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Abstract. Energy costs are becoming the fastest-growing element in datacen-
ter operation costs. One basic approach to reduce these costs is to exploit the
spatiotemporal variation in electricity prices by moving computation to datacen-
ters in which energy is available at a cheaper price. However, injudicious job
migration between datacenters might increase the overall operation cost due to
the bandwidth costs of transferring application state and data over the wide-area
network. To address this challenge, we propose novel online algorithms for mi-
grating batch jobs between datacenters, which handle the fundamental tradeoff
between energy and bandwidth costs. A distinctive feature of our algorithms is
that they consider not only the current availability and cost of (possibly multiple)
energy sources, but also the future variability and uncertainty thereof. Using the
framework of competitive-analysis, we establish worst-case performance bounds
for our basic online algorithm. We then propose a practical, easy-to-implement
version of the basic algorithm, and evaluate it through simulations on real elec-
tricity pricing and job workload data. The simulation results indicate that our
algorithm outperforms plausible greedy algorithms that ignore future outcomes.
Notably, the actual performance of our approach is significantly better than the
theoretical guarantees, within 6% of the optimal offline solution.
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1 Introduction

Energy costs are becoming a substantial factor in the operation costs of modern data-
centers (DCs). It is expected that by 2014, the infrastructure and energy cost (I&E) will
become 75% of the total operation cost, while information technology (IT) expenses,
i.e., the equipment itself, will induce only 25% of the cost (compared with 20% I&E
and 80% IT in the early 90’s) [5]. Moreover, the operating cost per server will be double
its capital cost (over its amortized lifespan of 3-5 years). According to an EPA report,
servers and datacenters consumed 61 billion Kilowatt at a cost of $4.5 billion in 2007,
with demand expected to double by 2011 [13]. These costs might further increase due to
carbon taxes which are being imposed by several countries to reduce the environmental
impact of electricity generation and consumption [11, 16].

To reduce the energy costs, research efforts are being made in two main directions:
(i) Combine traditional electricity-grid power with renewable energy sources such as
solar, wave, tidal, and wind, motivated by long-term cost reductions and growing un-
reliability of the electric grid [15, 18]; and (ii) Exploit the temporal and geographical
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variation of electricity prices [19, 20]. As shown in Fig 1(a), energy prices can signifi-
cantly vary over time and location (even within 15 minute windows). Therefore, a nat-
ural approach is to shift the computational load to datacenters where the current energy
prices are the cheapest. In this paper, we combine these two directions, by proposing
efficient algorithms for dynamic placement (migration) of batch applications (or jobs)
in datacenters, based on their energy cost and availability. Specifically, we focus on
executing batch applications such as MapReduce programs, web crawling and index
generation for web search, and data analytics, which are typically delay tolerant and
can handle the interruption during job migration between datacenters1.

A key challenge for dynamic job placement is to account for the bandwidth cost of
moving the application state and data between source and destination datacenters. The
application data and memory footprint depends on the underlying job, and can range
from a few KBs to hundreds of MBs [12] 2. Bandwidth fees are typically charged pro-
portionally to the number of bytes sent and received during the migration process [23];
consequently, bandwidth costs increase linearly with the amount of migrated data.

This paper proposes online algorithms for migrating batch applications within a
cloud of multiple datacenters. The input for these algorithms includes the current en-
ergy prices and power availability at different datacenters. The algorithms accordingly
determine which jobs should be migrated and to which hosting location, while taking
into account the bandwidth costs and the current job allocation. Our model accommo-
dates datacenters powered by multiple energy suppliers such as the grid and renewable
energy sources. More generally, we assume that the total energy cost in each datacenter
is a convex increasing function of utilization. Energy-cost reduction would thus depend
on the ability to exploit the instantaneously cheap energy sources to their full avail-
ability. A distinctive feature of our approach is that we do not settle for an intuitive
greedy approach to optimize the overall energy and bandwidth costs, yet take into ac-
count future deviations in energy price and power availability. We emphasize that our
electricity-pricing model is distribution-free (i.e., we do not make probabilistic assump-
tions on future electricity prices), as prices can often vary unexpectedly [19].
Related work. The general framework of energy-efficient resource management in
cloud datacenters has been an active research area over the last few years. Numerous
papers consider the intra datacenter optimization, which includes techniques such as
switching off idle servers [14] and VM migration and consolidation for load balanc-
ing and power management [6]. Motivated by the notable spatiotemporal variation in
electricity prices, the networking research community has recently started focusing on
inter datacenter optimization, which is also the context of our work. Qureshi et al. [19]
propose greedy heuristics for redirecting application requests to different datacenters,
and evaluate them using simulations on historical electricity prices and Akamai’s traffic
data. The authors show that judicious placement can save millions of dollars in en-
ergy costs. Rao et al. [20] consider load-balancing of delay sensitive applications with
the goal of minimizing the energy cost subject to delay constraints. They use queu-

1 We note that there are known job migration techniques (e.g., pipelining and incremental snap-
shots [12]) to minimize the interruption delay.

2 Note that persistent data such as crawled web pages and click-stream logs, are typically repli-
cated at multiple datacenters and thus do not need to be migrated for individual jobs.
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Fig. 1: (a, left) Electricity pricing trends across three US locations (CA (top), TX (mid-
dle), and MA (bottom)) over a month in 2009. The graphs indicate significant spa-
tiotemporal variation in electricity prices. (b, right) Hourly task demand data from a
cluster running MapReduce jobs. The demand data shows significant variation over
time.

ing theory and linear programming techniques and report cost savings through simula-
tions with electricity pricing data. Finally, Le et al. [17] propose an optimization-based
framework to distribute user requests across datacenters. Their goal is to process re-
quests within a specified cap on energy from non-renewable sources, while meeting the
application service-level agreements and minimizing energy costs.

Our paper significantly differs from prior work in three ways. First, we consider the
migration of batch applications, rather than the redirection of interactive applications’
requests. Second, our algorithms take into account not only the immediate savings of
job migration, but also the future consequences thereof, thereby accounting for future
uncertainty in the cost parameters. Third, we incorporate the bandwidth cost into the
optimization problem, as it can be a significant cost factor for job migration.

Our solution method lies within the framework of online computation [7], which
has been applied for solving problems with uncertainty in networks, finance, mecha-
nism design and other fields. Specifically, we employ online primal-dual techniques
[10], including recent ideas from [2, 3]. We build upon two well-studied online prob-
lems, weighted paging/caching [1, 21] and Metrical Task System (MTS) [4, 8] (see our
technical report [9] for details), and extend them to address two new challenges specific
to our problem: (1) optimizing energy costs of executing batch jobs under time-varying
electricity prices and job demand, and (2) balancing energy savings with bandwidth
costs to minimize the total operation cost. Since our problem is a generalization of the
MTS problem [8], we get a lower bound of Ω(log n) on the competitiveness of any
online algorithm where n is the number of datacenters. A tighter lower bound is subject
for future examination.
Contribution and Paper Organization. In this paper, we show, both analytically and
empirically, that existing cloud computing infrastructure can perform dynamic applica-
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tion placement based on energy cost and availability and bandwidth costs, for significant
economic gains. Specifically,
•We design a basic online algorithm (Section 3) which isO(logH0)-competitive (com-
pared to the optimal offline), where H0 is the total number of servers in the cloud.
• To reduce the extensive computation required by the basic algorithm in each iteration,
we construct a computationally efficient version of the basic algorithm, which can be
easily implemented in practice (Section 4).
• We evaluate our algorithms (Section 5) using real electricity pricing data obtained
from 30 US locations over three years, and job-demand data from a large cluster in
a datacenter, and show significant improvements over greedy-optimization algorithms.
Overall, the cost savings of our online algorithm are typically within 6% of the optimal
solution.

The technical proofs of this work are omitted due to lack of space and can be found
in an accompanying technical report [9].

2 The Model

In this section we formally define the job migration problem. In Section 2.1 we de-
scribe the elements of the problem. In Section 2.2 we formalize the online optimization
problem, the solution of which is the main objective of this paper.

2.1 Preliminaries

We consider a large computing facility (henceforth referred to as a “cloud”, for sim-
plicity), consisting of n datacenters (DCs). Each DC i ∈ {1, . . . , n} contains a set
Hi = {1, . . . ,Hi} of Hi servers which can be activated simultaneously. We denote by
H0 =

∑n
i=1Hi the total number of servers in the cloud, and often refer to H0 as the

capacity of the cloud. All servers in the cloud are assumed to have equal resources (in
terms of CPU, memory, etc.).

A basic assumption of our model is that energy (or electricity) costs may vary in
time, yet remain fixed within time intervals of a fixed length of τ (say 15 minutes, or one
hour). Accordingly, we shall consider a discrete time system, where each time-step (or
time) t ∈ {1, . . . , T} represents a different time interval of length τ . We denote by Bt

the total job-load at time t measured in server units, namely the total number of servers
which need to be active at time t. For simplicity, we assume that each job requires a
single server, thus Bt is also the total number of jobs at time t. We note, however, that
the latter assumption can be relaxed by considering a single job per processor or per
VM, similar to the virtualization setup. In Section 3 we consider a simplified scenario
where Bt = B, namely the job-load in the cloud is fixed. We will address the case
where Bt changes in time, which corresponds to job arrivals and departures to/from the
cloud in Section 4. At each time t, the control decision is to assign jobs to DCs, given
the current electricity and bandwidth costs, which are described below.
Energy costs. We assume that the energy cost at every DC is a function of the number
of servers that are being utilized. Let yi,t be the number of servers that are utilized
in DC i at time t. The (total) energy cost is given by C̃it(yi,t) (measured in dollars
per hour). Let Cit : R+ → R+ be the interpolation of C̃it(·); for convenience, we
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shall consider this function in the sequel. We assume throughout that Cit(yi,t) is a non-
negative, (weakly) convex increasing function. Note that the function itself can change
with t, which allows for time variation in energy prices. We emphasize that we do not
make any probabilistic assumptions on Cit(·), i.e., this function can change arbitrarily
over time. The simplest example that complies with the convexity assumption is the
linear cost model, in which the total energy cost is linearly proportional to the number
of servers utilized. Assuming that servers not utilized are switched off and consume
zero power, we have Cit(yi,t) = ci,tyi,t, where ci,t is the cost of using a single server
at time t. Further examples can be found in [9].
Bandwidth Costs. The migration of jobs between DCs induces bandwidth costs. In
practice, bandwidth fees are paid both for outgoing traffic and incoming traffic. Ac-
cordingly, we assume the following cost model. For every DC i, we denote by di,out
the bandwidth cost of transferring a job out of DC i, and by di,in the bandwidth cost
of migrating a job into this DC3. Thus, the overall cost of migrating a job from DC i to
DC j is given by di,out + dj,in. We note that there are also bandwidth costs associated
with the arrival of jobs into the cloud (e.g., from a central dispatcher) and leaving the
cloud (in case of a job departure). However, these costs are constant and do not depend
on the migration control, and are thus ignored in our formulation.

Our goal is to minimize the total operation cost in the cloud, which is the sum of
the energy costs at the DC and the bandwidth costs of migrating jobs between DCs. It
is assumed that the job migration time is negligible with regard to the time interval τ
in which the energy costs are fixed. This means that migrated jobs at time t incur the
energy prices at their new DC, starting from time t. We refer to the above minimization
problem as the migration problem. If all future energy costs were known in advance,
then the problem could have optimally be solved as a standard convex program. How-
ever, our basic assumption is that electricity prices change in an unpredicted manner.
We therefore tackle the migration problem as an online optimization problem.

2.2 Problem Formulation

In this subsection we formalize the migration problem. We shall consider a slightly
different version of the original problem, which is algorithmically easier to handle.
Nonetheless, the solution of the modified version leads to provable performance guar-
antees for the original problem. Recall that we consider the case of fixed job-load,
namely Bt = B for every t. We argue that it is possible to define a modified model in

which we charge a migration cost di
4
= di,in+di,out whenever the algorithm migrates a

job out of DC i, and do not charge for migrating jobs into the DC. The following lemma
states that this bandwidth-cost model is equivalent to the original bandwidth-cost model
up to an additive constant.

Lemma 1. The original and modified bandwidth-cost model, in which we charge di for
migrating jobs out of DC i, are equivalent up to additive constant factors. In particular,
a c-competitive algorithm for the former results in a c-competitive algorithm for the
latter.

3 ISPs charge bandwidth to DC operators based on the daily 95th percentile of incoming/outgo-
ing bandwidth over 5 min periods.
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We note that the same result holds for the model which charges di for migrating jobs
into the DC, and nothing for migrating jobs out of the DC.

Using Lemma 1, we first formulate a convex program whose solution provides a
lower bound on the optimal solution for the (original) migration problem. Let zi,t be
the number of jobs that are migrated from DC i at time t. This variable is multiplied by
di for the respective bandwidth cost. The optimization problem is defined as

min

n∑
i=1

T∑
t=1

dizi,j +

n∑
i=1

T∑
t=1

Cit(yi,t),

subject to the following constraints:
∑n

i=1 yi,t ≥ B for every t (i.e., meet the job de-
mand); zi,t ≥ yi,t−1 − yi,t for every i, t (i.e., zi,t reflects the number of jobs leaving
DC i at time t); yi,t ≤ Hi for every i, t (i.e., meet the capacity constraint); zi,t, yi,t ∈
{0, 1, . . . ,Hi} for every i, t. We shall consider a relaxation of the above optimization
problem, where the last constraint is replaced with zi,t, yi,t ≥ 0 for every i, t. A solu-
tion to the relaxed problem is by definition a lower bound on the value of the original
optimization problem.

Instead of considering the above described convex program (with the relaxation),
we construct below an equivalent LP, which will be easier to work with. For every time
t, the cost of using the j-th server at DC i is given by ci,j,t, where ci,j,t ∈ [0,∞] is
increasing in j (1 ≤ j ≤ Hi). We assume that ci,j,t may change arbitrarily over time
(while keeping monotonicity in j as described above). Note that we allow ci,j,t to be
unbounded, to account for the case where the total energy availability in the DC is not
sufficient to run all of its servers. Let 0 ≤ yi,j,t ≤ 1 be the utilization level of the j-th
server of DC i (we allow for “partial” utilization, yet note that at most a single server
will be partially utilized in our solution). Accordingly, the energy cost of using this
server at time t is given by ci,j,tyi,j,t. Define zi,j,t to be the workload that is migrated
from the jth server of DC i to a different location. This variable is multiplied by di for
the respective bandwidth cost. The optimization problem is defined as follows.

(P ) : min
∑n

i=1

∑Hi

j=1

∑T
t=1 dizi,j,t +

∑n
i=1

∑Hi

j=1

∑T
t=1 ci,j,t · yi,j,t (1)

subject to
∑n

i=1

∑Hi

j=1 yi,j,t ≥ B for every t,
zi,j,t ≥ (yi,j,t−1 − yi,j,t), 0 ≤ yi,j,t ≤ 1, zi,j,t ≥ 0, for every i, j, t.

Observe that the first term in the objective function corresponds to the total bandwidth
cost, whereas the second term corresponds to the total energy cost.

One may notice that the above problem formulation might pay the bandwidth cost
di for migrating data within each DC i, which is clearly not consistent with our model
assumptions. Nevertheless, since the energy costs ci,j,t in each DC i are non-decreasing
in j for every t, an optimal solution will never prefer servers with higher indexes over
lower-index servers. Consequently, jobs will not be migrated within a DC. Thus, solving
(P ) is essentially equivalent to solving the original convex problem. This observation,
together with Lemma 1, allows us to consider the optimization problem (P ). More
formally,

Lemma 2. The value of (P) is a lower bound on the value of the optimal solution to the
migration problem.
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We refer to the optimization problem (1) as our primal problem (or just(P)). The dual
of (P) is given by

(D) : max
∑T

t=1Bat −
∑n

i=1

∑Hi

j=1

∑T
t=1 si,j,t,

subject to −ci,j,t + at + bi,j,t − bi,j,t+1 − si,j,t ≤ 0,

0 ≤ bi,j,t ≤ di, and si,j,t ≥ 0 for every i, j, t.

By Lemma 2 and the weak duality theorem (see, e.g., [22]), an algorithm that is c-
competitive with respect to a feasible solution of (D), would be c-competitive with
respect to the offline optimal solution.

3 An Online Job-migration Algorithm

In this section we design and analyze an online algorithm for the migration problem
(P ). The algorithm we design is based on a primal-dual approach, meaning that the
new primal and dual variables are simultaneously updated at every time t. The general
idea behind the algorithm is to maintain a feasible dual solution to (D), and to upper-
bound the operation cost at time t (consisting of bandwidth cost and the energy cost)
as a function of the value of (D) at time t. Since a feasible solution to (D) is a lower
bound on the optimal solution, this procedure would immediately lead to a bound on
the competitive ratio of the online algorithm.

The online algorithm outputs a fractional solution to the variables yi,j,t. To obtain
the total number of servers that should be activated in DC i, we simply calculate the
sum

∑Hi

j=1 yi,j,t at every time t. Since this sum is generally a fractional number, one
can round it to the nearest integer. Because the number of servers in each DC (Hi) is
fairly large, the effect of the rounding is negligible and thus ignored in our analysis.

The online algorithm receives as input the energy cost vector {ci,j,t}i,j at every
time t defining the energy cost at each server (i, j) at time interval t. As a first step, we
use a well known reduction that allows us to consider only elementary cost vectors [7,
Sec. 9.3.1]. Elementary cost vectors are vectors of the form (0, . . . , 0, cit,jt , 0, . . . , 0),
namely vectors with only a single non-zero entry. This reduction allows us to split any
general cost vector into a finite number of elementary cost vectors without changing
the value of the optimal solution. Furthermore, we may translate any online migration
decisions done for these elementary task vectors to online decisions on the original
cost vectors without increasing our cost. Thus, we may consider only elementary cost
vectors from now on. Abusing our notations, we use the original time index t to describe
these elementary cost vectors. We use ct instead of cit,jt to describe the (single) non-
zero cost at server (it, jt) at time t. Thus, the input for our algorithm consists of it, jt,
ct.

The algorithm we present updates at every time t the (new) dual variables at, st and
bi,j,t+1. The values of these variables are determined incrementally, via a continuous
update rule (closed-form one-shot updates seems hard to obtain). We summarize in
Table 1 the procedure for the update of the dual variables at any time t. We refer to
the procedure at time t as the t-th iteration. We note that the continuous update rule is
mathematically more convenient to handle. Nonetheless, it is possible to implement the
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online algorithm through discrete-time iterations, by searching for the scalar value at
up to any required precision level.

Input: Datacenter it, server jt, cost ct (at time t).
Initialization: Set at = 0. For all i, j: set bi,j,t+1 = bi,j,t and si,j,t = 0.
Loop:

– Keep increasing at, while termination condition is not satisfied.
– Update the other dual variables as follows:
• For every i, j 6= it, jt such that yi,j,t < 1, increase bi,j,t+1 with rate dbi,j,t+1

dat
= 1.

• For every i, j 6= it, jt such that yi,j,t = 1, increase si,j,t with rate dsi,j,t
dat

= 1.

• For i, j = it, jt, decrease bit,jt,t+1 so that
∑

i,j 6=it,jt

dyi,j,t
dat

= − dyit,jt,t
dat

.

Termination condition: Exit when either yit,jt,t = 0, or−ct+at+bit,jt,t−bit,jt,t+1 = 0.

Table 1: The procedure for updating the dual variables of the online problem.

Each primal variable yi,j,t is continuously updated as well, alongside with the con-
tinuous update of the respective dual variable bit,jt,t+1. The following relation between
bit,jt,t+1 and yi,j,t is preserved throughout the iteration:

yi,j,t :=
1

H0

(
exp

(
ln(1 +H0)

bi,j,t+1

di

)
− 1

)
. (2)

The variable yit,jt,t is updated so that the amount of work that is migrated to other
servers is equal to the amount of work leaving jt (i.e, total work conservation).

The next theorem presents a performance bound for the above described algorithm.

Theorem 1. The online algorithm is O(log (H0))-competitive.

The proof proceeds in a number of steps. We first show that our algorithm preserves a
feasible primal solution and a feasible dual solution. We then relate the change in the
dual variable bi,j,t+1 to the change in the primal variable yi,j,t, and the change of the
latter to the change in the value of the feasible dual solution. This allows us to upper
bound the bandwidth cost at every time t as a function of the change in the value of the
dual. Finally, we find a precise relation between the bandwidth cost and the energy cost,
which allows us to also bound the latter as a function of the change in the dual value. A
detailed proof can be found in [9].

4 An Efficient Online Algorithm

Theorem 1 indicates that the online algorithm is expected to be robust against any pos-
sible deviation in energy prices. However, its complexity might be too high for an ef-
ficient implementation with an adequate level of precision. First, the reduction of [7,
Sec. 9.3.1] generally splits each cost vector at any given time t into O(H2

0 ) vectors,
thereby requiring a large number of iterations per each actual time step t. Second, the
need for proper discretization of the continuous update rule of the dual variables (see
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Table 1) might make each iteration computationally expensive. Therefore we design in
this section an “easy-to-implement” online algorithm, which inherits the main ideas of
our original algorithm, yet decreases significantly the running complexity per time step.

We employ at the heart of the algorithm several ideas and mathematical relations
from the original online algorithm. The algorithm can accordingly be viewed as a
computationally-efficient variant of the original online algorithm, thus would be hence-
forth referred to as the Efficient Online Algorithm (EOA). While we do not provide
theoretical guarantees for the performance of the EOA, we shall demonstrate through
real-data simulations its superiority over plausible greedy heuristics (see Section 5).
The EOA provides a complete algorithmic solution which also includes the allocation
of newly arrived jobs; the way job arrivals are handled is described towards the end of
this section.

For simplicity, we describe the EOA for linear electricity prices (i.e., the electric-
ity price for every DC i and time t is ci,t, regardless of the number of servers that
are utilized). In [9], we describe the adjustments needed to support non-linear prices.
The input for the algorithm at every time t is thus an n dimensional vector of prices,
ct = (c1,t, c2,t, . . . , cn,t). For ease of illustration, we reorder the DCs in each iteration
according to the present electricity prices, so that c1 ≤ c2 ≤ · · · ≤ cn. For exposition
purposes we omit the time index t from all variables (e.g., we write c = (c1, c2, . . . , cn)
instead of ct = (c1,t, c2,t, . . . , cn,t)). We denote by di,k = di,out+dk,in the bandwidth
cost per unit for transferring load from DC i to DC k. We further denote by ci,k the
difference in electricity prices between the two DCs, namely ci,k = ci − ck, and re-
fer to ci,k as the differential energy cost between i and k. The iteration of the EOA is
described in Table 2.

Input: (i) Cost vector c = (c1, c2, . . . , cn); (ii) y = (y1, y2, . . . , yn) (the current load vector
on the datacenters).
Job Migration Loop: Outer loop: k = 1 to n, Inner loop: i = k + 1 to n
– Move load from DC i to DC k according to the following migration rule.

min

{
yi, Hk − yk, s1 ·

ci,kyi
di,k

· (yk + s2)

}
, (3)

where s1, s2 > 0.
Table 2: The iteration of the EOA. Time indexes are omitted.

Before elaborating on the logic behind the EOA, we note that the running com-
plexity of each iteration is O(n2). Observe that the inner loop makes sure that data is
migrated from the currently expensive DCs to cheaper ones (in terms of the correspond-
ing electricity prices). We comment that the fairly simple migration rule (3) could be
implemented in a distributed manner, where DCs exchange information on their current
load and electricity price; we however do not focus on a distributed implementation in
the current paper.

We now proceed to discuss the rational behind the EOA, and in particular the re-
lation between (3) (which will be henceforth referred to as the migration rule) and the
original online algorithm described earlier. We first motivate the use of the term ci,kyi
in the migration rule. Note first that this term corresponds to the energy cost that could
potentially be saved by migrating all jobs in DC i to DC k. The reason that we use
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differential energy costs ci,k = ci − ck is directly related to the reduction from general
cost vectors to elementary cost vectors (see Section 3). The reduction creates elemen-
tary cost vectors by iterating over the differential energy costs ci − ci−1, i ∈ [2, n].

Further examination of the migration rule (3) reveals that the amount of work that is
migrated from DC i to DC k is proportional to yk (the load at the target DC). The mo-
tivation for incorporating yk in the migration rule follows by differentiating the primal-
dual relation (2) with respect to bi,j,t+1, which leads to the following relation

dyi,j,t
dbi,j,t+1

=
ln(1 +H0)

di
·
(
yi,j,t +

1

H0

)
(4)

The above equation implies that the change in the load in DC k should be proportional to
the current load. As discussed earlier, this feature essentially encourages the migration
of jobs into DCs that were consistently “cheap” in the past, and consequently loaded
in the present. Another idea that follows from (4) and is incorporated in the migration
rule is that the migrated workload is inversely proportional to the bandwidth cost. The
last idea which is borrowed from (4) is to include an additive term s2, which reduces
the effect of yk. This additive term enables the migration of jobs to DCs, even if they
are currently empty. Intuitively, the value of s2 manifests the natural tradeoff between
making decisions according to current energy prices (high s2) or relaying more on usage
history (low s2). The other parameter in the migration rule, s1, sets the “aggressiveness”
of the algorithm. Increasing s1 makes the algorithm greedier in exploiting the currently
cheaper electricity prices (even at the expense of high bandwidth costs). Both s1 and s2
can be tuned throughout the execution of the algorithm.

To complete the description of the EOA, we next specify how newly arrived traffic is
distributed. We make here the simplifying assumption that jobs arrive to a single global
dispatcher, and then allocated to the different DCs. The case of multiple dispatchers
is outside the scope of this paper, nonetheless algorithms for this case can be deduced
from the rule we describe below. A newly arrived job is assigned through the following
probabilistic rule: At every time t, assign the job to DC i with probability proportional
to: 1

di
(yi + s2), where di = di,in + di,out. The reasoning behind this rule is the same

as elaborated above for the migration rule (3).

5 Simulations

In this section we evaluate the performance of the EOA on real datasets, while compar-
ing it to two plausible greedy algorithms.
Alternative Job-Migration Algorithms. As a first simple benchmark for our algo-
rithm, we use a greedy algorithm referred to as Move to Cheap (MTC) that always
keeps the load on DCs having the lowest electricity prices (without exceeding their
capacity). While its energy costs are the lowest possible by definition, the bandwidth
costs turn out to be significant and its overall performance is eventually poor. The sec-
ond greedy heuristic that we consider is MimicOPT. This heuristic tries to emulate the
behavior of the optimal solution i.e., at any given time, MimicOPT solves an LP with
the energy costs until the current time t, and migrates jobs so as to mimic the job al-
location of the current optimal solution up to time t. As MimicOPT does not have the
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Fig. 2: Performance comparison of the MTC, MimicOPT, and EOA algorithms with
respect to OPT: (a, left) Average performance ratios along with standard-deviations,
and (b, right) The evolution of the competitive ratio of the algorithms with respect to
OPT for a sample run.

data on future power costs and does not consider future outcomes, it is obviously not
optimal. However, this heuristic is reasonable in non-adversarial scenarios and, indeed,
performs fairly well. To make the running time of MimicOPT feasible, we restrict the
LP to use a window of the last 80 hours (a further increase in the window size does not
seem to significantly change the results). In general, we expect MimicOPT to perform
well on inputs in which electricity prices are highly correlated in time. We compare
below the performance of the MTC, MimicOPT and EOA algorithms. Our reference
is naturally the offline solution to the optimization problem, denoted OPT. Obviously,
OPT obtains the lowest possible cost.
Electricity Prices and Job-Demand Data. We use in our experiments the historical
hourly electricity price data ($/MWh) from publicly available government agencies for
30 US locations, covering January 2006 through March 2009. Due to space constraints,
we omit the organization details of the electricity system in the US, see, e.g., [19] for
details. In addition to the hourly electricity market, there are also 15-minute real-time
markets which exhibit relatively higher volatility with high-frequency variation. Since
these markets account for only a small fraction of the total energy transactions (below
10%), we do not consider them in our simulations.

A snapshot of the dynamics of electricity prices in different locations (Figure 1(a))
demonstrates that (i) prices are relatively stable in the long-term, but exhibit high day-
to-day volatility, (ii) there are short-term spikes, and (iii) hourly prices are not correlated
across different locations.

For our simulations, we use task-demand data obtained from a 10K node cluster
running MapReduce jobs for a large online services provider. Fig. 1(b) shows the hourly
task demand data exhibiting a significant variation in the number of tasks corresponding
to job submissions and different MapReduce phases across running jobs.
Performance Evaluation. We first compare the performance ratio of the total elec-
tricity and bandwidth costs incurred by different algorithms over pricing data from 10
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Fig. 3: Job load and normalized electricity price over
time at Boston, MA. The top graph shows the elec-
tricity price and the load that MTC puts on this DC.
The bottom graph shows the load for EOA and Mim-
icOPT.
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Fig. 4: The relative perfor-
mance of EOA, MimicOPT,
and MTC with respect to
OPT as a function of the DC
utilization.

locations. We assume that each location has 25K servers, each server consumes 200
Watts, bandwidth price is $0.15 per GB [23], and the task memory footprint is 100 MB
(corresponding to intermediate results in MapReduce phases). Based on our discussion
with datacenter operators, we compute the total job demand by fixing background de-
mand of 60% (15K servers) per location and a dynamic component from MapReduce
traces which runs on the remaining 40% capacity.

(i) Evaluating Total Cost. Fig. 2 compares the total cost (energy + bandwidth) for
EOA, MimicOPT and MTC algorithms. Fig. 2(a) shows a ten-run average of the com-
petitive ratio of each algorithm in 20 different executions of 500 hours each. We ob-
serve that the EOA performs better than MimicOPT and MTC, with a relatively small
standard deviation. EOA performs within 5.7% of the optimum while MimicOPT and
MTC perform within 10.4% and 68.5% of the optimum, respectively. Fig. 2(b) shows
the competitive ratio of the three algorithms as a function of the number of hours in
a 500 hour run. We observe that all algorithms exhibit high variation initially due to a
high migration cost, whereas OPT migrates much less and stabilizes quickly, because it
knows all future prices in advance.

Fig. 3 shows the workload evolution for the (Boston, MA) location. The top graph
shows the normalized electricity costs of the location (exhibiting up to 10x variation),
along with the normalized load that MTC puts on the Boston location. Note that MTC
always uses the cheapest DCs. Thus, a load of one indicates that Boston is one of the
60% cheaper locations, while a load of zero indicates that it is among the 40% more
expensive locations. The bottom figure shows the fraction of servers which are kept
active in this location by MimicOPT and EOA. As expected, we observe that the number
of active servers for MimicOPT varies significantly with electricity pricing (the DC is
either full or empty), indicating that the optimal job assignment varies with time across
locations. The EOA algorithm exhibits relatively stable job assignment, as it takes into
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account the relative pricing of this location, and carefully balances the energy costs with
the bandwidth costs of migrating jobs between locations.

(ii) Evaluating Performance as a function of Utilization. Fig. 4 shows the perfor-
mance ratio as we vary the background utilization of the DCs from 15% to 75%. Each
point is the average competitive ratio of ten runs of 500 hours each. We observe that
the performance ratio improves (decreases) as the load increases due to the reduced
flexibility in the job assignment and EOA performs closest to OPT compared to other
algorithms.

Overall, we observe that the job assignment changes significantly with the varia-
tion in electricity prices, as all plausible algorithms increase the number of servers at
locations with lower prices. Overall, the EOA algorithm provides the best performance
ratio and a relatively stable job assignment. While MimicOPT performs close to EOA,
the performance gap between the two algorithms becomes larger when subtracting the
minimal energy cost that has to be paid by any algorithm. Specifically, the performance-
ratio becomes around 1.55 and 1.8 for EOA and MimicOPT, respectively, indicating that
the actual cost savings by our algorithm are significant.

6 Concluding Remarks

This paper introduces novel online algorithms for migrating batch applications, with the
objective of reducing the total operation cost in a cloud of multiple datacenters. We pro-
vide a competitive-ratio bound for the performance of a basic online algorithm, indicat-
ing its robustness against any future deviation in energy prices. An easy-to-implement
version of the basic algorithm is designed, which can be seamlessly integrated as part
of existing control mechanisms for datacenter operation. Our simulations on real elec-
tricity pricing data and job demand data demonstrate that the actual performance of our
algorithm could be very close to the minimal operation cost (obtained through offline
optimization). Importantly, our online algorithm outperforms several reasonable greedy
heuristics, thereby emphasizing the need for a rigorous online optimization approach.

The algorithms we suggest solve the fundamental energy-cost vs. bandwidth-cost
tradeoff associated with migrating batch jobs. Yet, we have certainly not covered herein
all possible models and aspects that may need to be considered in the design of fu-
ture job-migration algorithms. For example, one simplifying assumption we make is
that every job can be placed in every DC. In some cases, however, some practical con-
straints might prevent certain jobs from being run at certain locations. Such constraints
could be due to government regulations (e.g., EU data can only be hosted on servers in
Europe), delay restrictions (e.g., if a particular DC is too far from the location of the
source), security considerations, and other factors. On the other hand, some constraints
might require certain jobs to be placed adjacent to others (e.g., to accommodate low
inter-component communication delay for interactive applications). Further restrictions
might be imposed on the migration paths, e.g., due to the delay overhead of the mi-
gration process. Overall, the general framework of online job-migration opens up new
algorithmic challenges, as proper consideration of the dynamically evolving electricity
prices can contribute to significant cost reductions in cloud environments.
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