and (b) the final prob-
ability assigned per policy by our learning algorithm.
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Figure 6: Evaluation on real dataset: (a) Amazon EC2 spot
pricing data (subset of data from Figure 1) for Linux instances
of type ’large’. The fixed on-demand price is 0.34; (b) To-
tal payoff for processing 20k jobs across each of the 504 re-
source allocation policies (while algorithm’s payoff is shown
as a dashed black line)

4.2 Evaluation on Real Datasets

Setup: Workload data.We use job traces from a large
batch computing cluster for two days consisting of about
600 MapReduce jobs. Each MapReduce job comprises
multiple phases of execution where the next phase can
start only after all tasks in the previous phase have
completed. The trace includes the runtime of the job
in server CPU hours (totCPUHours), the total num-
ber of servers allocated to it (totServers) and the max-
imum number of servers allocated to a job per phase
(maxServersPerPhase). Since our job model differs from
the MapReduce model in terms of phase dependency,
we construct the parallelism constraint from the trace as
follows: since the average running time of a server is
totCPUHours

totServers , we set the parallelism boundc j for each job
to bec j = maxServersPerPhase∗ totCPUHours

totServers . Note that
this bound is in terms of CPU hours as required. Since
the deadline values per job are not specified, we use the
job completion time as its deadline. For assigning val-
ues per job, we generate them using the same approach
as for synthetic datasets. Specifically, we assign a ran-
dom value for each jobj equal to its total size (in CPU
hours) times the on-demand price timesB = (α + Nj)
whereα = 5 andNj ∈ [0,1] is drawn uniformly at ran-
dom. The job trace is replicated to generate 20k jobs.

Spot Prices. We use a subset of the historical spot

10



price from Amazon EC2 as shown in Figure 1 for ’large’
Linux instances. Figure 6(a) shows the selected sample
of spot price history showing significant price variation
over time. Intuitively, we expect that overall that policies
that use a large ratio of spot instances will perform bet-
ter since on average, the spot price is about half of the
on-demand price.

Resource Allocation Prices.We generated a total of
504 policies, half rate-centric and half deadline-centric.
In each half, the first 72 are fixed-bid policies (i.e. poli-
cies that use the fixed-bid method) in increasing or-
der of (on-demand rate, bid price). The remaining
180 variable-bid policies are in increasing order of (on-
demand rate, weight, safety parameter). The possi-
ble values for the different parameters are as described
for the synthetic data experiments, with the exception
that we allow more options for the fixed bid price,b ∈
{0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7}.

Evaluating our online algorithm on the real trace
poses several new challenges compared to the synthetic
datasets in Section 4.1. First, jobs sizes and hence their
values are highly variable, to the effect that the difference
in size betweensmallandlarge jobs can be of six orders
of magnitude. Second, spot prices can exhibit high vari-
ability, or alternatively be almost stable towards the end
as exemplified in Figure 6(a).
Simulation results: Figure 6(b) shows the results for
a typical run of this experiment. Notably, the payoff
of our algorithm outperforms the performance of most
of individual policies, and obtains comparable perfor-
mance to the best individual policies (which are a sub-
set of the rate-centric policies). We repeated the ex-
periment 20 times, and obtained the following results:
The average regret per job for our learning algorithm is
2071±1143, while the average regret across policies is
70654± 12473. Note that the average regret of our al-
gorithm is around 34 times better (on average) than the
average regret across policies.

Figure 7 shows the evolution of policy weights over
time for a typical run, until converging to final policy
weights (after handling the entire 20000 jobs). We ob-
serve that our algorithm evolves from preferring a rel-
atively large subset of both deadline-centric and rate-
centric policies (at around 150 jobs) to preferring only
rate-centric policies, both fixed-bid and variable-bid (at
around 2000 jobs). Eventually, the algorithm converges
to a single rate-centric policy with fixed bid. This behav-
ior can be explained based on spot pricing data in Fig-
ure 6(a): Due to initially high variability in spot prices,
our algorithm “alternates” between fixed-bid policies and
variable-bid policies, which try to learn from past prices.
However, since the prices show little variability for the
remaining two thirds of the data, the algorithm progres-
sively adapts its weight for the fixed-bid policy, which is
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Figure 7: Evaluation on real dataset: The probability assigned
per policy by our learning algorithm after processing 150, 1000,
3000 and 5000 jobs. The algorithm converges to a single policy
(fixed-bid rate-centric policy) marked by an arrow.

commensurate with the almost stable pricing curve.

5 Related literature

While there exist other potential approaches to our prob-
lem, we considered an online learning approach due to
its lack of any stochastic assumptions, its online (rather
than offline) nature, its capability to work on arbitrary
policy sets, and its ability to adapt to delayed feedback.
The idea of applying online learning algorithms for se-
quential decision-making tasks is well known ([10]), and
there are quite a few papers which study various engi-
neering applications (e.g., [11, 6, 12, 15]). However,
these efforts do not deal with the problem of delayed
feedback as it violates the standard framework of online
learning. The issue of delay has been previously con-
sidered (see [14] and references therein), but are either
not in the context of the online techniques we are using,
or propose less-practical solutions such as running many
multiple copies of the algorithm in parallel. In any case,
we are not aware of any prior study of delay-tolerant on-
line learning procedures for our application domain.

The launch of commercial cloud computing offerings
has motivated the systems research community to inves-
tigate how to exploit this market for efficient resource
allocation and cost reductions. Some solution concepts
are borrowed from earlier works on executing jobs in
multiple grids (e.g., [20] and references therein). How-
ever, new techniques are required in the cloud comput-
ing context, which directly incorporate cost considera-
tions and a variety of instance renting options. The have
been numerous works in this context dealing with dif-
ferent provider and customers scenarios. One branch of
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papers consider the auto-scaling problem, where an ap-
plication owner has to decide on the right number and
type of VMs to be purchased, and dynamically adapt re-
sources as a function of changing workload conditions
(see, e.g., [17, 7] and references therein).

We focus the reminder of our literature survey on
cloud resource management papers that include spot in-
stances as one of the allocation options. Some papers
focus on building statistical models for spot prices which
can be then used to decide when to purchase EC2 spot
instances (see, e.g., [13, 1]). Similarly, [24] examines
the statistical properties of customer workload with the
objective of helping the cloud determine how much re-
sources to allocate for spot instances.

In the context of large-scale batch applications, [5]
proposes a probabilistic model for bidding in spot prices
while taking into account job termination probabilities.
However, [5] focuses on pre-computation of a fixed (non-
adaptive) bid, which is determined greedily based on ex-
isting market conditions; moreover, the suggested frame-
work does not support an automatic selection between
on-demand and spot instances. [22] uses a genetic algo-
rithm to quickly approximate the pareto-set of makespan
and cost for a bag of tasks; each underlying resource
configuration consists of a different mix of on-demand
and spot instances. The setting in [22] is fundamen-
tally different than ours, since [22] optimizes a global
makespan objective, while we assume that jobs have in-
dividual deadlines.Finally, [21] proposes near-optimal
bidding strategies for cloud service brokers that utilize
the spot instance market to reduce the computational cost
while maximizing the profit. Our work differs from [21]
in two main aspects. First, unlike [21], our online learn-
ing framework does not require any distributional as-
sumptions on the spot price evolution (or the job model).
Second, our model may associate a differentvalueand
deadlinefor each job, whereas in [21] the value is only
a function of job size, and deadlines are not explicitly
treated.

6 Conclusion

In this paper we design and evaluate an online learning
algorithm for automated and adaptive resource allocation
for executing batch jobs over cloud computing platforms.
Our basic model can be extended to solve other resource
allocation problems in cloud domains such as renting
small vs. medium vs. large instances, choosing com-
puting regions, and different bundling options in terms
of CPU, memory, network and storage. We expect that
the learning framework developed here would be useful
in addressing these extensions.An interesting direction
for future research is incorporating reserved instances,
for long-term handling of multiple jobs. This makes the

algorithm stateful, in the sense that its actions affect the
payoffs of policies chosen in the future. This does not ac-
cord with our current theoretical framework, but may be
handled using different tools from competitive analysis.
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