
Code Clone Detection Experience at Microsoft
Yingnong Dang, Song Ge, Ray Huang and Dongmei Zhang

Microsoft Research Asia

yidang;songge;rayhuang;dongmeiz@microsoft.com

ABSTRACT

Cloning source code is a common practice in the software

development process. In general, the number of code clones

increases in proportion to the growth of the code base. It is

challenging to proactively keep clones consistent and remove

unnecessary clones during the entire software development

process of large-scale commercial software. In this position paper,

we briefly share some typical usage scenarios of code clone

detection that we collected from Microsoft engineers. We also

discuss our experience on building XIAO, a code clone detection

tool, and the feedback we have received from Microsoft engineers

on using XIAO in real development settings.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – Restructuring, reverse engineering, and

reengineering

General Terms
Management

Keywords

Clone detection, Experience

1. INTRODUCTION
Reusing code fragments via copy-and-paste, with or without

modifications or adaptations, is called code cloning, which is a

common behavior of software engineers for quick code reuse [4].

In general, the number of code clones is likely to increase as the

scale of code bases increases [2]. In this paper, we briefly share

our experience on the design and development of XIAO, a code

clone detection tool serving the needs of Microsoft engineers, as

well as some initial feedback we obtained from Microsoft

engineers after they used XIAO. We believe that our experience

may help the community better understand the practical usage of

code clone detection tools in the development process of large-

scale commercial software.

2. CODE CLONE DETECTION IN THE

SOFTWARE DEVELOPMENT PROCESS
We summarize as follows the three typical usage scenarios of

clone detection in the software development process that we have

collected at Microsoft.

Fix Bugs Once If a bug is identified in a piece of code with

duplicated copies, it is desirable to have the ability to fix all of

them at once. This scenario is beneficial to multiple stages of the

development process as long as there are bug fixing tasks; for

example, during the feature implementation stage, stabilization

stage and post-release maintenance stage.

Footprint Reduction Code clones can be found at various

degrees for different product teams we have worked with in

Microsoft. Some teams are keen on reducing the memory

footprint of their components; they look for every possible

opportunity to achieve this goal. Removing code clones is one of

the important actions they want to take.

Clone Quantity Monitoring The quantity of code clones could

be one of the metrics that measure the quality of a code base to

prevent unnecessary code clone creation. Running code clone

detection tools periodically and monitoring the overall clone

quantity may serve this purpose. One possible metric is the

percentage of cloned LOC (lines of code) compared with the total

LOC of a code base.

3. XIAO
Based on the usage scenarios discussed in Section 2, we identified

the following key requirements for XIAO:

Near-miss Code Clone Detection The effectiveness of

detecting near-miss code clones [3] is one of the key challenges to

identify inconsistencies between cloned copies and enable the fix-

bugs-once scenario.

Scalability Scalability is a basic requirement for a practical

code clone detection tool, since the number of lines of code for

commercial software is ever increasing [4]. Not surprisingly, the

sizes of code bases for many Microsoft products are very large

scale.

Usability Development teams have limited time and resources.

It is difficult for them to adopt a tool that is not flexible and has a

steep learning curve. Therefore, it is important for the clone

detection tool to be easily customizable and intuitive to use.

Easy Deployment Different product teams may have similar,

but not exactly the same, development environments including

build systems, source management tools and bug management

tools. It should have a zero or low cost for engineers to deploy a

code clone detection tool in their work environments, with the

tool working seamlessly with existing tools.

Based on these requirements, we developed XIAO, a code clone

detection tool. XIAO has its own light-weight parser, so it does

not depend on any compilers. This allows XIAO to be easily

deployed in various build environments. Currently, the parser

supports C/C++ and C# languages, which serves the needs of a

good number of teams in Microsoft. In addition, Xiao provides an

extensible framework which allows users to plug in their own

parsers into the system to support other languages. The core clone

detection algorithm of XIAO is able to effectively detect near-

miss code clones [1]. XIAO’s clone detection algorithm is

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IWSC 2011 May 23, 2011, Waikiki, Hawaii, USA Copyright 2011

ACM 978-1-4503-0588-4/11/05 ...$10.00

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC’11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0588-4/11/05 ...$10.00

63

implemented such that it can run in both a single machine

environment and Microsoft’s High Performance Computing

clusters Error! Reference source not found.. XIAO’s frontend

provides an intuitive way to visualize the differences between two

clone copies. It also facilitates users to efficiently explore the code

clone detection results.

4. EXPERIENCE WE LEARNED
We released the first version of XIAO to Microsoft engineers in

April 2009. There were more than 750 downloads of the tool as of

12/31/2010. The size of code bases that XIAO is used to detect

code clones varies from several thousand lines to over 50 million.

Engineers from different teams in Microsoft have used XIAO in

their development process. For example, one developer from an

application software development team used XIAO to identify

potential bugs caused by inconsistent code clones and to find

refactoring candidates. He reviewed 69 clone groups with 180

cloned snippets in total and found that about 10% have potential

code defects caused by inconsistent code clones, and 33% of them

could be refactored. Another developer used XIAO to reduce the

footprint of a component with more than 200K LOC. As a result,

the percentage of cloned LOC was reduced from 30% to 25%. A

test team developed a plug-in parser to parse the language used in

their product and used the tool to find duplicated test code and

then refactor it.

Based on our extensive communications with XIAO users at

Microsoft, we summarize our experience and learning as follows.

Detecting Near-Miss Code Clones

Code cloning may occur inside one component and even cross

components. Different cloned copies may be owned by different

developers. It is quite likely that when one developer updates

his/her copy for bug fixes, the other owners of the cloned copies

may not be aware of the changes. The consequence of such

inconsistent updates can result in near-miss code clones. We have

seen a great number of such scenarios when we worked with

different development teams. Therefore, it is important for a code

clone detection tool to reliably detect near-miss clones.

Flexible Filtering

In general, different teams have different requirements on which

part of the code base they want to run the clone detection tool. For

example, automatically generated code, prototype code, dead code

and test code are not usually required for clone detection.

Furthermore, some teams may require that certain functions and

statements be excluded from clone detection; for example,

assertions and log printing code for debugging purposes. All of

these requirements help reduce the number of clones that are not

of interest or are meaningful to development teams. Using string

patterns, XIAO provides a flexible filtering mechanism to exclude

folders, files, functions and statements that should be ignored

during clone detection.

Intuitive and Efficient Graphical User Interface (GUI)

We received a lot of feedback on the usability of XIAO, and in

particular XIAO’s GUI for code clone exploration and

visualization. We released several versions of the tool, mainly

focusing on improving the usability based on the user feedback.

 Efficient Exploration. There can be a great number of clones

found in large-scale code bases. Therefore, it is important to

enable users to explore the clones easily and efficiently. Engineers

have a need to sort and filter clones based on different metrics,

e.g., source tree structure, size of cloned snippets, size of a clone

group, size of difference between different copies, etc. The

functionalities of XIAO’s frontend meet these needs well.

 Intuitive Visualization of Clone Differences. The types of

differences between cloned copies can be diverse; engineers want

to identify the most important differences first. This will help

them quickly find out whether there are any potential bugs in the

cloned code or whether the cloned code needs to be refactored.

XIAO classifies the clone differences into four categories and

uses visualization techniques to enable users to view the near-miss

code clones intuitively.

 Tagging. Not all detected clones are of interest to the

engineers. For example, some clones are by-design and they will

not be refactored. It is difficult to automatically filter out the by-

design clones because deep domain knowledge may be required.

XIAO provides a tagging functionality for users to tag code clones

in three categories: immune (uninteresting), problematic

inconsistencies and refactoring opportunities. The tagging results

are also beneficial for further research on clone related analysis.

Integrated Solution

Nowadays engineers are already working with a number of

different tools to complete their daily tasks. There is a cost for

them to adopt any additional tools. In order to enable wide

adoption, we built a rich set of features to make XIAO seamlessly

work with existing development tools. For example, when

engineers decide to take action on a detected clone, XIAO’s GUI

allows them to easily open a bug in the bug management system

they use. Another example is the code clone statistic report that

can be easily shared with team members to facilitate clone

quantity monitoring.

5. SUMMARY
In this paper, we shared our experience on building XIAO, a code

clone detection tool, and its usage at Microsoft.

From working with engineers in real development settings, we

learned that it is important for clone detection tools to reliably

detect near-miss clones and to effectively reduce the number of

clones of no interest. In addition, how to present the detected

clones also has impact on clone understanding and the action

taken by the engineers. We hope that the sharing of our

experience calls for more research on these directions.

ACKNOWLEDGEMENT
We thank the Microsoft engineers and researchers for their usage

of XIAO and their valuable feedback and discussion. We thank

Prof. Sunghum Kim and Katsuro Inoue for the valuable comments.

REFERENCE
[1] Y. Dang, S. Ge, Y. Qiu and D. Zhang: XIAO: Effective

Near-Miss Code Clone Detector, Microsoft Technical Report

2011, to appear.

[2] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su.

Scalable and Systematic Detection of Buggy Inconsistencies

in Source Code. In OOPSLA 2010 (SPLASH 2010).

[3] H. Kim, Y. Jung, S. Kim and K. Yi, "MeCC: Memory

Comparison-based Clone Detector", In ICSE 2011.

[4] R. Koschke. Survey of research on software clones. In Proc.

Duplication, Redundancy, and Similarity in Software, 2007.

[5] http://technet.microsoft.com/en-us/hpc/default

64

