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Abstract

Recently, the Counting Grid (CG) model [5] was devel-
oped to represent each input image as a point in a large grid
of feature counts. This latent point is a corner of a window
of grid points which are all uniformly combined to match
the (normalized) feature counts in the image. Being a bag
of word model with spatial layout in the latent space, the
CG model has superior handling of field of view changes
in comparison to other bag of word models, but with the
price of being essentially a mixture, mapping each scene to
a single window in the grid. In this paper we introduce a
family of componential models, dubbed the Componential
Counting Grid, whose members represent each input im-
age by multiple latent locations, rather than just one. In
this way, we make a substantially more flexible admixture
model which captures layers or parts of images and maps
them to separate windows in a Counting Grid. We tested the
models on scene and place classification where their com-
ponential nature helped to extract objects, to capture par-
allax effects, thus better fitting the data and outperforming
Counting Grids and Latent Dirichlet Allocation, especially
on sequences taken with wearable cameras.

1. Introduction
The most basic Counting Grid (CG) model [5] represents

each input image as a point k in a large grid of feature
(SIFT, color, high level feature) counts. This latent point
is a corner of a window of grid points which are all uni-
formly combined to form feature counts that match the (nor-
malized) feature counts in the image. Thus, the CG model
strikes an unusual compromise between modeling the spa-
tial layout of features and simply representing image fea-
tures as a bag of words where feature layout is completely
sacrificed. The spatial layout is indeed forgone in the repre-
sentation of any single image, as the model is simply con-
cerned with modeling the feature histogram. However the
spatial layout is present in the counting grid itself, which,
by being trained on a large number of individual image his-
tograms, recovers some spatial layout characteristics of the
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Figure 1. a) Images from 4 classes of the SenseCam dataset [6]
(Office, Atrium, Corridor, Lounge) b-c) Visualization of the top
words in each counting grid location. In c) in each location we
show the texton that corresponds to the peak of the distribution
(πi) at the location, while in b), we overlap these textons by as
much as the patches were overlapping during feature extraction
process, and then average to create a clearer visual representa-
tion. We also show few windows and their mapping position on the
Grid. Componential Counting Grids map each image in multiple
locations, in this figure we only show a window in correspondence
of the most likely location.

image collection to the extent needed to capture correla-
tions among feature counts. For example, in a collection
of images of a scene taken by a camera with a field of view
that is insufficient to cover the entire scene, each image will
capture different scene parts. Slight movement of the cam-
era produces correlated changes in feature counts, as certain
features on one side of the view disappear, and others appear
on the other side. The resulting bags of features show cor-
relations that directly fit the CG model. Ignoring the spatial
layout in the image frees the model from having to align
individual image locations, allowing for geometric defor-



Table 1. Members of the Componential Counting Grid Family. W
and S are respectively the Window size and the Tessellation size.

Model Abbr. W S
Latent Dirichlet Allocation [7] LDA 1× 1 1× 1
Componential Counting Grid CCG > 1× 1 1× 1
Tessellated Compon. Counting Grid tCCG > 1× 1 > 1× 1
Layered Epitome lEP Nx ×Ny Nx ×Ny

mations, while the grid itself reconstructs some of the 2D
spatial layout needed for modeling feature count correla-
tions.
As shown in [5] and as we demonstrate in Fig. 1, arranging
counts on a topology that allows feature sharing through
windowing can have representational advantages beyond
this surprising possibility of panoramic scene reconstruc-
tion from bags of features. Counting Grids have been re-
cently used in the context of scene classification [4] and
video analysis in [19, 6].

In this paper we introduce the Componential Counting
Grids (CCG), a family of models which extend the basic
Counting Grid model so that each input image is repre-
sented by multiple latent locations in CG, rather than just
one. Through admixing locations, CCG models become
multi -part or -object models but, like their CG predecessor,
they recreate only as much of spatial layout in the counting
grid as necessary for capturing count correlations.
This family creates connections between two popular gen-
erative modeling strategies in computer vision, previously
seen as very different: By varying the image tessellation and
window size, we will get a variety of models among which
we find latent Dirichlet allocation [7, 1] as well as flexible
sprites [18]/Layered Epitomes at two ends, or rather cor-
ners, of the spectrum illustrated in Fig.2. In each of these
corners, substantial research effort has been invested to re-
fine and apply these basic approaches, but it turns out that
the CCG models at neither end of the spectrum tend to per-
form best in our experiments. A summary of these models
can be found in Tab.1.

Componential Counting Grids and Topic models [7]
The original counting grid model shares its focus on model-
ing image feature counts (rather than feature layouts) with
another category of generative models, the “topic models”,
such as latent Dirichlet allocation (LDA) [7, 1]. However,
neither of these is a generalization of another. The CG
model is essentially a mixture model, assuming only one
source for all features in the bag, while the LDA model is
an admixture model that allows mixing of multiple topics
to explain a single bag. By using large windows to col-
late many grid distributions from a large grid, CG model
can be a very large mixture of sources without overtrain-
ing, as these sources are highly correlated: Small shifts in
the grid change the window distribution only slightly. LDA
model does not have this benefit, and thus has to deal with a

smaller number of topics to avoid overtraining. Topic mix-
ing cannot quite appropriately represent feature correlations
due to translational camera motion.
The basic Componential Counting Grid model, however, is
a generalization of LDA, as it does allow multiple sources
for each bag, in a mathematically identical way as LDA.
But, the equivalent of LDA topics are windows in a count-
ing grid, which allows the model to have a very large num-
ber of topics that are highly related, as shift in the grid only
slightly refines any topic.
The most similar generative model to CCG comes from the
statistic community. Dunson et al. [17] worked on sources
positioned in a plane at real-valued locations, with the idea
that sources within a radius would be combined to produce
topics in an LDA-like model. They used an expensive sam-
pling algorithm that aimed at moving the sources in the
plane and determining the circular window size. The grid
placement of sources of CCG yields much more efficient
algorithms and denser packing. In addition, as illustrated
below, CCG model can be run with various tessellations ef-
ficiently making it especially useful in vision applications.

Generative models for vision: Tessellated Componential
Counting Grids and Layered Epitomes. In computer vi-
sion, instead of forming a single bag of words out of one
image, separate bags are typically extracted from a uniform
S = Sx×Sy rectangular tessellation of the image [6, 8, 10].
The Tessellated extension of CCG (tCCG) is as straightfor-
ward as was the corresponding extension of CG [4]. All
sections are mapped to the same grid, but, the correspond-
ing window is tessellated in the same way as the image,
and the feature histograms from corresponding rectangular
segments are supposed to match. Even with as coarse tes-
sellations as 2× 2, training CG on image patches can result
in panoramic reconstruction similar to that of the epitome
model which entirely preserves the spatial layout.1 When
the Tessellation is equal to the image size S = Nx×Ny , ev-
ery bag is composed by a single feature, and we obtain the
Layered Epitome. Like regular Epitomes [2] and flexible
sprites [18] preserves the spatial layout of features. How-
ever, differently from [2], tCCGs break each image into lay-
ers and maps them separately in the epitome space, and dif-
ferently from [18], it does not assume a pre-defined number
and an ordering between layers.

In Fig. 2, though, we show a variety of Componential
models one can obtain by varying the tessellation and the
window size for the mapping. The window size need not,
and usually in our experiments does not match the size of
the input image, except for the .

1Of course, when the data does not consist of patches from a single
image, but from patches or images with more geometric deformation, CG
or recently introduced SLCG [6] model typically have a significant advan-
tage.
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Images used in training contain multiple objects and a back-
ground captured from a moving field of view, and a subset
of frames is shown in the image.2 Due to visualization ad-
vantages for this illustration, all models were trained us-
ing discretized colors rather than SIFT features, and they
all have roughly the same capacity – the number of in-
dependent topics that can be created in the allotted space
without overlapping the windows. This means that count-
ing grids created with smaller windows have to be propor-
tionally smaller, but for better visualization we enlarged all
grids to the same size. Window overlaps create smooth in-
terpolations among topics that compensate for camera mo-
tion. When 1 × 1 windows are used, there is no sharing
of grid distributions among topics, and the model reduces
to LDA shown in the corner with its histograms for its top-
ics. As there is no sharing, the spatial arrangement of four
topics onto the 2 × 2 grid has no meaning or value. Lay-

2Frame time stamps are not used to create the models: No tracking!

ered epitomes or flexible sprites are another extreme where
both the window size and the tessellation match the resolu-
tion of input images3, but the CCG models with as coarse
a tessellation as 8 × 8 already look indistinguishable from
epitome/flexible sprite results.

The video sequence features prominently a man and a
women dressed in white clothing (see the Frames in Fig.2).
While LDA color model will obviously confuse the white
elements of the background with these foreground objects,
the model with full tessellation has to learn multiple ver-
sions of each person to capture the scale changes due to their
motion at an angle with the motion of the camera. The inter-
mediate tessellations and window size provide more inter-
esting tradeoffs. For example, we see a generalized repre-
sentation of each object, where some of the original spatial
layout of features is recovered, but the allowed rearrange-

3Note, however, that we do not learn object masks here, as was done in
flexible sprites



ment of the features in the tessellation segments compen-
sates for scale. When the model is forced to simplify fur-
ther, through appropriate choice of window and tessellation
size, the two persons dressed in white are generalized into a
single object (though it may occur twice in one image).

While this illustration reinforces the naturally good fit
of CCG models to images of scenes with multiple moving
objects taken by a camera with a moving field of view, the
applicability of the CCG models hardly stops there. Fig.1 il-
lustrates the value of computing a grid of features in a very
different context, where one large grid is computed from
all images from 4 of the 32 class wearable camera dataset
[6]. Each image was represented by a single bag of features
(1× 1 tessellation) and the counting grid is computed using
38× 50 windows. A total of 200 feature centers were used,
and in each spot in the grid, only the peak of the histogram
is shown. The model tends to break up each bag into more
topics, and instead of reflecting a panoramic reconstruction,
the grid now models smaller scene parts, such as vertical
and horizontal edges found in windows and building walls
that the subject sees in his office and elsewhere. The choice
of edges placed close together shows that the model makes
sure that a window into the grid captures an appropriate fea-
ture mix found in some of the images in the training set. In
multiple places in the grid we see that when the window
is moved the orientation of the edges changes slightly and
in concert. Thus, in this case the CG real-estate and win-
dow overlapping strategy was often used to model rotation,
rather translation.

Next we mathematically describe the basic CG model,
which bears a lot of similarity with representations in Fig.
2, but as opposed to these, it does not model multiple scene
parts as mapped to different parts of the CG, but would
rather have to try to learn all foreground-background com-
binations. Then, we formally define the CCG model and
derive the learning algorithm for it. Finally, we demonstrate
the CCG performance on various datasets.

2. From Counting Grids to Componential
Models

The basic 2-D Counting Grid πi,z is a set of normalized
counts of words/features indexed by z on the 2-dimensional
discrete grid indexed by i = (ix, iy) where each id ∈
[1 . . . Ed] and E = (Ex, Ey) describes the extent of the
counting grid. Since π is a grid of distributions,

∑
z πi,z =

1 everywhere on the grid. Each bag of words/features, is
represented by a list of word {wt}Tt=1; we will assume that
all the samples have N words and each word wt

n takes a
value between 1 and Z.
Counting Grids assume that each bags follow a feature dis-
tribution found somewhere in the counting grid; In particu-
lar, using windows of dimensions W = (Wx,Wy), a bag
can be generated by first averaging all counts in the window
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Figure 3. a) Counting Grid geometry. b) Componential Counting
Grid/Layered Epitome generative model. c) CCGs generative pro-
cess. d) Illustration of UW ; e) Illustration of UWs in the case of a
S = 2× 2.

Wi starting at 2-dimensional grid location i and extending
in each direction d by Wd grid positions to form the his-
togram hi,z = 1∏

d Wd

∑
j∈Wi

πj,z , and then generating a
set of features in the bag. In other words, the position of the
window i in the grid is a latent variable given which we can
write the probability of the bag as

p({w}|i) =
∏
n

hi,z(wn) =
∏
n

( 1∏
dWd

∑
j∈Wi

πj,z(wn)
)
,

An example of CG geometry is shown in Fig.3a.
Relaxing the terminology, E and W are referred to as, re-
spectively, the counting grid and the window size. The ratio
of the two volumes, κ, is called the capacity of the model
in terms of an equivalent number of topics, as this is how
many non-overlapping windows can be fit onto the grid. Fi-
nally, with Wi we indicate the particular window placed at
location i.

Componential Counting Grids As seen in the previous
section, Counting Grids generate words from a feature
distribution in a window W , placed at location i in the
grid. Locations close in the grid generate similar features.
As we move the window on the grid, some new features
appear while others are dropped. Learning the model that
can generate this way produces panoramic reconstructions
in the CG (as seen in Fig.1) or, at a higher level, captures
(or infers new) spatial or topological relationships among
features (i.e., features of the sea are close to sand, buildings
are often over a street). On the other hand in standard
componential models, [7], each feature can be generated



by a different “process” or “topic.” These models capture
feature co-occurrences (e.g., sands often comes with sea),
and by breaking the bag into topics can potentially segment
the image into parts.

Componential Counting Grids get the best of both
worlds: using the counting grid embedding through
window overlapping, they can recover spatial layout, but
like componential models they can also explain the bags
as generated from multiple positions in the grid (called
components), explaining away the foreground and clutter,
or discovering parts that can be combinatorially combined
in the image collection (e.g., grass, horse, ball, athlete, to
explain different sports that may be created mixing these
topics).

In the CCG generative model each bag is generated by
mixing several windows in the grid following the location
distribution θ. More precisely, each word wn can be gener-
ated from a different window, placed at location ln, but the
choice of the window follows the same prior distributions
θl for all words. Within the window at location ln the word
comes from a particular grid location kn, and from that grid
distribution the word is assumed to have been generated.
The Bayesian network is illustrated in Fig.3b) and it defines
the following joint probability distribution

P =
∏
t

(
p(θ|α)

∏
n

∑
ln,kn

p(wn|kn, π)·p(kn|ln)·p(ln|θ)
)

where p(wn = z|kn, π) = πkn
(z) is a multinomial over the

word indices, p(kn|ln) = UW
kn−ln is a distribution over the

Counting Grid, equal to ( 1
Wx·Wy

) in the upper left window
of size W and 0 elsewhere (see Fig.3d), p(ln|θ) = θl is a
prior distribution over the windows location, and p(θ|α) =
Dir(θ;α) is a dirichlet distribution of parameters α.
The generative process (Fig.3c), is the following:

1. Sample a multinomial over the locations θ ∼ α

2. For each of the N words wn

a) Choose a location ln ∼ θ for a window W

b) Choose a location within Wln ; kn ∼ UW
kn−ln

c) Choose a word wn from πkn

Since the posterior distribution p(k, l, θ|w, π, α) is in-
tractable for exact inference, we learned the model us-
ing variational inference [16]. By introducing the poste-
rior distributions q, and approximating the true posterior as
qt(k, l, θ) = qt(θ) ·

∏
n (q

t(kn) · qt(ln)) 4 we can write the

4q(kn) and q(ln) multinomials over the locations, and q(θ) a Dirac
function centered at the optimal value θ̂

negative free energy F , and use the iterative variational EM
algorithm to optimize it.

F =
∑
t

(∑
n

∑
ln,kn

qt(kn) · qt(ln) · log πkn
(wn)

· UW
kn−ln · θl · p(θ|α)

)
−H(q) (1)

where H(q) is the entropy of the posterior. Minimization of
Eq. 1 reduces in the following update rules:

qt(kn)∝πkn(wn) · exp
(∑

ln

qt(ln) · logUW
kn−ln

)
(2)

qt(ln)∝ θtln · exp
(∑

kn

qt(kn) · logUW
kn−ln

)
(3)

θtl ∝αl − 1 +
∑
n

qt(ln) (4)

πk(z)∝
∑
t

∑
n

qt(kn = k)[wn=z] (5)

where [wn = z] is an indicator function, equal to 1 when
wn is equal to z. The minimization procedure described
by Eqs.2-5 must be iterated until convergence and can be
carried out efficiently in O(N logN) time using FFTs.

Tessellated Componential Counting Grids The proce-
dure described in the previous section does not require in-
formation about the spatial layout of features in the bag and
can be in principle applied to any kind of data. In computer
vision, it is useful to enrich the model and its E and M rules
to deal with image representations that consist not of one,
but several S = sx × sy bags of words, each corresponding
to a section of the image [8, 10]. When inferring the map-
ping of each “section” bag, the window Wk is tessellated
into section WS

k in the same way images are tessellated and
the histogram comparisons are done accordingly. Moreover
UW
kn−ln becomes UWs

kn−ln , where Ws is a window of the
same size and it is shown in Fig.3e. In a similar way non-
uniform and most descriptive image layout patterns can be
used [20].

Layered Epitomes In the limit, when S = Nx×Ny each
bag contains a single feature and the model becomes the
Layered (or componential) Epitome. In this case, n indexes
a pixel in the image coordinate i (e.g., wn = zi) and U i

highlights now the single pixel i. The E-Step thus becomes:

qt(ki)∝πki
(zi) · exp

(∑
li

qt(li) · [ki − li = i]
)

(6)

qt(li)∝ θli · exp
(∑

ki

qt(ki) · [ki − li = i]
)

(7)

where [·] is the indicator function. In both the layered epit-
ome and tessellated case θ and π are updated as in Eq.4 and
Eq.5.
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Figure 4. Results on SenseCam (Mean results over 5 repetitions). As the same κ can be obtained with different choice of E and W, multiple
results may be reported for the some values of κ. For (Componential) Counting Grids, we colored the markers based on the size of E. a)
Single Bag model and comparison with [4] and [7]. b) Moderate Tessellation results c) Fine Tessellation results.

3. Experiments
In all the experiments as visual words we used SIFT

features, extracted from 16×16 patches spaced 8 pixels
apart, clustered in Z=200 visual words. In each task,
unless specified, we employed the dataset author’s train-
ing/testing/validation partition and protocol; if this informa-
tion was not available, we used 10% of the training data as
validation set.
We considered squared grids of various complexities E =
[2,3, . . . ,10,15,20, . . . ,40] and window size W =
[2,4,6, . . . ] but limiting the tests only to the combinations
with capacity κ =

Ex·Ey

Wx·Wy
between 1.5 and T/2, where T is

the number of training samples. We tried single bag models
(1× 1 tessellation), tessellated models 2× 2, 4× 4 and the
layered epitome (Nx ×Ny).

Place Classification on SenseCam: Recently in [6] a 32-
classes dataset have been proposed. This dataset is a subset
of the whole visual input of a subject who wore a wearable
camera for few weeks. Images in the dataset exhibit dra-
matic viewing angle, scale, illumination variations and a lot
of foreground objects, and clutter.
We compared CCGs with LDA [7] and CGs [4], learning
a model per class and assigning test samples to the class
that gives the lowest free energy. The capacity κ is roughly
equivalent to the number of LDA topics as it represents the
number of independent windows that can be fit in the grid;
we compared the results using this parallelism [4, 6].
Results are shown in Fig.4: the Componential Counting
Grid model outperforms LDA and CGs across the choices
of model complexity considered. Like [7], it breaks each
image into parts and, like regular CGs, it maps these onto
a bigger real estate, trying to recover their panoramic na-

Table 2. Comparison with state of the art on SenseCam dataset.
We reported accuracies from [6], where comparisons with other
methods can be found.

CCG [11] [10] [6] [8]
64.03% 43.65% 57.47% 60.12% 56.45%

ture, by laying out the features into a 2D window and stitch-
ing overlapping windows. This fits both the panoramic and
componential qualities of the data acquired by a wearable
camera.
Moderate tessellations (up to 4 × 4) significantly helped,
except for very small grid/window sizes, where the model
reduces itself to a very low resolution layered epitome, or
for high κs, where it probably overtrains. Layered epitomes
did not perform well (≤ 40%) as the training data is limited
and images are too diverse for panoramic stitching.
The overall accuracy after crossevaluation is 64% ± 1.7
strongly outperforming recent advances in scene recogni-
tion [11, 10, 6] and setting a new state-of-the-art by a large
margin (See Tab.4).

Scene Recognition: We tested our models on the video
sequences introduced in [9]. In addition to the comparison
with the original method [9], we also compared with Epit-
omes [3], as epitomic location recognition [3] was, among
recognition applications of epitome, one of the most suc-
cessful. The trick was to use low resolution epitome with
each low res image location represented by a histogram of
features. Results are presented in Fig.5; the improvement is
significant and once again, CCGs set a new state-of-the-art.

We finally considered the UIUC Sports dataset [12], this
dataset is particularly challenging as composing elements
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ported the result of the layered epitome.

and objects must be identified in order to correctly classify
the sport event [15].
For this task, we learned a single model pooling the im-
ages from all the classes together. We considered models
of complexity E = [40,50, . . . ,90] and W = [2,4,6,8]
and we used training set’s θt as feature to learn a discrim-
inative classifier (We used SVM with histogram intersec-
tion kernel). The rationale here is that different classes
share some elements, like “water” for sailing and rowing
classes, but they also will have peculiar elements that dis-
tinguish them. This is shown in Fig.6a where we depicted
p(i|θ, c) =

∑
tc
θtci , where the sum is carried out separately

on the samples of each class. After learning a model, we
embedded the textual annotations available for this dataset,
simply iterating the M-step using textual words as observa-

Table 3. Comparison with other componential models after cros-
sevaluation. We did not use the annotations in the classification
task.

CCG CG LDA5 [14] [15] [12]
80.02% 43% 36% - 68% 78% 76.3% 73%

tions. In Fig. 6a we show where some selected words are
embedded in the grid.

Numerical accuracies on the test set are shown in Tab.3,
while in Fig.6b we reported the accuracy across κ. As ex-
pected, CGs [4] fail as they stick to classify the scene in
which the event takes place, but so does LDA [7]. CCGs,
similar in spirit to [15] (but somewhat simpler), look and ex-
tract object/texture/feature combinations to classify images
and reach compelling accuracies (see Fig.6b).

The variation in spatial layout of the objects here was
sufficient to render tessellations beyond 1× 1 unnecessary:
They do not improve classification results (but increase in
the window size is needed).

4. Discussion

The componential models introduced here can be seen
as a generalization of both LDA and template-based models
such as flexible sprites [18] or epitomes [3, 2]. As opposed
to the basic CG model, it allows for source (object, part)
admixing in a single bag of words. In addition, by partially
decoupling the feature layout modeling in the image from
the layout modeling in the latent space (the grid of feature
distributions as in the CG model), it empowers the modeler
to strike balance between layout following and transforma-
tion invariance in substantially different and more diverse
ways than these previous models, simply by varying the tes-
sellation and the mapping window size (which is typically
not linked to the original image size).
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Keeping the capacity κ fixed, the increase in window size
incurs the proportional increase in the computational cost,
but provides for smoother reconstruction in the spatial lay-
out. As experiments show, once the W is “sufficiently
big”, recognition accuracies raise with κ. The tessellation S
guides the rough positioning of the features from different
image quadrants and moderate tessellations never hurt. In
our experiments we invariably find that the basic LDA and
epitome-like models, which are at opposite corners of the
model organization by tessellation and window size, under-
perform the CCG models from somewhere in the middle of
the triangle illustrated on the toy data in Fig. 2.

It is also interesting to analyze the performance of
the Componential Counting Grid family, Counting Grids
[4] and LDA [7] for various datasets. In Fig.7, for each
dataset considered in this paper, we colored the area
where we reached “reasonably good” results. To correctly
classify UIUC Sports images, objects/parts/athletes must
be extracted and recognized. Componential models (CCG,
LDA) break the image and perform well, while CGs fails
as they classify the scene in which the event take place.
Tessellations finer than S = 2 × 2, hurt the result as they
made CCGs stick to the scene. SenseCam images and
Torralba sequences are collected with a wearable camera
and in principle the spatial layout can be at least piecewise
reconstructed. Here all methods perform well and the
tessellations significantly helped. Torralba sequences
was the only dataset where layered epitomes were found
to perform well. The lack of training data made small
windows (and grids) preferable on SenseCam. Finally we
also analyzed the 15-Scenes dataset [8]6 where Counting
Grids and CCG outperformed LDA. Tessellation helped up
to S = 5× 5.

A number of refinements previously added to generative
models can be added to CCG, e.g., the mask model akin to
the ones used by flexible sprites and layered epitomes, mod-

6We did not report the results in the paper for lack of space

eling the spatial layout changes in tessellation segments as
in the spring lattice CG model [6], exotic priors and added
hierarchies as in LDA-based models, or as in any generative
model, addition of other hidden variables that relate to other
modalities or higher-level variables.
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