
Revocation for Delegatable Anonymous
Credentials

MSR-TR-2010-170?

Tolga Acar and Lan Nguyen

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA
tolga@microsoft.com, languyen@microsoft.com

http://research.microsoft.com/en-us/people/{tolga,languyen}

Abstract. This paper introduces and formalizes homomorphic proofs
that allow ‘adding’ proofs and proof statements to get a new proof of
the ‘sum’ statement. Additionally, we introduce a construction of ho-
momorphic proofs, and show an accumulator scheme with delegatable
non-membership proofs (ADNMP) as one of its applications with prov-
able security. Finally, the proposed accumulator method extends the BC-
CKLS scheme [1] to create a new provably secure revocable delegatable
anonymous credential (RDAC) system. Intuitively, the new accumula-
tor’s delegatable non-membership (NM) proofs enable user A, without
revealing her identity, to delegate to user B the ability to prove that A’s
identity is not included in a blacklist that can later be updated. The
delegation is redelegatable, unlinkable, and verifiable.

1 Introduction

Proof systems play important roles in many cryptographic systems, such as sig-
nature, authentication, encryption, anonymous credential and mix-net. In a proof
system between a prover and a verifier, an honest prover with a witness can con-
vince a verifier about the truth of a statement but an adversary cannot convince
a verifier of a false statement. Groth and Sahai [2] proposed a novel class of
non-interactive proof systems (GS) with a number of desirable properties which
are not available in previous ones. They are efficient and general. They do not
require the random oracle assumption [3]. They can be randomized, i.e. one
can generate a new proof from an existing proof of the same statement without
knowing the witness. In this paper, we unveil another valuable feature of GS
proofs: homomorphism.

Proof systems are used to construct accumulators [4–8]. An accumulator
allows aggregation of a large set of elements into one constant-size accumulator
value. The ‘membership’ proof system proves that an element is accumulated.
An accumulator is universal if it has ‘non-membership’ proof system to prove
that a given element is not accumulated in the accumulator value [9, 10]. An

? The proceedings version is published at PKC 2011.

2 Tolga Acar and Lan Nguyen

accumulator is dynamic if the costs of adding and deleting elements and updating
the accumulator value and proof systems’ witnesses do not depend on the number
of elements aggregated. Applications of accumulators include space-efficient time
stamping, ad-hoc anonymous authentication, ring signatures, ID-Based systems,
and membership revocation for identity escrow, group signatures and anonymous
credentials [6].

In anonymous credential systems, a user can prove some credentials without
revealing any other private information such as her identity. There have been
several proposals [11, 12, 1]; applications such as in direct anonymous attestation
(DAA) [13] and anonymous electronic identity (eID) token [14, 15]; and imple-
mentations such as U-prove [15], Idemix [14] and java cards [16]. An anonymous
credential system is delegatable [1] if its credential can be delegated from one
user to another user so that a user can anonymously prove a credential which is
delegated some levels away from the original issuer. Delegation is important for
efficient credential management in organizations, as a person typically delegates
certain authorities to colleagues to execute tasks on her behalf. Revocation is
indispensable in credential systems in practice, as dispute, compromise, abuse,
mistake, identity change, hacking and insecurity can make any credential become
invalid before its expiration. The anonymity and delegation properties make re-
vocation more challenging: the user must prove anonymously that her whole
credential chain is not revoked. The primary revocation methods are based on
accumulators [17, 10], offering a constant cost for an unrevoked proof. However,
the current schemes do not work for delegated anonymous credentials.

Contributions. We present three contributions in this paper, incrementally
building on each other: (i) formal definition of homomorphic proofs and a con-
struction based on GS proofs, (ii) dynamic universal accumulators with del-
egatable non-membership proof (ADNMP), and (iii) a revocable delegatable
anonymous credential system (RDAC).

We first introduce and formally define the new notion of homomorphic proofs,
which means there is an operation that ‘adds’ proofs, their statements and wit-
nesses to produce a new proof of the ‘sum’ statement and the ‘sum’ witness. We
present and prove a construction for homomorphic proofs from GS proofs [2].
The general nature of GS proofs partly explains the reason behind its numerous
applications: group signatures, ring signatures, mix-nets, anonymous credentials,
and oblivious transfers. Our homomorphic construction uses the most general
form of GS proofs to maximize the range of possible applications.

Homomorphic proofs can be applied to homomorphic signatures [18], homo-
morphic authentication [19], that found applications in provable cloud storage
[19], network coding [20, 21], digital photography [22] and undeniable signatures
[23]. Another possible application area is homomorphic encryption and commit-
ment schemes that are used in mix-nets [24], voting [25], anonymous credentials
[1] and other multi-party computation systems. Gentry’s recent results on fully
homomorphic encryption [26] allow computing any generic function of encrypted
data without decryption and can be applied to cloud computing and searchable
encryption.

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 3

Section 3.3 compares this work to the DHLW homomorphic NIZK (Non In-
teractive Zero Knowledge) recently proposed in [27]. While the DHLW scheme
takes the traditional homomorphism approach, we employ Abelian groups and
introduce a more general definition where proof systems satisfying the DHLW
definition are a subset of the new proof systems. We note that DHLW’s homo-
morphic NIZK definition and construction do not cover the new homomorphic
proofs to build ADNMP and RDAC. From an application point of view, DHLW
homomorphic NIZK targets leakage-resilient cryptography, and the new homo-
morphic proofs target accumulators and revocation.

Secondly, we introduce and build an accumulator with delegatable non-mem-
bership proof (ADNMP) scheme based on homomorphic proofs. We define secu-
rity requirements for ADNMP, and give security proofs for the ADNMP scheme.
The constructions in the SXDH (Symmetric External Diffie Hellman) or SDLIN
(Symmetric Decisional Linear) instantiations of GS proofs allow the use of the
most efficient curves for pairings in the new accumulator scheme [28].

To our knowledge, this is the first accumulator with a delegatable non-mem-
bership proof. Previously, there were only two accumulators with non-mem-
bership proofs, i.e. universal accumulators LLX [9] and ATSM [10]; both are
not delegatable. Delegability allows us to construct delegatable revocation for
delegatable anonymous credentials. Our accumulator uses GS proofs without
random oracles where LLX and ATSM rely on the random oracle assumption for
non-interactive proofs. LLX is based on the Strong RSA assumption and defined
in composite-order groups, and ATSM is based on the Strong DH assumption
and defined in prime-order bilinear pairing groups. Our scheme is also built in
prime-order bilinear pairing groups that require storage much smaller than RSA
composite-order groups. The new non-membership prover requires no pairing
compared to ATSM’s four pairings.

The main challenge in blacklisting delegatable anonymous credentials that
can further be delegated is to create accumulators satisfying the following re-
quirements. First, user A, without revealing private information, can delegate
the ability to prove that her identity is not accumulated in any blacklist to user
B so that such proofs generated by A and B are indistinguishable and the black-
list may change anytime. Second, the delegation must be unlinkable, i.e. it must
be hard to tell if two such delegations come from the same delegator A. Third,
user B is able to redelegate the ability to prove that A’s credential is not black-
listed to user C, such that the information C obtains from the redelegation is
indistinguishable from the information one obtains from A’s delegation. Finally,
any delegation information must be verifiable for correctness. The new ADNMP
scheme satisfies these requirements.

By employing the ADNMP approach, our final contribution is to create the
first delegatable anonymous credential system with delegatable revocation capa-
bility; an RDAC system. Traditionally, blacklisting of anonymous credentials
relies on accumulators [8]. The identities of revoked credentials are accumulated
in a blacklist, and verification of the accumulator’s NM proof determines the
credential’s revocation status. A natural rule in a revoked delegatable creden-

4 Tolga Acar and Lan Nguyen

tial, that our scheme also follows, is to consider all delegated descendants of the
credential revoked. Applying that rule to delegatable anonymous credentials, a
user must anonymously prove that all ancestor credentials are not revoked, even
when the blacklist changes.

Homomorphic proofs bring delegability of proofs to another level. A proof’s
statement often consists of commitments of variables (witnesses) and conditions.
Randomizable and malleable proofs introduced in [1] allows generation of a new
proof and randomization of the statement’s commitments without knowing the
witness, but the statement’s conditions always stay the same. Homomorphic
proofs allow generating a new proof for a new statement containing new condi-
tions, without any witness. A user can delegate her proving capability to another
user by revealing some homomorphic proofs. A linear combination of these proofs
and their statements allows the delegatee to generate new proofs for other state-
ments with different conditions (e.g., an updated blacklist in ADNMP). In short,
the BCCKLS paper [1] deals with delegating proofs of the same statements’ con-
ditions, whereas this paper deals with delegating proofs of changing statements’
conditions.

2 Background

Appendix 8 provides more details of existing cryptographic primitives: Bilinear
Map Modules, R-module, Bilinear pairings, SXDH, Composable zero-knowledge
(ZK), Randomizing proofs and commitments, Partial extractability, Accumula-
tor, and Delegatable anonymous credentials.

Notation. PPT stands for Probabilistic Polynomial Time; CRS for Com-
mon Reference String; Pr for Probability; NM for non-membership; ADNMP for
Accumulator with Delegatable NM Proofs; RDAC for Revocable Delegatable
Anonymous Credential; and ← for random output. For a group G with identity
O, let G∗ := G\{O}. Matm×n(R) is the set of matrices with size m × n in R.
For a matrix Γ , Γ [i, j] is the value in ith row and jth column. A vector ~z of l
elements can be viewed as a matrix of l rows and 1 column. For a vector ~z, z[i] is
the ith element. For a function ν : Z→ R, ν is negligible if |ν(k)| < k−α, ∀α > 0,
∀k > k0, ∃k0 ∈ Z+, k ∈ Z.

Proof System. Let R be an efficiently computable relation of (Para, Sta,
Wit) with setup parameters Para, a statement Sta, and a witness Wit . A non-
interactive proof system for R consists of 3 PPT algorithms: a Setup, a prover
Prove, and a verifier Verify. A non-interactive proof system (Setup, Prove, Verify)
must be complete and sound. Completeness means that for every PPT adversary
A, |Pr[Para ← Setup(1k); (Sta,Wit)← A(Para); Proof ← Prove(Para,Sta,Wit) :
Verify(Para,Sta,Proof) = 1 if (Para,Sta,Wit) ∈ R]−1| is negligible. Soundness
means that for every PPT adversary A, |Pr[Para ← Setup(1k); (Sta,Proof)←
A(Para) : Verify(Para,Sta,Proof) = 0 if (Para,Sta,Wit) /∈ R, ∀Wit] − 1| is
negligible.

GS Proofs. Appendix 8.2 provides a comprehensive summary of GS proofs
and its instantiation in SXDH. Briefly, the GS setup algorithm generates Gk

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 5

and CRS σ. Gk contains L tuples, each of which has the form (A1, A2, AT , f)
where A1, A2, AT are R-modules with map f : A1 × A2 → AT . L is also
the number of equations in a statement to be proved. CRS σ contains L cor-
responding tuples of R-modules and maps (B1, B2, BT , ι1, ι2, ιT), where ιj :

Aj → Bj . A GS statement is a set of L corresponding tuples (~a ∈ An1 ,
~b ∈

Am2 , Γ ∈ Matm×n(R), t ∈ AT) satisfying ~a · ~y + ~x · ~b + ~x · Γ~y = t; where
(~x ∈ Am1 , ~y ∈ An2) is the corresponding witness (there are L witness tuples),
and denote ~a · ~y =

∑n
j=1 f(a[j], y[j]). The proof of the statement includes

L corresponding tuples, each of which consists of commitments ~c ∈ Bm1 of

~x and ~d ∈ Bn2 of ~y with values ~π and ~ψ. In the SXDH instantiation of GS
proofs, Para includes bilinear pairing setup Gk = (p,G1,G2,GT , e, P1, P2) and
CRS σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ι

′
1, p
′
1, ι
′
2, p

′
2, ιT , pT , ~u,~v) where B1 = G2

1,
B2 = G2

2 and BT := G4
T . The maps are ιj : Aj → Bj , pj : Bj → Aj , ι

′
j : Zp → Bj

and p′j : Bj → Zp. Vectors ~u of u1, u2 ∈ B1 and ~v of v1, v2 ∈ B2 are commitment
keys for G1 and G2.

3 Homomorphic Proofs

3.1 Formalization

Recall that an Abelian group must satisfy 5 requirements: Closure, Associativity,
Commutativity, Identity Element and Inverse Element.

Definition 1. Let (Setup,Prove,Verify) be a proof system for a relation R and
Para ← Setup(1k). Consider a subset Π of all (Sta,Wit ,Proof) such that (Para,Sta,Wit)
∈ R and Verify(Para,Sta,Proof) = 1, and an operation +Π : Π×Π → Π. Π is
a set of homomorphic proofs if (Π,+Π) satisfies the 3 requirements: Closure,
Associativity and Commutativity.

Consider an IΠ := (Sta0,Wit0,Proof 0) ∈ Π. Π is a set of strongly homo-
morphic proofs if (Π,+Π , IΠ) forms an Abelian group where IΠ is the identity
element.

Note that if Π is strongly homomorphic, then Π is also homomorphic. If
+Π ((Sta1,Wit1,Proof 1), (Sta2,Wit2,Proof 2)) 7→ (Sta,Wit ,Proof), we have
the following notations:

(Sta,Wit ,Proof) ← (Sta1,Wit1,Proof 1) +Π (Sta2,Wit2,Proof 2), Sta ←
Sta1 +Π Sta2, Wit ←Wit1 +Π Wit2, and Proof ← Proof 1 +Π Proof 2.

We also use the multiplicative notation n(Sta,Wit ,Proof) for the self addi-
tion for n times of (Sta,Wit ,Proof). Similarly, we also use

∑
i ni (Stai, Witi,

Proofi) to represent linear combination of statements, witnesses and proofs.
These homomorphic properties are particularly useful for randomizable proofs:
one can randomize a proof computed from the homomorphic operation to get
another proof, which is indistinguishable from a proof generated by Prove.

6 Tolga Acar and Lan Nguyen

3.2 GS Homomorphic Proofs

Consider a GS proof system (Setup,Prove,Verify) of L equations. Each map ιi :
Ai → Bi satisfies ιi(x1 + x2) = ιi(x1) + ιi(x2), ∀x1, x2 ∈ A1 and i ∈ {1, 2}.

We first define the identity IGS = (Sta0,Wit0,Proof 0). Sta0 consists of L

GS equations (~a0, ~b0, Γ0, t0), Wit0 consists of L corresponding GS variables

(~x0, ~y0), Proof 0 consists of L corresponding GS proofs (~c0, ~d0, ~π0, ~ψ0), and there
are L tuples of corresponding maps (ι1, ι2). They satisfy:

� Let m be the dimension of ~b0, ~x0 and ~c0. ∃M ⊆ {1, ...,m} such that ∀i ∈ M ,
b0[i] = 0; ∀j ∈ M̄ , x0[j] = 0 and c0[j] = ι1(0), where M̄ := {1, ...,m}\M .

� Let n be the dimension of ~a0, ~y0 and ~d0. ∃N ⊆ {1, ..., n} such that ∀i ∈ N ,
a0[i] = 0; ∀j ∈ N̄ , y0[j] = 0 and d0[j] = ι2(0), where N̄ := {1, ..., n}\N .

� For both (∀i ∈ M̄, ∀j ∈ N̄) and (∀i ∈M,∀j ∈ N): Γ0[i, j] = 0.

� t0 = 0, ~π0 = 0, and ~ψ0 = 0.

We next define a set ΠGS of tuples (Sta, Wit , Proof) from the identity IGS .

Sta consists of L GS equations (~a,~b, Γ, t) (corresponding to Sta0’s (~a0,~b0, Γ0, t0)
with m, n, M , N); Wit consists of L corresponding GS variables (~x, ~y); Proof

consists of L corresponding GS proofs (~c, ~d, ~π, ~ψ); satisfying:

� ∀i ∈M , x[i] = x0[i] and c[i] = c0[i]. ∀j ∈ M̄ , b[j] = b0[j].

� ∀i ∈ N , y[i] = y0[i] and d[i] = d0[i]. ∀j ∈ N̄ , a[j] = a0[j].

� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ [i, j] = Γ0[i, j]. That means ∀i ∈ M̄, ∀j ∈ N̄ :
Γ [i, j] = 0.

We finally define operation +GS : ΠGS ×ΠGS → ΠGS . For i ∈ {1, 2} and

(Stai,Wit i,Proof i) ∈ ΠGS , Stai consists of L GS equations (~ai,~bi, Γi, ti) corre-

sponding to Sta0’s (~a0,~b0, Γ0, t0), Wit i consists of L corresponding GS variables

(~xi, ~yi), and Proof i consists of L corresponding GS proofs (~ci, ~di, ~πi, ~ψi). We
compute (Sta, Wit , Proof) ← (Sta1,Wit1,Proof 1) +GS (Sta2,Wit2,Proof 2) of

corresponding (~a,~b, Γ, t), (~x, ~y) and (~c, ~d, ~π, ~ψ) as follows.

� ∀i ∈ M : x[i] := x1[i]; c[i] := c1[i]; b[i] := b1[i] + b2[i]. ∀j ∈ M̄ : b[j] := b1[j];
x[j] := x1[j] + x2[j]; c[j] := c1[j] + c2[j].

� ∀i ∈ N : y[i] := y1[i]; d[i] := d1[i]; a[i] := a1[i] + a2[i]. ∀j ∈ N̄ : a[j] := a1[j];
y[j] := y1[j] + y2[j]; d[j] := d1[j] + d2[j].

� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ [i, j] := Γ1[i, j]. Otherwise, Γ [i, j] := Γ1[i, j] +
Γ2[i, j].

� t = t1 + t2, ~π = ~π1 + ~π2, and ~ψ = ~ψ1 + ~ψ2.

Theorem 1. In the definitions above, ΠGS is a set of strongly homomorphic
proofs with operation +GS and the identity element IGS.

Proof of theorem 1 can be found in Appendix 9.

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 7

3.3 Comparison with the DHLW homomorphic NIZK

We compare our homomorphic proof approach with the independently pro-
posed DHLW homomorphic NIZK [27]. Intuitively, DHLW defines that a NIZK
proof system is homomorphic if for any (Para,Sta1,Wit1), (Para,Sta2,Wit2) ∈
R: Prove(Para,Sta1,Wit1)Rand1

+ Prove(Para,Sta2,Wit2)Rand2
= Prove(Para,

Sta1 + Sta2, Wit1 + Wit2)Rand1+Rand2 , where Prove(. . .)Rand is the output of
Prove() with randomness Rand . The new definition in this paper requires homo-
morphism for a subset of proofs generated by Prove, and differs from DHLW’s
homomorphism requirement for all such proofs, covering more proof systems.

The DHLW’s homomorphic NIZK construction a special case of our con-
struction above. It is for statements of ‘one-sided’ GS equations {~xk · ~bk =
tk}Lk=1 whereas our construction generalizes to statements of ‘full’ GS equa-

tions {~ak · ~yk + ~xk · ~bk + ~xk · Γ~yk = tk}Lk=1. As shown later, the ADNMP
and RDAC are based on a GS homomorphic proof system of ‘full’ equations
{(y1 + y2)Xj1 + yj3A1 = Tj1 ∧Xj3 − yj3A2 = 0 ∧ yj3Xj2 = Tj2}mj=1.

4 Accumulator with Delegatable NM Proofs - ADNMP

We refer to a universal accumulator as (Setup, ProveNM, VerifyNM, CompNMWit,
Accu), that consists of only algorithms for setup; generating, verifying and com-
puting witnesses for non-membership proofs; and accumulating, respectively.
This paper does not deal with membership proofs. Appendix 8.3 provides more
details on accumulators.

The delegating ability to prove statements allows another user to prove the
statements on one’s behalf without revealing the witness, even if the statements’
conditions change over time. For privacy reasons, adversaries should not be able
to distinguish different delegations from different users. The delegatee can ver-
ify a delegation and unlinkably redelegate the proving ability further to other
users. Thus, delegating an accumulator’s NM proofs should meet 4 conditions
formalized in Definition 2. Delegability means that an element Ele’s owner can
delegate her ability to prove that Ele is not accumulated without trivially reveal-
ing Ele. Even if the set of accumulated elements change overtime, the delegatee
does not need to contact the delegator again to generate the proof. The owner
gives the delegatee a key De generated from Ele. The proof generated from De
by CompNMProof is indistinguishable from a proof generated by ProveNM. Un-
linkability means that a delegatee should not be able to distinguish whether or
not two delegating keys originate from the same element. It implies that it is
computationally hard to find an element from its delegating keys. Redelegability
means that the delegatee can redelegate De as De′ to other users, and still main-
tains indistinguishability of De and De′. Verifiability means that one is able to
validate that a delegating key De is correctly built.

Definition 2. A universal accumulator (Setup, ProveNM, VerifyNM, CompNMWit,
Accu) is a secure ADNMP (Accumulator with Delegatable NM Proofs) if there
exist PPT algorithms

8 Tolga Acar and Lan Nguyen

– Dele: takes public parameters Para and an element Ele and returns its del-
egating key De;

– Rede: takes Para and a delegating key De and returns another delegating
key De′;

– Vali: takes Para and a delegating key De and returns 1 if De is valid or 0
otherwise;

– CompNMProof: takes Para, De, an accumulator set AcSet and its accumula-
tor value AcV al and returns an NM proof that the element Ele corresponding
to De is not accumulated in AcSet;

satisfying:

– Delegability: For every PPT algorithm (A1,A2), |Pr[(Para, Aux)← Setup(1k);
(Ele,AcSet, state) ← A1(Para); AcV al ← Accu(Para, AcSet); Wit ←
CompNMWit(Para, Ele, AcSet, AcV al); Proof0 ← ProveNM(Para, AcV al,
Wit); De ← Dele(Para, Ele); Proof1 ← CompNMProof(Para, De, AcSet,
AcV al); b ← {0, 1}; b′ ← A2(state, AcV al, Wit, De, Proofb): (Ele /∈
AcSet) ∧ b = b′]− 1/2| is negligible.

– Unlinkability: For every PPT algorithm A, |Pr[(Para, Aux) ← Setup(1k);
(Ele0, Ele1) ← DomPara; De ← Dele (Para, Ele0); b ← {0, 1}; Deb ←
Dele(Para, Eleb); b

′ ← A(Para, De, Deb): b = b′]− 1/2| is negligible.

– Redelegability: For every PPT algorithms (A1,A2), |Pr[(Para, Aux) ←
Setup(1k); (Ele, state) ← A1(Para); De ← Dele(Para,Ele); De0 ← Dele(
Para, Ele); De1 ← Rede (Para, De); b← {0, 1}; b′ ← A2(state,De,Deb) :
b = b′]− 1/2| is negligible.

– Verifiability: For every PPT algorithm A, |Pr[(Para, Aux) ← Setup(1k);
Ele ← A(Para); De ← Dele(Para, Ele): Vali(Para,De) = 1 if Ele ∈
DomPara]−1| and |Pr[(Para,Aux)← Setup(1k);De′ ← A(Para) : Vali(Para,
De′) = 0 if De′ /∈ {De|De ← Dele(Para,Ele′); Ele′ ∈ DomPara}] − 1| are
negligible.

Unlinkability combined with Redelegability generalizes the Unlinkability def-
inition allowing an adversary A access an oracle O(Para,De) that returns an-
other delegating key De′ of the same element corresponding to De. That means
A can get several delegating keys of Ele0 and of Eleb using O. Rede can be used
for such an oracle.

For any ADNMP, given an element Ele and a delegating key De, one can tell
if De is generated by Ele as follows. First, she does not accumulate Ele and uses
De to prove that De’s element is not accumulated. Then she accumulates Ele
and tries to prove again thatDe’s element is not accumulated. If she cannot prove
that anymore, she can conclude that Ele is De’s element. Due to this restriction,
in ADNMP’s applications, Ele should be a secret that only its owner knows. This
is related to the discussion in Appendix 10.4 about the general conflict between
delegability and anonymity.

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 9

5 An ADNMP Scheme

We propose a dynamic universal ADNMP. Its Setup, Accu and UpdateVal are
generalized from [7, 10].

� Setup: We need GS instantiations where GS proofs of this accumulator are
composable ZK. We can use either the SXDH or SDLIN (Symmetric DLIN)
[28] instantiations. We use SXDH as an example. Generate parameters (p,G1,
G2,GT , e, P1, P2) and CRS σ with perfectly binding keys for the SXDH in-
stantiation of GS proofs (Sections 2), and auxiliary information Aux = δ ←
Z∗p. For the proof, generate A ← G1 and τ := ι′2(δ). For efficient accu-
mulating without Aux, a tuple ς = (P1, δP1, . . . , δ

q+1P1) is needed, where
q ∈ Z∗p. The domain for elements to be accumulated is D = Z∗p\{−δ}. We
have Para = (p,G1,G2,GT , e, P1, P2, A, σ, ς, τ).

� Accu: On input AcSet = {a1, ..., aQ} ⊂ D, compute m = dQ/qe. If Aux = δ
is available, the output AcV al is a set of m component accumulator val-
ues {Vj}mj=1 computed as Vj =

∏jq
i=(j−1)q+1;i<Q(δ + ai)δP1. If Aux is not

available, AcV al is efficiently computable from ς and AcSet.
� UpdateVal: In case a′ ∈ D is being accumulated; from 1 to m, find the first Vj

that hasn’t accumulated q elements, and update V ′j = (δ + a′)Vj ; if such Vj
isn’t found, add Vm+1 = (δ+ a′)δP1. In case a′ is removed from AcV al, find
Vj which contains a′ and update V ′j = 1/(δ + a′)Vj .

In previous accumulators [7, 10], the accumulator value is a single value V =∏
ai∈AcSet(δ + ai)δP1 and they require that q of ς is the upper bound on the

number of elements to be accumulated, i.e. m = 1. The above generalization,
where the accumulator value is a set of V instead, relaxes this requirement and
allows the ADNMP scheme to work even when q is less than the number of
accumulated elements. It also allows smaller q at setup.

5.1 NM Proof

We need to prove that an element y2 ∈ D is not in any component accumulator
value Vj of AcV al {Vj}mj=1. Suppose Vj accumulates {a1, ..., ak} where k ≤ q,

denote Poly(δ) :=
∏k
i=1(δ+ai)δ, then Vj = Poly(δ)P1. Let yj3 be the remainder

of polynomial division Poly(δ) mod (δ + y2) in Zp, and Xj1 be scalar product
of the quotient and P1. Similar to [10], the idea for constructing NM proofs is
that y2 is not a member of {a1, ..., ak} if and only if yj3 6= 0. We have the follow-
ing equation between δ, y2, yj3 and Xj1: (δ+ y2)Xj1 + yj3P1 = Vj . Proving this
equation by itself does not guarantee that yj3 is the remainder of the polynomial
division above. It also needs to prove the knowledge of (yj3P2, yj3A) and the fol-
lowing Extended Strong DH (ESDH) assumption. It is a variation of the Hidden
Strong DH (HSDH) assumption [30], though it is not clear which assumption is
stronger. It is in the extended uber-assumption family [31] and can be proved in
generic groups, similar to HSDH.

10 Tolga Acar and Lan Nguyen

Definition. q-ESDH: Let (p,G1,G2,GT , e, P1, P2) be bilinear parameters,
A← G∗1 and δ ← Z∗p. Given P1, δP1, . . . , δq+1P1, A, P2, δP2, it is computation-
ally hard to output (y3

δ+y2
P1, y2, y3P2, y3A) where y3 6= 0.

We will show later that if one can prove the knowledge of (yj3P2, yj3A)
satisfying (δ + y2)Xj1 + yj3P1 = Vj and y2 is accumulated in Vj but yj3 6= 0,
then she can break the assumption. To prove the knowledge of (yj3P2, yj3A), we
need equation Xj3− yj3A = 0. To verify yj3 6= 0, we need equation Tj = yj3Xj2

and the verifier checks Tj 6= 0. We now present the NM proof and its security in
theorem 2. Proof of theorem 2 can be found in Appendix 9.

� CompNMWit takes y2, and for each component accumulator value Vj of AcV al
{Vj}mj=1, computes remainder yj3 of Poly(δ) mod (δ + y2) in Zp which is
efficiently computable from {a1, ..., ak} and y2. It then computes Xj1 =
(Poly(δ)− yj3)/(δ+ y2)P1, which is efficiently computable from {a1, ..., ak},
y2 and ς. The witness includes y2 and {(Xj1, Xj3 = yj3A, yj3)}mj=1. UpdateNMWit
is for one Vj at a time and similar to [10] with the extra task of updating
Xj3 = yj3A.

� ProveNM generates Xj2 ← G∗1 and outputs Tj = yj3Xj2 for each Vj and a GS
proof for the following equations of variables y1 = δ, y2, {(Xj1, Xj3, Xj2, yj3)}mj=1.∧m
j=1((y1 + y2)Xj1 + yj3P1 = Vj∧ Xj3 − yj3A = 0∧ yj3Xj2 = Tj).

Note that the prover does not need to know y1. From τ , it is efficient to
generate a commitment of δ and the proof.

� VerifyNM verifies the proof generated by ProveNM and checks that Tj 6= 0,
∀j ∈ {1, . . . ,m}. It accepts if both of them pass or rejects otherwise.

Theorem 2. The proof system proves that an element is not accumulated. Its
soundness depends on the ESDH assumption. Its composable ZK depends on the
assumption underlying the GS instantiation (SXDH or SDLIN).

5.2 NM Proofs are Strongly Homomorphic

We can see that for the same constant A, the same variables δ, y2 and Xj2

with the same commitments, the set of NM proofs has the form of strongly
homomorphic GS proofs constructed in Section 3. For constructing delegatable
NM proofs, we just need them to be homomorphic. More specifically, ’adding’ 2
proofs of 2 sets of equations (with the same commitments for δ, y2 and Xj2)∧m
j=1((δ + y2)X

(1)
j1 + y

(1)
j3 P1 = V

(1)
j ∧X(1)

j3 − y
(1)
j3 A = 0 ∧ y(1)j3 Xj2 = T

(1)
j) and∧m

j=1((δ + y2)X
(2)
j1 + y

(2)
j3 P1 = V

(2)
j ∧X(2)

j3 − y
(2)
j3 A = 0 ∧ y(2)j3 Xj2 = T

(2)
j) form a

proof of equations∧m
j=1((δ + y2)Xj1 + yj3P1 = Vj ∧Xj3 − yj3A = 0 ∧ yj3Xj2 = Tj)

where Xj1 = X
(1)
j1 +X

(2)
j1 , Xj3 = X

(1)
j3 +X

(2)
j3 , yj3 = y

(1)
j3 + y

(2)
j3 , Vj = V

(1)
j +V

(2)
j

and Tj = T
(1)
j + T

(2)
j .

5.3 Delegating NM Proof

We first explain the idea behind the accumulator’s delegatable NM proof con-
struction. We write the component accumulator value V =

∏k
i=1(δ + ai)δP1 as

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 11

V =
∑k
i=0 biδ

k+1−iP1 where b0 = 1 and bi =
∑

1≤j1<j2<...<ji≤k
∏i
l=1 ajl . Thus,

V can be written as a linear combination of δP1, . . . , δ
k+1P1 in ς.

Next, we construct homomorphic proofs for (δ + y2)X
(i)
1 + y

(i)
3 P1 = δiP1 ∧

X
(i)
3 − y

(i)
3 A = 0 ∧ y(i)3 X2 = T (i) where i ∈ {1, ..., k + 1}. Using the same

linear combination of δP1, . . . , δ
k+1P1 for V , we linearly combine these proofs

to get a proof for (δ + y2)X1 + y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T , where

X1 =
∑k
i=0 biX

(k+1−i)
1 , X3 =

∑k
i=0 biX

(k+1−i)
3 , y3 =

∑k
i=0 biy

(k+1−i)
3 and T =∑k

i=0 biT
(k+1−i). This is the same as the NM proof for each of the component

accumulator value provided above.
We now provide the algorithms for delegating NM proofs and its security

theorem. We also add UpdateProof to be used in place of CompNMProof when
possible for efficiency.

� Dele(Para,Ele). For each i ∈ {1, ..., q + 1}, compute remainder y
(i)
3 of δi

mod (δ + y2) in Zp, and X
(i)
1 = (δi − y(i)3)/(δ + y2)P1, which are efficiently

computable from y2 and ς. In fact, we have y
(i)
3 = (−1)iyi2 and X

(i+1)
1 =∑i

j=0(−1)jyj2δ
i−jP1 = δiP1 − y2X(i)

1 (so the cost of computing all X
(i)
1 , i ∈

{1, ..., q+ 1} is about q scalar products). Generate X2 ← G∗1, the delegation

key De includes {T (i) = y
(i)
3 X2}q+1

i=1 and a GS proof of equations∧q+1
i=1 ((δ + y2)X

(i)
1 + y

(i)
3 P1 = δiP1 ∧X(i)

3 − y
(i)
3 A = 0 ∧ y(i)3 X2 = T (i)).

� Rede(Para,De). For each i ∈ {1, ..., q + 1}, extract proof Proofi of y
(i)
3 X2 =

T (i) in De. In each Proofi, for the same y
(i)
3 and its commitment, Proofi is

of homomorphic form. So generate r ← Z∗p and compute Proof ′i = rProofi

which is a proof of y
(i)
3 X ′2 = T ′(i), where X ′2 = rX2 and T ′(i) = rT (i). Note

that commitments of y
(i)
3 stay the same. For every i ∈ {1, ..., q + 1}, replace

T (i) by T ′(i) and Proofi by Proof ′i in De to get a new GS proof, which is
then randomized to get the output De′.

� Vali(Para,De). A simple option is to verify the GS proof De. An alternative
way is to use batch verification: Divide De into proofs NMProofi of (δ +

y2)X
(i)
1 +y

(i)
3 P1 = δiP1∧X(i)

3 −y
(i)
3 A = 0∧y(i)3 X2 = T (i) for i ∈ {1, ..., q+1}.

Generate q + 1 random numbers to linearly combine NMProofis and their
statements and verify the combined proof and statement.

� CompNMProof(Para,De,AcSet, AcV al). Divide De into proofs NMProofi
as in Vali. For each component accumulator value V of {a1, ..., ak}, compute
bi for i ∈ {0, ..., k} as above. NMProofis belong to a set of homomorphic

proofs, so compute NMProof =
∑k
i=0 biNMProofk+1−i, which is a proof

of (δ + y2)X1 + y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T where X1, X3, y3, T
and V are as explained above.
Extract proof SubProof of y3X2 = T in NMProof . For the same y3 and
its commitment, SubProof is of homomorphic form. So generate r ← Z∗p
and compute SubProof ′ = rSubProof which is a proof of y3X

′
2 = T ′, where

X ′2 = rX2 and T ′ = rT . Note that y3’s commitment stays the same. Replace
T by T ′ and SubProof by SubProof ′ in NMProof to get a new proof

12 Tolga Acar and Lan Nguyen

NMProof ′.
Concatenate thoseNMProof ′ of all V in AcV al and output a randomization
of the concatenation.

� UpdateProof(Para,De,AcSet,AcV al,Proof ,Opens). Proof is the proof to be
updated and Opens contains openings for randomizing commitments of
y1 = δ and y2 from De to Proof . Suppose there is a change in accumu-
lated elements of a component value V , we just compute NMProof ′ for the
updated V as in CompNMProof. Randomize NMProof ′ so that its commit-
ments of y1 and y2 are the same as those in Proof and put it in Proof in
place of its old part. Output a randomization of the result.

To prove that this construction provides an ADNMP, we need the following
Decisional Strong Diffie Hellman (DSDH) assumption, which is not in the uber-
assumption family [31], but can be proved in generic groups similarly to the
PowerDDH assumption [32]. Proof of theorem 3 is in Appendix 9.

Definition. q-DSDH: Let (p,G1,G2,GT , e, P1, P2) be bilinear parameters,
B0, B1 ← G∗1, x0, x1 ← Z∗p and b← {0, 1}. Given B0, x0B0, . . . , x

q
0B0, B1, xbB1,

. . . , xqbB1, no PPT algorithm can output b′ = b with a probability non-negligibly
better than a random guess.

Theorem 3. The accumulator is a secure ADNMP, based on ESDH, DSDH
and the assumption underlying the GS instantiation (SXDH or SDLIN).

6 Revocable Delegatable Anonymous Credentials -
RDAC

6.1 Model

This is a model of RDAC systems, extended from BCCKLS [1] which is briefly de-
scribed in 10. Participants include users and a Blacklist Authority (BA) owning
a blacklist BL. For each credential proof, a user picks a new nym indistinguish-
able from her other nyms. We need another type of nym for revocation, called
r-nym, to distinguish between two types of nyms. When an r-nym is revoked, its
owner cannot prove credentials anymore. The PPT algorithms are:

– Setup(1k) outputs public parameters ParaDC , BA’s secret key SkBA, and
an initially empty blacklist BL. Denote BLe an empty blacklist.

– KeyGen(ParaDC) outputs a secret key Sk and a secret r-nym Rn for a user.
– NymGen(ParaDC , Sk,Rn) outputs a new nym Nym with an auxiliary key
Aux(Nym). A user O can become a root credential issuer by publishing a
nym NymO and a proof that her r-nym RnO is not revoked that O has to
update when BL changes.

– Issue(ParaDC , NymO, SkI , RnI , NymI , Aux(NymI), Cred,DeInf , NymU ,
BL,L)↔ Obtain(ParaDC , NymO, SkU , RnU , NymU , Aux(NymU), NymI ,
BL,L) lets user I issue a level L+ 1 credential to user U . SkI , RnI , NymI

and Cred are the secret key, r-nym, nym and level L credential rooted at

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 13

NymO of issuer I. SkU , RnU and NymU are the secret key, r-nym and nym
of user U . I gets no output and U gets a credential CredU .
Delegation information DeInf is optional. When it is included, U also gets
delegation information DeInfU to later prove that r-nyms of all delegators
in her chain are not revoked. If L = 0 then Cred is omitted and DeInf = 1
is optionally included.

– Revoke(ParaDC , SkBA, Rn,BL) updates BL so that a revoked user Rn can
no longer prove, delegate or receive credentials. Denote Rn ∈ BL or Rn /∈
BL that Rn is blacklisted or not, respectively.

– CredProve(ParaDC ,NymO, Cred,DeInf , Sk,Rn,Nym,Aux(Nym), BL,L)
takes a level L credential Cred, Sk, Rn and optionally DeInf to output
CredProof , which proves that: (i) a credential level L is issued to Nym’s
owner. (ii) Nym’s Rn is not revoked. (iii)(optional, when DeInf is included)
all r-nyms on the credential’s chain are not revoked.

– CredVerify(ParaDC , NymO, CredProof,Nym,BL, L) verifies if CredProof
is a valid proof of the above statements.

The differences with the model for delegatable anonymous credentials with-
out revocation [1] are the introductions of BA with SkBA and BL; r-nyms;
delegation information DeInf ; Revoke; and the two CredProof ’s conditions (ii)
and (iii). Note that DeInf ’s inclusion in the algorithms is optional and allows a
user the choice to either just prove that she is not blacklisted or fully prove and
delegate that all users on her credential chain are not blacklisted. We can use
one of traditional methods for BA to obtain r-nyms to revoke (Appendix 11).

Appendix 10 formally defines RDAC security. Briefly, there are 3 require-
ments extended from the security definition of delegatable anonymous creden-
tials [1]: Correctness, Anonymity and Unforgeability. Appendix 10.4 discusses
the trade offs between delegability and anonymity.

7 An RDAC scheme

7.1 Overview

We first describe intuitions of the BCCKLS delegatable anonymous credential
scheme in [1], and then show how ADNMP extends it to provide revocation.

BCCKLS uses an F -Unforgeable certification secure authentication scheme
AU of PPT algorithms AtSetup, AuthKg, Authen, VerifyAuth. AtSetup(1k) returns
public parameters ParaAt, AuthKg(ParaAt) generates a key Sk, Authen(ParaAt,
Sk, ~m) produces an authenticator Auth authenticating a vector of messages ~m,
and VerifyAuth(ParaAt, Sk, ~m, Auth) accepts if and only if Auth validly authen-
ticates ~m under Sk. The scheme’s security requirements include F -Unforgeability
[12] for a bijective function F , which means (F (~m), Auth) is unforgeable with-
out obtaining an authenticator on ~m; and certification security, which means
no PPT adversary, even after obtaining an authenticator by the challenge se-
cret key, can forge another authenticator. An adversary can also have access
to two oracles. OAuthen(ParaAt, Sk, ~m) returns Authen(ParaAt, Sk, ~m) and

14 Tolga Acar and Lan Nguyen

OCertify(ParaAt, Sk
∗, (Sk,m2, . . . ,mn)) returns Authen(ParaAt, Sk

∗, (Sk, m2,
. . . ,mn)). BCCKLS also uses a secure two party computation protocol (AuthPro)
to obtain a NIZKPK of an authenticator on ~m without revealing anything about
~m.

In BCCKLS, a user U can generate a secret key Sk ← AuthKg(ParaAt), and
many nyms Nym = Com(Sk,Open) by choosing different values Open. Suppose
U has a level L+1 credential from O, let (Sk0 = SkO, Sk1, ... , SkL, SkL+1 = Sk)
be the keys such that Ski’s owner delegated the credential to Ski+1, and let H :
{0, 1}∗ → Zp be a collision resistant hash function. ri = H(NymO, atributes, i)
is computed for a set of attributes for that level’s credential. U generates a proof
of her delegated credential as
CredProof ← NIZKPK[SkO in NymO, Sk in Nym]
{(F (SkO), F (Sk1), ..., F (SkL), F (Sk), auth1, ..., authL+1) :
VerifyAuth(SkO, (Sk1, r1), auth1) ∧
VerifyAuth(Sk1, (Sk2, r2), auth2) ∧ ... ∧
VerifyAuth(SkL−1, (SkL, rL), authL) ∧
VerifyAuth(SkL, (Sk, rL+1), authL+1)}.

Now we show how ADNMP extends BCCKLS to provide revocation. Using
ADNMP, BA’s blacklist BL includes an accumulated set of revoked Rns and
its accumulator value. Beside a secret key Sk, user U has a secret r-nym Rn
in the accumulator’s domain, and generates nyms Nym = (Com(Sk,OpenSk),
Com(Rn,OpenRn)). ADNMP allows delegation and redelegation of a proof that
an Rn is not accumulated in a blacklist Rn /∈ BL. U generates a proof of her
delegated credential and validity of the credential’s chain as follows.

CredProof ← NIZKPK[SkO in NymO[1], Sk in Nym[1], Rn in Nym[2]]

{(F (SkO), F (Sk1), F (Rn1), ..., F (SkL), F (RnL), F (Sk), F (Rn),

auth1, ..., authL, authL+1) :

VerifyAuth(SkO, (Sk1, Rn1, r1), auth1) ∧ (Rn1 /∈ BL)∧
VerifyAuth(Sk1, (Sk2, Rn2, r2), auth2) ∧ (Rn2 /∈ BL) ∧ ...∧
VerifyAuth(SkL−1, (SkL, RnL, rL), authL) ∧ (RnL /∈ BL)∧
VerifyAuth(SkL, (Sk,Rn, rL+1), authL+1) ∧ (Rn /∈ BL)}.

Delegability allows a user, on behalf of the user’s delegators without any
witness, to prove that the user’s ancestor delegators are not included in a chang-
ing blacklist. The proofs a user and a delegator generates are indistinguishable
from each other. Redelegability allows a user to redelegate those proofs on the
delegators to the user’s delegatees. Unlinkability prevents colluding users to link
delegations of the same delegator. Verifiability allows a user to validate the cor-
rectness of a delegation token.

7.2 Description

The RDAC scheme has several building blocks. (i) An ADNMP with a malleable
NM proof system (NMPS) of AcSetup, ProveNM, VerifyNM, CompNMWit, Accu,

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 15

Dele, Rede, Vali, CompNMProof, with commitment ComNM. (ii) Those from
BCCKLS, including AU ; AuthPro; H; and a malleable NIPK credential proof
system (CredPS) of PKSetup, PKProve, PKVerify, RandProof, with commitment
Com. (iii) A malleable proof system (EQPS), with PKSetup and AcSetup in setup,
to prove that two commitments Com and ComNM commit to the same value.

Assume that a delegating key De contains a commitment of element Ele.
CompNMProof and Rede randomize the commitment in De and generate Ele’s
commitment. Elements of the accumulator domain and the authenticator’s key
space can be committed by Com. The following algorithm inputs are the same
as in the model and omitted.

– Setup: Use PKSetup(1k), AtSetup(1k) and AcSetup(1k) to generate ParaPK ,
ParaAt, and (ParaAc, AuxAc). The blacklist includes an accumulated set
of revoked r-nyms and its accumulator value. Output an initial blacklist BL
with an empty accumulator set and its initial accumulator value, ParaDC =
(ParaPK , ParaAt, ParaAc, H), and SkBA = AuxAc.

– KeyGen: Run AuthKg(ParaAt) to output a secret key Sk. Output a random
r-nym Rn from the accumulator’s domain.

– NymGen: Generate random OpenSk and OpenRn, and output nym Nym =
(Com(Sk,OpenSk),Com(Rn,OpenRn)) andAux(Nym) = (OpenSk, OpenRn).

– The credential originator O publishes a NymO and a proof NMProofO that
RnO is not revoked. O updates the proof when BL changes.

– Issue ↔ Obtain: If L = 0 and NymO 6= NymI , aborts. Issue aborts if
NymI 6= (Com(SkI , OpenSkI),Com(RnI , OpenRnI

)) or PKVerify(ParaPK ,
(Nym0, (Com(SkI , 0),Com(RnI , 0))), Cred) rejects, or RnI ∈ BL, or NymU

is invalid. Obtain aborts if NymU 6= (Com(SkU , OpenSkU), Com(RnU ,
OpenRnU

)) or RnU ∈ BL. Otherwise, each of Issue and Obtain generates
a proof and verifies each other’s proofs that RnI /∈ BL and RnU /∈ BL using
(ProveNM, VerifyNM) with EQPS (to prove that Com(RnI) in NymI and
ComNM(RnI) generated by ProveNM commit to the same value RnI , and
similarly forRnU). They then both compute rL+1 = H(NymO, attributes, L+
1) for a set of attributes for that level’s credential. They run AuthPro for the
user U to receive: ProofU ← NIZKPK[SkI in NymI [1], SkU in Com(SkU ,
0),RnU in Com(RnU , 0)] {(F (SkI), F (SkU), F (RnU), auth) : VerifyAuth(SkI ,
(SkU , RnU , rL+1), auth)}. U ’s output is CredU = ProofU when L = 0.
Otherwise, suppose the users on the issuer I’s chain from the root are 0
(same as O), 1, 2,..., L (same as I). I randomizes Cred to get a proof
CredProofI (containing the same NymI) that for every Nymj on I’s chain
(j ∈ {1, ..., L}), Skj and Rnj are authenticated by Skj−1 (with rj). U veri-
fies that PKVerify(ParaPK , (Nym0, NymI), CredProofI) accepts, then con-
catenates ProofU and CredProofI and projects NymI from statement to
proof to get CredU .
The optional DeInf includes a list of delegating keys Dejs generated by
the accumulator’s Dele to prove that each Rnj is not accumulated in the
blacklist, and a list of EQProofj for proving that two commitments of Rnj
in Cred and Dej commit to the same value Rnj , for j ∈ {1, ..., L− 1}. Ver-
ifying DeInf involves checking Vali(ParaAc, Dej) and EQProofj , for j ∈

16 Tolga Acar and Lan Nguyen

{1, ..., L−1}. When DeInf is in the input, Issue would aborts without inter-
acting with Obtain if verifying DeInf fails. Otherwise, it uses CompNMProof
to generate a proof NMChainProof that each Rnj ’s on I’s chain of del-
egators is not accumulated in the blacklist. U aborts if its verification on
NMChainProof fails. Otherwise, I Redes these delegating keys, randomizes
EQProofj to match commitments in the new delegating keys and CredU ,
and adds a new delegating key DeI to prove that RnI is not revoked and a
proof EQProofI that two commitments of RnI in NymI [2] and DeI commit
to the same value. The result DeInfU is sent to and verified by U .

– Revoke: Add Rn to the accumulated set and update the accumulator value.
– CredProve: Abort if Nym 6= (Com(Sk,OpenSk), Com(Rn,OpenRn)), or

PKVerify(ParaPK , (Nym0, (Com(Sk, 0),Com(Rn, 0))), Cred) rejects, or ver-
ifying DeInf fails. Otherwise, use ProveNM to generate a proof NMProof
that Rn is not blacklisted. Generate EQProof ′L that Rn’s commitments in
NMProof and in Nym[2] both commit to the same value. Randomize Cred
to get a proof which contains Nym. Concatenate this proof with NMProof
and EQProof ′L to get CredProof ′. If the optional DeInf is omitted, just
output CredProof ′.
Otherwise, use CompNMProof to generate a proof NMChainProof that
each Rnj ’s on the user’s chain of delegators is not accumulated in the black-
list. For j ∈ {1, ..., L − 1}, update and randomize EQProofj of DeInf to
get EQProof ′j which proves Rnj ’s commitments in NMChainProof and
CredProof ′ both commit to the same value. Concatenate NMChainProof ,
CredProof ′ and EQProof ′j for j ∈ {1, ..., L − 1} to output CredProof as
described in (1).

– CredVerify runs PKVerify on the randomization of Cred, VerifyNM onNMProof
and
NMChainProof , and verifies EQProof ′j for j ∈ {1, ..., L} to output accept
or reject.

Theorem 4. If the authentication scheme is F-unforgeable and certification-
secure; the ADNMP is secure; CredPS, NMPS and EQPS are randomizable and
composable ZK; CredPS is also partially extractable; and H is collision resistant,
then this construction is a secure revocable delegatable anonymous credential
system.

Proof of theorem 4 is given in Appendix 12. Instantiation of the building
blocks are given in Appendix 11. Briefly, a secure ADNMP is presented in Sec-
tion 5; the BCCKLS building blocks can be instantiated as in [1]; and an EQPS
can be constructed from [12, 1].

8 Background

Bilinear Pairings. Let G1 and G2 be cyclic additive groups of order prime p
generated by P1 and P2, respectively, and GT be a cyclic multiplicative group

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 17

of order p. An efficiently computable bilinear pairing e : G1×G2 → GT satisfies
e(aP, bQ) = e(P,Q)ab, ∀P ∈ G1, Q ∈ G2, a, b ∈ Zp; and e(P1, P2) generates GT .

SXDH [2]. For bilinear setup (p,G1,G2,GT , e, P1, P2) with prime p, eXter-
nal Diffie-Hellman (XDH) assumes that the Decisional Diffie-Hellman (DDH)
problem is computationally hard in one of G1 or G2. Symmetric XDH (SXDH)
assumes that DDH is hard in both G1 and G2.

8.1 Non-Interactive Proof System

Let R be an efficiently computable relation of (Para, Sta, Wit) with setup
parameters Para, a statement Sta, and a witness Wit . A non-interactive proof
system for R consists of 3 PPT algorithms: a Setup, a prover Prove, and a verifier
Verify. A non-interactive proof system (Setup, Prove, Verify) must be complete
and sound.

Completeness means that for every PPT adversary A, Pr[Para ← Setup(1k);
(Sta,Wit)← A(Para); Proof ← Prove(Para,Sta,Wit) : Verify(Para,Sta,Proof) =
1 if (Para,Sta,Wit) ∈ R] is overwhelming.

Soundness means that for every PPT adversary A, Pr[Para ← Setup(1k);
(Sta,Proof) ← A(Para) : Verify(Para,Sta,Proof) = 0 if (Para,Sta,Wit) /∈
R, ∀Wit] is overwhelming.

Zero-Knowledge. A non-interactive proof system is Zero-Knowledge (ZK), if
the proof does not reveal any information except proving that the statement is
true.

Witness Indistinguishability (WI) requires that the verifier can not determine
which witness was used in the proof.

A non-interactive proof system is composable ZK [2] if there exists a PPT
simulation algorithm outputting a trapdoor and parameters indistinguishable
from Setup’s output, and under the simulated parameters, ZK holds even when
the adversary knows the trapdoor. Composable ZK implies the standard ZK.

Randomizing proofs and commitments. A randomizable non-interactive
proof system [1] has another PPT algorithm RandProof, that takes as input
(Para,Sta,Proof) and outputs another valid proof Proof ′, which is indistin-
guishable from a proof produced by Prove.

A PPT commitment algorithm Com binds and hides a value x with a random
opening r. Informally, a commitment scheme is randomizable [1] if there exists
a PPT algorithm ReCom such that ReCom(Com(x, r), r′) = Com(x, r + r′). Sta
and Proof may contain commitments of variables.

A non-interactive proof system is malleable [1] if it is efficient to randomize
the proof and its statement’s commitments to get a new proof which is valid for
the new statement. When possible, concatenation of two proofs is a proof that
merges setup parameters and all commitments and proves the combination of
conditions. From a proof Proof , a projected proof is obtained by moving some
commitments from the statement to Proof .

18 Tolga Acar and Lan Nguyen

Partial Extractability. A non-interactive proof of knowledge (NIPK) system
(Setup, Prove, Verify) is F-extractable [12] for a bijection F if there is a PPT
extractor (ExtSetup, ExtWitness) such that ExtSetup’s output Para is distributed
identically to Setup’s output, and for every PPT adversary A,

Pr[(Para, td) ← ExtSetup(1k); (Sta,Proof) ← A(Para);Ext ← ExtWitness(td,
Sta, Proof) : Verify(Para,Sta,Proof) = 1∧ (Para,Sta, F−1(Ext)) /∈ R] is negli-
gible.

As in [12], we use the following notations NIPK or NIZKPK (ZK for zero
knowledge) for a statement consisting of commitments C1, ..., Ck of witness’
variables x1, ..., xk and some Condition: Proof ← NIPK[x1 in C1, ..., xk in Ck]
{F (Para,Wit) : Condition(Para,Wit)}.

8.2 Groth-Sahai (GS) Proofs

This general description of GS proofs is based on the GS full version paper [2]
which is updated and free from previous errors [28].

Bilinear Map Modules. Given a finite commutative ring (R,+, ·, 0, 1),
an abelian group (A,+, 0) is an R-module if ∀r, s ∈ R,∀x, y ∈ A: (r + s)x =
rx+sx∧r(x+y) = rx+ry∧r(sx) = (rs)x∧1x = x. Let A1, A2, AT beR-modules
with a bilinear map f : A1 × A2 → AT . Let B1, B2, BT be R-modules with a
bilinear map F : B1 ×B2 → BT and efficiently computable maps ι1 : A1 → B1,
ι2 : A2 → B2 and ιT : AT → BT . Maps p1 : B1 → A1, p2 : B2 → A2 and
pT : BT → AT are hard to compute and satisfy the commutative properties:
F (ι1(x), ι2(y)) = ιT (f(x, y)) and f(p1(x), p2(y)) = pT (F (x, y)). For ~x ∈ An1
and ~y ∈ An2 , denote ~x · ~y =

∑n
i=1 f(x[i], y[i]). For ~c ∈ Bn1 and ~d ∈ Bn2 , denote

~c • ~d =
∑n
i=1 F (c[i], d[i]).

Setup. GS parameters Para includes setup Gk and CRS σ. Gk := (R,
{A(i)

1 , A
(i)
2 , A

(i)
T , f (i)}Li=1) where A

(i)
1 , A

(i)
2 , A

(i)
T are R-modules with map f (i) :

A
(i)
1 ×A

(i)
2 → A

(i)
T . L is the number of equations in a statement to be proved. σ :=

({B(i)
1 , B

(i)
2 , B

(i)
T , F (i), ι

(i)
1 , p

(i)
1 , ι

(i)
2 , p

(i)
2 , ι

(i)
T , p

(i)
T , ~u1

(i), ~u2
(i), H

(i)
1 , ...,H

(i)
ηi }Li=1) where

B
(i)
1 , B

(i)
2 , B

(i)
T , F (i), ι

(i)
1 , p

(i)
1 , ι

(i)
2 , p

(i)
2 , ι

(i)
T , p

(i)
T are described above. ~u1

(i) con-

sists of m̂(i) elements in B
(i)
1 and ~u2

(i) consists of n̂(i) elements in B
(i)
2 . They are

commitment keys for A
(i)
1 and A

(i)
2 respectively, as we will discuss more later.

Matrices H
(i)
1 , ...,H

(i)
ηi ∈ Matm̂(i)×n̂(i) (R) generate all matrices H(i) satisfying

~u1
(i) • H(i) ~u2

(i) = 0. It may happens that A
(i)
k ≡ A

(j)
l for some k, l ∈ {1, 2}

and i, j ∈ {1, ..., L}. In that case, it is required that (B
(i)
k , ι

(i)
k , p

(i)
k , ~uk

(i)) ≡
(B

(j)
l , ι

(j)
l , p

(j)
l , ~ul

(j)).

Statement. A GS statement is a set of L equations. Each equation is over
R-modules A1, A2, AT with map f : A1 ×A2 → AT as follows

n∑
j=1

f(aj , yj) +

m∑
i=1

f(xi, bi) +

m∑
i=1

n∑
j=1

γijf(xi, yj) = t

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 19

with variables x1, . . . , xm ∈ A1 and y1, . . . , yn ∈ A2 and coeffficients a1, . . . , an ∈
A1, b1, . . . , bm ∈ A2, γij ∈ R and t ∈ AT .

Let ~a be the vector of (a1, . . . , an); let ~b be the vector of (b1, . . . , bm); let
~x be the vector of (x1, . . . , xm); let ~y be the vector of (y1, . . . , yn); and let Γ ∈
Matm×n(R) be the matrix of (γij). We have ~x·Γ~y = Γ>~x·~y and ~x•Γ~y = Γ>~x•~y.

So each equation can be written as ~a · ~y + ~x ·~b+ ~x · Γ~y = t.
A GS statement can be viewed as a set {(~ai,~bi, Γi, ti)}Li=1 over the corre-

sponding set of bilinear groups {A(i)
1 , A

(i)
2 , A

(i)
T , f (i)}Li=1 satisfying equations

~ai · ~yi + ~xi ·~bi + ~xi · Γ~yi = ti. The witness is the set of corresponding variables
{~xi, ~yi}Li=1.

Commitment. Given keys ~u1 ∈ Bm̂1 and ~u2 ∈ Bn̂2 , commitments of ~x ∈ Am1
and ~y ∈ An2 are respectively computed as ~c := ι1(~x) +R ~u1 and ~d := ι2(~y) +S ~u2,

where R← Matm×m̂(R) and S ← Matn×n̂(R). We see that ~c ∈ Bm1 and ~d ∈ Bn2 .
The commitment keys can be one of two types. Hiding keys satisfy ι(A1) ⊆ 〈 ~u1〉
and ι(A2) ⊆ 〈 ~u2〉. So the commitments are perfectly hiding. Binding keys satisfy
p1(~u1) = ~0 and p2(~u2) = ~0, and the maps ι1 ◦ p1 and ι2 ◦ p2 are non-trivial. If
they are identity maps, then the commitments are perfectly binding.

Proof. For a statement consisting of several (~a,~b, Γ, t) and a witness of

corresponding variables (~x, ~y), the proof includes commitments (~c, ~d) of the

variables and corresponding pairs (~π, ~ψ), computed as follows. Generate R ←
Matm×m̂(R), S ← Matn×n̂(R), T ← Mat n̂×m̂(R) and r1, ..., rη ← R. Compute

~c := ι1(~x)+R ~u1; ~d := ι2(~y)+S ~u2; ~π := R>ι2(~b)+R>Γι2(~y)+R>ΓS ~u2−T> ~u2+∑η
i=1 riHi ~u2; and ~ψ := S> ι1(~a) +S>Γ>ι1(~x) +T ~u1. Dimension of ~b, ~x and ~c is

m, dimension of ~a, ~y and ~d is n, dimension of ~π is m̂, and dimension of ~ψ is n̂. To
show that a variable of one equation is the same as another variable of the same or
another equation, the same commitment is used for the variables. Verification for
each equation’s proof is to check ι1(~a)• ~d+~c•ι2(~b)+~c•Γ ~d = ιT (t)+ ~u1•~π+ ~ψ• ~u2.

SXDH Instantiation. Bilinear pairing modules Zp,G1,G2 and GT and
map e are sufficient to specify all equations in a statement. So Para includes setup
Gk = (p,G1,G2,GT , e, P1, P2) and CRS σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ι

′
1, p
′
1, ι
′
2,

p′2, ιT , pT , ~u,~v) where B1 = G2
1, B2 = G2

2 and BT := G4
T with entry-wise group

operations. G1, G2 and GT can be viewed as Zp-modules with map e. Matri-
ces H1, ...,Hη are not needed. Vectors ~u of u1, u2 ∈ B1 and ~v of v1, v2 ∈ B2

are commitment keys for G1 and G2. More descriptions of (ι1, p1, ι2, p2, ι
′
1, p
′
1, ι
′
2,

p′2, ιT , pT) are shown below.
There are 4 types of equations in statements. For pairing product, A1 = G1,

A2 = G2, AT = GT , f(X,Y) = e(X,Y), and equations are (~A · ~Y)(~X · ~B)(~X ·
Γ ~Y) = tT . For multi-scalar multiplication in G1, A1 = G1, A2 = Zp, AT = G1,

f(X, y) = yX, and equations are ~A · ~y + ~X ·~b + ~X · Γ~y = T1. For multi-scalar
multiplication in G2, A1 = Zp, A2 = G2, AT = G2, f(x, Y) = xY , and equations

are ~a · ~Y + ~x · ~B + ~x · Γ ~Y = T2. For quadratic equations, A1 = Zp, A2 = Zp,

AT = Zp, f(x, y) = xy mod p and equations are ~a · ~y + ~x ·~b+ ~x · Γ~y = t.
The commitment key ~u contains u1 := (P,Q), where Q = αP with α← Zp∗,

and u2 := (U, V) which can be computed in one of two ways. Compute u2 := tu1

20 Tolga Acar and Lan Nguyen

for a perfectly binding key, or compute u2 := tu1 − (O,P) for a perfectly hiding
key, with t ← Zp∗. Under DDH, these two types of keys are computationally
indistinguishable. To commit X ∈ G1, define ι1(X) := (O,X) and compute the
commitment c := ι1(X) + r1u1 + r2u2 with r1, r2 ← Zp. Define p1 : (C1, C2) 7→
C2 − αC1, then the commitment is perfectly binding for the binding key, and
the commitment is perfectly hiding for the hiding key. To commit x ∈ Zp in G1,
define u = u2 + (O,P), ι′1(x) := xu and p′1(c1P, c2P) := c2 − αc1, and compute
the commitment c′ := ι′1(x) + r′u1 with r′ ← Zp. Committing Y ∈ G2 and
y ∈ Zp in G2 is similarly defined with ~v and maps ι2, p2, ι

′
2, p
′
2.

A proof and its verification can then be done as specified in the general GS
proofs. GS proofs are WI and in some cases ZK. As shown in [2], in the SXDH and
Decisional Linear (DLIN) [28] instantiations, for statements consisting of only
multi-scalar multiplication and quadratic equations, GS proofs are composable
ZK.

8.3 Accumulator

An universal accumulator [9, 10] consists of the following PPT algorithms.

– Setup takes in 1l and outputs (Para,Aux), where Para is setup parameters
containing a domain DomPara of elements to be accumulated and Aux is
some auxiliary information.

– Accu takes in Para and a set of elements AcSet and returns an accumulator
value AcVal. In some cases, Accu may also take in Aux to compute AcV al
more efficiently. The input as a set, where order makes no difference, instead
of a sequence implies the quasi commutativity property defined in previous
papers [6, 7].

– A membership proof system (Setup,ProveMem,VerifyMem) proves that an
element Ele is accumulated in AcV al. Note that AcSet is not an input.
There is a PPT algorithm CompMemWit to compute a membership witness
for this proof from Para, Ele, AcSet and AcV al.

– An non-membership (NM) proof system (Setup,ProveNM,VerifyNM) proves
that an element Ele is not accumulated in AcV al. Note that AcSet is not
an input. There is a PPT algorithm CompNMWit to compute an NM witness
for this proof from Para, Ele, AcSet and AcV al.

An accumulator is dynamic if there exist the following 3 PPT algorithms, whose
costs should not depend on AcSet’s size, for adding or removing an accumulated
element Ele. UpdateVal, whose input includes Para, Ele, the current accumu-
lator value AcV al and Aux, updates the accumulator value. UpdateMemWit,
whose input includes Para, Ele, the current witness Wit and AcV al, updates
membership witnesses. For universal accumulators, UpdateNMWit, whose input
includes Para, Ele, the current witness Wit and AcV al, updates NM witnesses.

Security of accumulators is implied by completeness and soundness of the 2
proof systems.

Note that this paper will ignore membership proofs and only focus on non-
membership proofs.

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 21

8.4 BCCKLS Delegatable Anonymous Credentials without
Delegatable Revocation

In a delegatable anonymous credential system [1], each user U has a secret
key SkU . For each transaction with another user V , U uses a new pseudonym

Nym
(V)
U , which is generated from SkU but reveals nothing about SkU . A user can

become a root authority of credentials by publishing one of her pseudonyms. A
user can prove to a verifier that she possesses a valid credential which is delegated
through a sequence of users starting from the root authority. That sequence is
the user’s chain of delegators.

A delegatable anonymous credential system consists of the following algo-
rithms. Setup generates the public setup parameters. KeyGen outputs a secret
key for a user. NymGen produces a new pseudonym with some auxiliary infor-
mation. Protocol Issue ↔ Obtain allows an issuer to issue a credential, which is
delegated through a number of levels from a root authority, to a user. CredProve
produces a proof of possessing such a credential. CredVerify verifies if the cre-
dential proof is valid.

An delegatable anonymous credential system has three security requirements.
Correctness means that an honest user always gets a valid credential from a
honest issuer and can use it to generate a valid credential proof, which is always
accepted by a verifier. Anonymity means that no adversary can obtain or link
any information about an honest user’s identity and credential delegation from
interacting with the system’s algorithms. Unforgeability means that no adversary
can forge a proof of possessing a credential which is delegated through a chain
of honest users.

9 Security Proofs for the Homomorphic Proof and
ADNMP constructions

9.1 Proof of theorem 1

We need to prove that (ΠGS ,+GS , IGS) satisfies the 5 conditions of an abelian
group.
Closure: We can see that (Sta, Wit , Proof)← (Sta1, Wit1, Proof 1) +GS (Sta2,
Wit2, Proof 2) (as in the description) satisfies the requirements for an element
in ΠGS as follows. ∀i ∈ M : x[i] = x1[i] = x0[i] and c[i] = c1[i] = c0[i]. ∀j ∈ M̄ :
b[j] = b1[j] = b0[j]. ∀i ∈ N : y[i] = y1[i] = y0[i] and d[i] = d1[i] = d0[i]. ∀j ∈ N̄ :
a[j] = a1[j] = a0[j]. If (i ∈ M̄) ∨ (j ∈ N̄), then Γ [i, j] = Γ1[i, j] = Γ0[i, j]. We
now need to prove that Proof is the valid proof of Sta and Wit . Suppose for
i ∈ {1, 2}, ~ci := ι1(~xi) +Ri ~u1, ~di := ι2(~yi) + Si ~u2.

~πi := R>i ι2(~bi) +R>i Γiι2(~yi) +R>i ΓiSi ~u2

− T>i ~u2 +

η∑
j=1

r
(i)
j Hj ~u2 (1)

~ψi := S>i ι1(~ai) + S>i Γ
>
i ι1(~xi) + Ti ~u1 (2)

22 Tolga Acar and Lan Nguyen

Without losing generality, for i ∈ {1, 2}, we can write

~xi :=

(
X̂

X̃i

)
,~bi :=

(
B̂i
B̃

)
, Ri :=

(
R̂

R̃i

)
,~ci :=

(
Ĉ

C̃i

)

where X̂ consists of x[j] with j ∈ M and X̃i consists of xi[j] with j ∈ M̄ ; B̂i
consists of bi[j] with j ∈ M and B̃ consists of b[j] with j ∈ M̄ ; and R̂ consists
of rows j of Ri with j ∈ M and R̃i consists of rows j of Ri with j ∈ M̄ ; and Ĉ
consists of c[j] with j ∈M and C̃i consists of Ci[j] with j ∈ M̄ . Now we have

~x =

(
X̂

X̃1 + X̃2

)
, ~b =

(
B̂1 + B̂2

B̃

)
, R =

(
R̂

R̃1 + R̃2

)
~c =

(
Ĉ

C̃1 + C̃2

)
=

(
ι1(X̂) + R̂ ~u1

ι1(X̃1) + R̃1 ~u1 + ι1(X̃2) + R̃2 ~u1

)
=

(
ι1(X̂) + R̂ ~u1

ι1(X̃1 + X̃2) + (R̃1 + R̃2) ~u1

)
= ι1(~x) +R ~u1 (3)

which is how commitment ~c should be generated from ~x and R for the proof. In
the same way, without losing generality, for i ∈ {1, 2}, we can write

~yi :=

(
Ŷ

Ỹi

)
,~ai :=

(
Âi
Ã

)
, Si :=

(
Ŝ

S̃i

)
, ~di :=

(
D̂

D̃i

)

where Ŷ consists of y[j] with j ∈ N and Ỹi consists of yi[j] with j ∈ N̄ ; Âi
consists of ai[j] with j ∈ N and Ã consists of a[j] with j ∈ N̄ ; Ŝ consists of rows
j of Si with j ∈ N and S̃i consists of rows j of Si with j ∈ N̄ ; and D̂ consists of
d[j] with j ∈ N and D̃i consists of Di[j] with j ∈ N̄ . Now we have

~y =

(
Ŷ

Ỹ1 + Ỹ2

)
,~a =

(
Â1 + Â2

Ã

)
, S =

(
Ŝ

S̃1 + S̃2

)
~d =

(
D̂

D̃1 + D̃2

)
= ι2(~y) + S ~u2 (4)

showing how commitment ~d is generated from ~y and S for the proof. Besides,
we have for i ∈ {1, 2}

Γi :=

(
Γ̂i Γ̌

Γ̃ O

)
, Γ :=

(
Γ̂1 + Γ̂2 Γ̌

Γ̃ O

)
(5)

where Γ̂i consists of Γ [j, k] with j ∈ M and k ∈ N , Γ̌ consists of Γ [j, k] with
j ∈ M and k ∈ N̄ , Γ̃ consists of Γ [j, k] with j ∈ M̄ and k ∈ N , and a zero
matrix of Γ [j, k] with j ∈ M̄ and k ∈ N̄ . Substituting (3) and (5) in (1) and (2),

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 23

we write π = π1 + π2

~π =

((
R̂> R̃>1

)(ι2(B̂1)

ι2(B̃)

)
+
(
R̂> R̃>2

)(ι2(B̂2)

ι2(B̃)

))
+

((
R̂> R̃>1

)(Γ̂1 Γ̌

Γ̃ O

)(
ι2(Ŷ)

ι2(Ỹ1)

)
+
(
R̂> R̃>2

)(Γ̂2 Γ̌

Γ̃ O

)(
ι2(Ŷ)

ι2(Ỹ2)

))
+

((
R̂> R̃>1

)(Γ̂1 Γ̌

Γ̃ O

)(
Ŝ

S̃1

)
+
(
R̂> R̃>2

)(Γ̂2 Γ̌

Γ̃ O

)(
Ŝ

S̃2

))
~u2

− (T>1 + T>2) ~u2 + (

η∑
j=1

r
(1)
j Hj +

η∑
j=1

r
(2)
j Hj) ~u2

Multiplying matrices and regrouping with (3) and (5) yields

~π = (
(
R̂> (R̃1 + R̃2)>

)(ι2(B̂1 + B̂2)

ι2(B̃)

)
+
(
R̂>(Γ̂1 + Γ̂2) + (R̃1 + R̃2)>Γ̃ R̂>Γ̌

)(ι2(Ŷ)

ι2(Ỹ1 + Ỹ2)

)
+
(
R̂>(Γ̂1 + Γ̂2) + (R̃1 + R̃2)>Γ̃ R̂>Γ̌

)(Ŝ

S̃1 + S̃2

)
~u2

− T> ~u2 +

η∑
j=1

rjHj ~u2

Replacing ~b and R from (3) and ~y and S from (4), we have

~π = R>ι2(~b) +R>Γι2(~y) +R>ΓS ~u2 − T> ~u2 +

η∑
j=1

rjHj ~u2

Similarly, we can show that ~ψ := S>ι1(~a) + S>Γ>ι1(~x) + T ~u1. So ~c, ~d, ~π, and
~ψ are generated according to the formula for a GS proof of (~a,~b, Γ, t) and (~x, ~y).
Therefore, Proof is a valid proof of Sta and Wit .

It is straightforward to validate the other 4 conditions Associativity, Com-
mutativity, Identity element and Inverse element of abelian groups. So the
theorem holds.

9.2 Proof of theorem 2

We provide the theorem proof in the GS SXDH instantiation. The theorem proof
in the GS SDLIN (Symmetric DLIN) [28] instantiation is similar.

24 Tolga Acar and Lan Nguyen

The proof system’s completeness comes from completeness of the GS proof
system and the fact that y2 /∈ AcSet and Xj2 6= 0 means Tj 6= 0, ∀j ∈ {1, . . . ,m}.

The proof system’s GS statement consists of only multi-scalar equations.
So as explained in appendix 8.2, if we use the GS SXDH instantiation, the
NM proof system for this accumulator is composable ZK. As described in [2],
we can simulate a setup and a proof which are respectively computationally
indistinguishable from a real setup and a real proof generated from the simulated
setup.

Now we prove soundness of the NM proof system. Suppose a PPT adversary
Adv can forge an NM proof that VerifyNM accepts for equations

∧m
j=1((y1 +

y2)Xj1 + yj3P1 = Vj∧ Xj3 − yj3A = 0∧ yj3Xj2 = Tj) where Tj 6= 0 but y2 is
accumulated in one of Vjs with non-negligible probability. We show how to use
it to break ESDH.

Suppose we are given the assumption challenge (p,G1,G2,GT , e, P1, δP1, . . . ,
δq+1P1, A, P2, δP2). As the commitment keys are perfectly binding, we are able
to simulate the accumulator’s setup parameter Parasim with extracting trapdoor
so that from a commitment in G2 of y ∈ Zp and a commitment of X ∈ G1, we
can respectively extract yP2 and X, as follows.

Simulated Parasim includes setup Gk = (p,G1,G2,GT , e, P1, P2), A, CRS
σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ι

′
1, p
′
1, ι
′
2, p
′
2, ιT , pT , ~u,~v), ς = (P1, δP1, . . . , δ

q+1P1)
and τ . (B1, B2, BT , F, ι1, p1, ι2, p2, ι

′
1, p
′
1, ι
′
2, p
′
2, ιT , pT) is defined as in the normal

SXDH instantiation. Choose Pu ← G1 and αu, tu ← Zp∗, compute Qu = αuPu,
u1 := (Pu, Qu) and u2 := tuu1, and simulate ~u = (u1, u2). Choose αv, βv, tv ←
Zp∗, compute Pv = βvP2, Qv = αvPv, v1 := (Pv, Qv) and v2 := tvv1, and
simulate ~v = (v1, v2). The trapdoor is (αu, tu, αv, βv, tv). With the trapdoor
and δP2 , we can compute τ = ι′2(δ) = δ(v2 + (0, Pv)). So we have simulated
the accumulator’s setup parameter which is indistinguishable from a real setup
parameter.

Furthermore, with the knowledge of αu, tu, given a commitment c = (C1, C2) =
(O,X)+r1u1+r2u2 of X ∈ G1, we can extract X = C2−αuC1. With the knowl-
edge of αv, βv, tv, given a G2 commitment c = (C1, C2) = y(v2 + (0, Pv)) + r′v1
of y ∈ Zp, we can extract yP2 = (C2 − αvC1)1/βv .

Now we provide the PPT adversary Adv the simulated Parasim, and Adv can
forge the NM proof with non-negligible probability. The soundness of GS proof
system ensures that the GS equations hold

∧m
j=1((y1 + y2)Xj1 + yj3P1 = Vj∧

Xj3 − yj3A = 0∧ yj3Xj2 = Tj).

The forged proof contains commitments of Xj1, Xj3, Xj2 and of y1 = δ, y2, yj3
in G2. So we can extract Xj1, Xj3, Xj2 and y2P2, yj3P2 and know yj3 6= 0. As y2
is in AcSet, we can find y2. Suppose y2 is accumulated in Vl which accumulates
{a1, ..., ak}. As Xl3 = yl3A, we can extract Xl1, y2 and (yl3P2, yl3A). We have

(y1+y2)Xl1+yl3P1 =
∏k
i=1(y1+ai)y1P1 and y2 ∈ {a1, ..., ak}, so we can compute

yl3
y1+y2

P1 fromXl1, {a1, ..., ak} and ς. So now, we can find (yl3
δ+y2

P1, y2, yl3P2, yl3A)
and break the ESDH assumption.

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 25

9.3 Proof of theorem 3

Proving Delegability. In CompNMProof(Para,De,AcSet, AcV al), after di-

viding De into proofs NMProofi of (δ+y2)X
(i)
1 +y

(i)
3 P1 = δiP1∧X(i)

3 −y
(i)
3 A =

0 ∧ y(i)3 X2 = T (i) for i ∈ {1, ..., q + 1}, NMProofis form to a set of homomor-

phic proofs. For each component accumulator value V =
∏k
i=1(δ + ai)δP1 of

{a1, ..., ak}, let b0 = 1 and bi =
∑

1≤j1<j2<...<ji≤k
∏i
l=1 ajl , for i ∈ {0, ..., k}. So

the computed NMProof =
∑k
i=0 biNMProofk+1−i is a proof of (δ + y2)X1 +

y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T , where X1 =
∑k
i=0 biX

(k+1−i)
1 , X3 =∑k

i=0 biX
(k+1−i)
3 , y3 =

∑k
i=0 biy

(k+1−i)
3 and T =

∑k
i=0 biT

(k+1−i). This is a
non-membership proof that y2 is not accumulated in the component accumula-
tor value V .

Replacing T by T ′ and SubProof by SubProof ′ in NMProof results in
a new proof NMProof ′ of (δ + y2)X1 + y3P1 = V ∧X3 − y3A = 0 ∧y3X ′2 =
T ′, which is also a non-membership proof that y2 is not accumulated in the
component accumulator value V .

Concatenating these NMProof ′ of all Vj in AcV al and randomizing the
concatenation produce a randomized proof of equations

∧m
j=1((y1 + y2)Xj1 +

yj3P1 = Vj∧ Xj3 − yj3A = 0∧ yj3Xj2 = Tj) which are the same as equa-
tions for the proof outputted by ProveNM. Due to GS proofs’ randomizability,
these CompNMProof’s and ProveNM’s outputs have the same distribution, which
means Delegability.

Proving Unlinkability. We prove that if an adversary can break the accu-
mulator’s Unlinkability, then we can break either q-DSDH or GS’s underlying
assumption (SXDH or SDLIN). There are 2 cases.

If the adversary can distinguish between a GS proof De and its simulated
proof both in a simulated setup with non-negligible probability, then due to the
GS proof system’s composable ZK, we can break the underlying assumption.

Otherwise, we can break q-DSDH as follows. Suppose we are given a q-
DSDH challenge p,G1,G2,GT , e, P1, P2, B0, x0B0, . . . , x

q
0B0, B1, xbB1, . . . , x

q
bB1.

Generate a CRS for GS proofs from the GS setup Gk = (p,G1,G2,GT , e, P1, P2)
as in the normal GS setup algorithm. Using the same simulation for GS proofs

[2], simulate a proof De for
∧q+1
i=1 ((δ + y2)X

(i)
1 + y

(i)
3 P1 = δiP1 ∧X(i)

3 − y
(i)
3 A =

0 ∧ y(i)3 X2 = (−1)ixi−10 B0), and a proof Deb for
∧q+1
i=1 ((δ + y2)X

(i)
1 + y

(i)
3 P1 =

δiP1 ∧ X(i)
3 − y

(i)
3 A = 0 ∧ y(i)3 X2 = (−1)ixi−1b B1). We then give the adversary

De and Deb. As the adversary can not distinguish between a delegating key and
a simulated one with non-negligible probability, and he can break Unlinkability,
he can tell with non-negligible advantage over a random guess if b is 0 or 1. That
breaks q-DSDH.

Proving Redelegability. In Rede(Para,De), for each proof Proofi of y
(i)
3 X2 =

T (i) in De (i ∈ {1, ..., q + 1}), compute Proof ′i = rProofi which is a proof of

26 Tolga Acar and Lan Nguyen

y
(i)
3 X ′2 = T ′(i), where r ← Z∗p , X ′2 = rX2 and T ′(i) = rT (i). We see that for the

same y2, the output T ′(i) of Rede has the same distribution as the output T (i)

of Dele, for i ∈ {1, ..., q + 1}.
Additionally, for the same T (i), i ∈ {1, ..., q + 1}, Rede’s output is a ran-

domization of the GS proof that Dele can produce for GS equations
∧q+1
i=1 ((δ +

y2)X
(i)
1 + y

(i)
3 P1 = δiP1 ∧X(i)

3 − y
(i)
3 A = 0∧ y(i)3 X2 = T (i)). Therefore, Dele and

Rede output the same distribution that leads to Redelegability.

Proving Verifiability. Verifiability comes from the completeness and sound-
ness of GS proofs, as De is a GS proof.

10 RDAC Security Definitions

This section presents how to extend the security definitions of delegatable anony-
mous credentials [1] to provide security definitions of Revocable Delegatable
Anonymous Credential systems. We provide the definitions in the more general
case, where a user must prove that her credential and all of its ancestors are not
revoked. The other case, where a user only has to prove that her credential is
not revoked, is simpler and can be derived from this.

A pair of credential Cred and delegation information DeInf is a ‘proper
level L’ pair for NymO with respect to (ParaDC , Sk,Rn) and a blacklist BL
if and only if proofs, that are generated from the pair input to CredProve, are
always accepted for all nyms with ancestors not blacklisted in BL. Formally, the
pair (Cred,DeInf) satisfies the following.

Pr[(Nym,Aux(Nym))← NymGen(ParaDC , Sk,Rn);

CredProof ← CredProve(ParaDC , NymO, Cred,DeInf, Sk,Rn,

Nym,Aux(Nym), BL,L);

CredVerify(ParaDC , NymO, CredProof,Nym,BL,L) = accept] = 1.

The pair predicate, denoted by properPair(ParaDC , Cred,DeInf, Sk,Rn,
NymO, BL,L), is true if only if Cred and DeInf form a ‘proper level L’ pair.
Similarly, we let validAux(ParaDC , Nym, Sk,Rn,Aux(Nym)) denote a pred-
icate for a valid (Nym,Aux(Nym)) with respect to (ParaDC , Sk, Rn), and
let Check(ParaDC , NymO, Cred, DeInf , Sk,Rn,Nym,Aux(Nym), BL,L) =
validAux(ParaDC , Nym, Sk, Rn, Aux(Nym)) ∧ properPair(ParaDC , Cred,
DeInf , Sk,Rn,NymO, BL,L).

10.1 Correctness

Intuitively, suppose all participants are honest. A user always gets valid creden-
tials from issuers. If the user is not revoked, she can always generate a credential
proof, which is always accepted by a verifier who does not require the user’s

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 27

whole credential chain not revoked. If the user’s whole credential chain is not
revoked, she can always generate a credential proof, which is always accepted.

The correctness requirements include:

1. If (Nym,Aux(Nym))← NymGen(ParaDC , Sk,Rn), then validAux(ParaDC ,
Nym,Sk,Rn,Aux(Nym)) is always true.

2. If properPair(ParaDC , Cred,DeInf, SkI , RnI , NymO, BL,L) = false, or
if validAux(ParaDC , NymI , SkI , RnI , Aux(NymI)) = false, or if validAux(
ParaDC ,NymU , SkU , RnU , Aux(NymU)) = false ∀ (SkU ,RnU ,Aux(NymU));
then Issue(ParaDC , NymO, SkI , RnI , NymI , Aux(NymI), Cred,DeInf ,NymU ,
BL,L) aborts without interacting with Obtain.

3. Obtain always either aborts or outputs a credential and delegation infor-
mation, which form a ‘proper level L + 1’ pair with regard to a blacklist
BL.

4. Users with ‘improper’ pairs will abort whereas users with a ‘proper level L’
pair can delegate ‘proper level L+ 1’ pairs.

5. If properPair(ParaDC , Cred,DeInf, Sk,Rn,NymO, BL,L) = false, or if
validAux(ParaDC , Nym, Sk,Rn,Aux(Nym)) = false; then CredProve(ParaDC ,
NymO, Cred,DeInf, Sk,Rn,Nym,Aux(Nym), BL,L) aborts.

10.2 Anonymity

It means an adversary, who could collude some participants in the system, can
not gain any information about honest participants. The anonymity definition
requires that the adversary’s interaction with honest parties is indistinguishable
from interaction with a simulator, whose algorithms include SimSetup, SimProve,
SimObtain and SimIssue. The additions to the definition in [1] include the follow-
ings. Nym reveals no information about its r-nym. New entities r-nyms, blacklist
and delegation information could be generated as part of challenges by the ad-
versary to the simulator.

Formally, it requires that there exists a simulator SimSetup, SimProve, SimObtain,
SimIssue such that, for a user Nym with corresponding (Sk,Rn,Aux(Nym)),
the simulator without any knowledge of (Sk,Rn,Aux(Nym)) can simulate the
user’s execution of the system’s protocols, and the simulation is indistinguish-
able from the real execution. Formally, the simulator must satisfy the following
conditions.

1. The output of SimSetup is indistinguishable from those generated by Setup.
|Pr[(ParaDC , SkBA, BLe)← Setup(1k); b← A(ParaDC , SkBA) : b = 1]−
Pr[(ParaDC , SkBA, BLe, sim) ← SimSetup(1k); b ← A(ParaDC , SkBA) :
b = 1]| is negligible.

2. Consider (ParaDC , SkBA, BLe, sim) ← SimSetup(1k); (Sk,Rn) ← KeyGen(
ParaDC); and (Nym, Aux(Nym)) ← NymGen(ParaDC , Sk,Rn). Then
from (ParaDC , SkBA, sim,Nym), a PPT adversary gains no information
about (Sk,Rn).

28 Tolga Acar and Lan Nguyen

3. SimProve can simulate a credential proof indistinguishable from a real one,
even without knowledge of Sk, Rn, Cred and DeInf , which are chosen by
the adversary. That means ∀ PPT adversaries A = (A1, A2): |Pr[(ParaDC ,
SkBA, BLe, sim) ← SimSetup(1k); (NymO, Cred,DeInf, Sk,Rn, Nym,
Aux(Nym),BL,L, state)←A1(ParaDC , SkBA, sim);CredProof ← CredProve(
ParaDC ,NymO, Cred,DeInf, Sk,Rn,Nym,Aux(Nym), BL,L); b←A2(state,
CredProof) : b = 1] − Pr[(ParaDC , SkBA, BLe, sim) ← SimSetup(1k);
(NymO, Cred,DeInf, Sk,Rn,Nym,Aux(Nym), BL,L, state)←A1(ParaDC ,
SkBA, sim); flag ← Check(ParaDC , NymO, Cred,DeInf, Sk,Rn, Nym,
Aux(Nym), BL, L);CredProof ← SimProve(ParaDC , sim,NymO, Nym,
BL, L, flag); b← A2(state, CredProof) : b = 1]| is negligible.

4. SimObtain can simulate interactions indistinguishable from interactions by
Obtain. That means ∀ PPT adversaries A = (A1, A2): |Pr[(ParaDC , SkBA,
BLe, sim)← SimSetup(1k); (NymO, Sk,Rn,Nym,Aux(Nym), BL,L,NymA,
state)←A1(ParaDC , SkBA, sim); b← A2(state)↔ Obtain(ParaDC ,NymO,
Sk, Rn,Nym,Aux(Nym), NymA, BL,L) : b = 1] − Pr[(ParaDC , SkBA,
BLe, sim)← SimSetup(1k); (NymO, Sk,Rn,Nym,Aux(Nym), BL,L,NymA,
state) ← A1(ParaDC , SkBA, sim); flag ← (validAux(ParaDC , Nym, Sk,
Rn, Aux(Nym)) ∧(Rn /∈ BL)); b ← A2(state) ↔ SimObtain(ParaDC , sim,
NymO, Nym, NymA, BL,L, flag) : b = 1]| is negligible.

5. One major difference with the anonymity definition in [1] is this prop-
erty. It requires that SimIssue can simulate interactions indistinguishable
from interactions by Issue. However, r-nyms on the chain of issuer’s cre-
dentials are randomly generated and not revealed to the adversary, be-
cause as discussed before, a user and BA can tell if a given r-nym be-
longs to one of the delegators on her chain. Formally, ∀ PPT adversaries
A = (A1, A2): |Pr[(ParaDC , SkBA, BLe, sim) ← SimSetup(1k); (NymO,
Sk, Nym, Aux(Nym), Cred, BL, L,NymA, state) ← A1(ParaDC , SkBA,
sim); (Rn,DeInf) ← SDI(ParaDC , NymO, Cred, Sk, Nym, Aux(Nym),
BL, L); Issue(ParaDC ,NymO, Sk,Rn,Nym,Aux(Nym), Cred,DeInf ,NymA,
BL, L) ↔ A2(state) → b : b = 1] − Pr[(ParaDC , SkBA, BLe, sim) ←
SimSetup(1k); (NymO, Sk,Nym,Aux(Nym), Cred,BL,L,NymA, state)←
A1(ParaDC , SkBA, sim); (Rn,DeInf) ← SDI(ParaDC , NymO, Cred, Sk,
Nym, Aux(Nym), BL,L); flag ← Check(ParaDC , NymO, Cred, DeInf ,
Sk, Rn,Nym,Aux(Nym), BL,L); SimIssue(ParaDC , sim, NymO, Nym,
NymA, BL, L, flag)↔ A2(state)→ b : b = 1]| is negligible.
Denote SDI(ParaDC , NymO, Cred, Sk,Nym,Aux(Nym), BL,L) the distri-
bution of (Rn,DeInf) such that Check(ParaDC , NymO, Cred,DeInf , Sk,
Rn, Nym,Aux(Nym), BL,L) outputs true. If SDI(ParaDC , NymO, Cred,
Sk,Nym,Aux(Nym), BL,L) is empty, then ∀(Rn,DeInf), Check(ParaDC ,
NymO, Cred, DeInf, Sk,Rn,Nym,Aux(Nym), BL,L) returns false.

10.3 Unforgeability

Briefly, it means that an adversary, who could interact with the system in many
ways, could not forge a valid credential proof for a challenge Nym of an r-nym

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 29

and a secret key, which are in one of rogue conditions. It also assumes complete
binding of Nyms, so that exactly one r-nym and one key could be extracted
from a Nym. The adversary’s interaction with the system is modelled by an
Oracle, who could perform several tasks based on the adversary’s request. The
additions to the definition in [1] include the followings. Apart from the condition
that there is no chain of honest users who delegate the challenge Nym, another
rogue condition is that the challenge r-nym is blacklisted by an honest BA. If a
credential proof is required to prove that all users on its chain are not revoked,
another rogue condition is that a user on the challenge Nym’s credential chain
is blacklisted by an honest BA.

Formally, similar to [1], assume F is an efficiently computable bijection, it
requires the existence of an extractor (ExtSetup,Extract) satisfying the following
conditions:

1. ExtSetup’s output includes parameters, which are distributed identically to
Setup’s output, and a trapdoor td.

2. The pseudonyms Nym are perfectly binding to Sk and Rn under parameters
generated by ExtSetup. Formally, ∀(ParaDC , SkBA, BLe, td)← ExtSetup(1k);
∀Nym, if ∃(Aux(Nym), Aux(Nym)′) satisfying validAux(ParaDC , Nym,
Sk,Rn,Aux(Nym)) = true and validAux(ParaDC , Nym, Sk′,Rn′,Aux(Nym))
= true, then Sk′ = Sk and Rn′ = Rn.

3. From a level L credential proof CredProof honestly produced, Extract can
always extract the corresponding (F (SkO), F (RnO), ...F (SkL), F (RnL)) ←
Extract(ParaDC , td, CredProof,Nym,NymO, L) of secret keys and r-nyms
forming the credential’s chain. In the special case for L = 0, from any valid
Nym, Extract will output its corresponding (F (Sk), F (Rn))← Extract(ParaDC ,
td, ⊥, Nym, Nym, 0).

4. From a level L credential proof generated by an adversary, Extract always
outputs the correct values for F (SkO), F (RnO), F (SkL), F (RnL), or aborts.
That means:
Pr[(ParaDC , SkBA, BLe, td)← ExtSetup(1k); (CredProof,Nym,NymO, L)
← A(ParaDC , td); (f0, f

′
0, . . . , fL, f

′
L) ← Extract(ParaDC , td, CredProof ,

Nym, NymO, L): (f0, f ′0, . . . , fL, f
′
L) 6= ⊥

∧
((∃Sk∗,∃Rn∗,∃Aux(Nym)∗:

validAux(ParaDC , Nym, Sk∗, Rn∗, Aux(Nym)∗) = true∧ (F (Sk∗) 6= fL ∨
F (Rn∗) 6= f ′L))

∨
(∃Sk∗O,∃Rn∗O,∃Aux(NymO)∗: validAux(ParaDC ,NymO,

Sk∗O, Rn∗O, Aux(NymO)∗) = true∧ (F (Sk∗O) 6= f0∨F (Rn∗O) 6= f ′0)))] is neg-
ligible.

5. The probability that an adversary can forge a valid credential proof from
which Extract returns a chain of identities that is unauthorized or contains
a blacklisted identity is negligible.
Pr[(ParaDC , SkBA, BLe, td) ← ExtSetup(1k); (CredProof,Nym, NymO,
BL, L)←AO(ParaDC ,command,input)(ParaDC , td); (f0, f

′
0, . . . , fL, f

′
L)← Extract(

ParaDC , td, CredProof , Nym,NymO, L) : CredVerify(ParaDC , NymO,
CredProof ,Nym,BL,L) = accept

∧
(∃i such that ((f0, f

′
0, i, fi−1, f

′
i−1, fi, f

′
i)

/∈ V alidCredentialChains ∧ (fi−1, f
′
i−1) ∈ HonestUsers) ∨ (F−1(f ′i) ∈

BL))] is negligible.

30 Tolga Acar and Lan Nguyen

where the oracle O can take the following commands:
– AddUser: O performs (Sk,Rn) ← KeyGen(ParaDC), saves (Sk, Rn,
F (Sk), F (Rn)) in the user database, stores (F (Sk), F (Rn)) in the set
HonestUsers, and returns (F (Sk), F (Rn)) to the adversary.

– FormNym(f, f ′): O looks for (Sk,Rn, f, f ′) in the user database and
aborts if it is not there. It generates (Nym,Aux(Nym))← NymGen(ParaDC ,
Sk, Rn), saves (Sk,Rn,Nym,Aux(Nym)) in its pseudonym database,
and outputs Nym to the adversary.

– Issue(NymI , NymU , CredI , DeInfI , BL,L,NymO): O aborts if it can-
not find (SkI , RnI , NymI , Aux(NymI)) or (SkU , RnU , NymU , Aux(NymU))
in its pseudonym database. Otherwise, it generates CredProofI ← CredProve
(ParaDC , NymO, CredI , DeInfI , SkI , RnI , NymI , Aux(NymI), BL,
L), and extracts (f0, f

′
0, . . . , fL, f

′
L)← Extract(ParaDC , td, CredProofI ,

NymI , NymO, L). O executes Issue(ParaDC , NymO, SkI , RnI , NymI ,
Aux(NymI), CredI ,DeInfI ,NymU , BL,L)↔ Obtain(ParaDC ,NymO,
SkU ,RnU ,NymU ,Aux(NymU), NymI , BL,L) to obtain (CredU , DeInfU).
It saves (f0, f

′
0, L+1, fL, f

′
L, F (SkU), F (RnU)) in V alidCredentialChains

and gives the adversary (CredU , DeInfU).
– IssueToAdv(NymI , CredI , DeInfI , Nym,BL,L,NymO):O aborts if it

cannot find (SkI , RnI , NymI , Aux(NymI)) in its pseudonym database.
Otherwise, it generates CredProofI ← CredProve(ParaDC , NymO,
CredI , DeInfI , SkI , RnI , NymI , Aux(NymI), BL,L), and extracts
(f0, f

′
0, . . . , fL, f

′
L)← Extract(ParaDC , td, CredProofI , NymI , NymO, L)

and (fL+1, f
′
L+1)← Extract(ParaDC , td,⊥, Nym,Nym, 0). O then runs

Issue(ParaDC , NymO, SkI , RnI , NymI , Aux(NymI), CredI , DeInfI ,
Nym,BL,L) to interact with the adversary and saves (f0, f

′
0, L + 1,

fL, f ′L, fL+1, f ′L+1) in V alidCredentialChains if the protocol ends suc-
cessfully.

– ObtainFromAdv(Nym,NymU , NymO, BL,L):O aborts if it cannot find
(SkU , RnU , NymU , Aux(NymU)) in its pseudonym database. Otherwise,
it executes Obtain(ParaDC , NymO, SkU , RnU , NymU , Aux(NymU),
Nym, BL, L) to interact with the adversary to return (CredU , DeInfU).

– Prove(Nym,Cred,DeInf,NymO, BL,L): O aborts if it cannot find
(Sk,Rn,Nym,Aux(Nym)) in its pseudonym database. Otherwise, it
executes CredProve(ParaDC , NymO, Cred, DeInf , Sk, Rn, Nym,
Aux(Nym), BL,L) and returns the output.

– Revoke(Sk,Rn,BL): The oracle aborts if it cannot find (F (Sk), F (Rn))
in the set HonestUsers. Otherwise, it recomputes BL to blacklist Rn.

10.4 Delegability and Anonymity

Delegability and anonymity do not always go together, such as in this case.
Suppose user I delegates to user U the ability to prove that I is not revoked in
BL, and U knows I by NymI . Then, in any construction, given an r-nym Rn,
U and BA can collude to tell if Rn belongs to NymI or not by blacklisting Rn
and checking if U can still prove that I is not revoked. So it is important that

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 31

a user keeps her r-nym secret and she should know that such delegation could
compromise her anonymity when issuing, as explained. It is still her right to or
not to delegate that proving ability (by issuing DeInf or not).

Even then, we emphasize that in worst cases, the only privacy lost is that a
collision of BA and the delegatee could learn if an r-nym belongs to a delegator
from Issue↔ Obtain. Other privacy properties, such as anonymity of CredProof ,
Nym and the delegatee, are still maintained.

This limitation is related to the restriction on ADNMP mentioned in section
4. When a BL is implemented by using ADNMP to accumulate revoked Rns,
given an Rn′ and an ADNMP delegating key De, a user can collude with BA to
tell if De is generated by Rn′. This limitation is also reflected in the Anonymity
definition in Appendix 10. For the case that DeInf is included, when interacting
with SimIssue, r-nyms on the chain of issuer’s credentials are randomly generated
and not revealed to the adversary, because as discussed above, a user and BA
can tell if a given r-nym belongs to one of the delegators on her chain.

11 Extra Details on the RDAC System

11.1 Instantiation of Building Blocks

We could use the SXDH instantiation of a secure ADNMP presented in section
5, though the SDLIN instantiation is also possible. AcSetup generates ParaAc =
(p,G1,G2,GT , e, P1, P2, A, σ, ς, τ) and SkBA = AuxAc = δ ← Z∗p. The accumu-
lator domain is D = Z∗p\{−δ}.

Its NMPS (AcSetup,ProveNM,VerifyNM) is a GS proof system, which is ran-
domizable, composable ZK and delegatable using (Dele,Rede,Vali,CompNMProof).
ComNM is the normal GS commitment ComGS in the SXDH instantiation. So a
delegating keyDe contains a commitment of its element Ele. And CompNMProof
and Rede generate Ele’s commitment in their outputs by randomizing the com-
mitment in De.

Regarding BCCKLS’s CredPS (PKSetup,PKProve,PKVerify,RandProof), PKSetup’s
output is (p, G1, G2, GT , e, P1, P2, σ), which is generated by AcSetup. This is
a GS proof system in the SXDH instantiation, randomizable, composable ZK and
partially extractable for (F (SkO), F (Rn0), F (Sk1), F (Rn1), ..., F (SkL), F (RnL))
of a credential proof level L. A collision resistant H, an F-unforgeable and
certification-secure AU and its secure AuthPro could be instantiated the same as
in [1]. They all share the same bilinear pairing parameters, so elements Rn of the
accumulator domain and the authenticator’s keys Sk are in Zp and committable
by Com.

An EQPS instantiation can be constructed based on [12, 1]. In [12], BCKL
propose an NIZKGS to prove that two given GS commitments are committed to
the same value. In BCCKLS’s CredPS, commitment Com(y) of a variable y con-
sists of two GS commitments comGSyA ← ComGS(yA) of yA and ComGS(yB) of
yB, where public parameters A ∈ G1 and B ∈ G2, and an NIZKGS that these
are commitments to the same value y. EQPS proves that y is also committed

32 Tolga Acar and Lan Nguyen

in an NMPS commitment comNMy ← ComNM(y), which is also ComGS(y), as
follows. It generates and concatenates: a GS proof of equation X−yA = 0 using
new GS commitments comGSy of y and comGSX of X; a BCKL NIZKGS that
comGSyA and comGSX commit to the same value; and a BCKL NIZKGS that
comNMy and comGSy commit to the same value.

EQPS is randomizable and composable ZK. Given commitments Com(y) and
ComNM(y) of y, the simulator picks a random y′ and computes X ′ = y′A. It
generates and outputs a concatenation of: a GS proof of equation X ′ − y′A = 0
using new GS commitments comGSy′ of y′ and comGSX′ of X ′; a simulation
of BCKL NIZKGS that comGSyA of Com(y) and comGSX′ commit to the
same value; and a simulation of BCKL NIZKGS that ComNM(y) and comGSy′

commit to the same value. The simulation is indistinguishable from the a real
proof due to the BCKL NIZKGS is composable ZK and ComGS is hiding.

11.2 Exposing R-nyms

We can use the following methods for BA to obtain r-nyms to revoke.

– There is a Issuing Authority (IA) who issues user r-nyms and makes requests
to BA to revoke r-nyms. An r-nym Rn is not generated for an user by KeyGen.
Instead, there is a protocol
IssueRnym(ParaDC , SkIA) ↔ ObtainRnym(ParaDC , Sk) between IA with a
secret key SkIA and the user with a secret key Sk, by which the user obtains
a revocation nym Rn and a proof that Rn and Sk are authenticated by IA
and IA gets and stores Rn in a database DBRn. Rn is then a secret known
only to the user and IA. IA can send some r-nyms to BA to revoke. CredProve
also needs to prove that R-nyms and secret keys of all users on the chain are
authenticated by IA. IA just needs to be trusted only for Anonymity, not
for Unforgeability and Correctness.
An IA can be added to the RDAC construction as follows. Setup also gen-
erates a secret key SkIA of the authentication scheme AU and a public key
PkIA ← Com(SkIA) for IA.
In the protocol IssueRnym ↔ ObtainRnym, IA generates a new r-nym Rn
and run AuthPro for the user with secret key Sk to get Rn and an NIZKPK
that Rn and Sk are authenticated by IA
RnProof ← NIZKPK[SkIA in PkIA, Sk in Com(Sk, 0), Rn in Com(Rn, 0)]
{(F (SkIA), F (Sk), F (Rn), auth) : VerifyAuth(SkIA, (Sk,Rn), auth)}. CredProve
needs to concatenate randomizations of these proofs to extend its output
proof (1) as
CredProof ← NIZKPK[SkO in NymO[1], Sk in Nym[1], Rn in Nym[2], SkIA
in PkIA]
{(F (SkO), F (Sk1), F (Rn1), ..., F (SkL), F (RnL), F (Sk), F (Rn), F (SkIA),
auth1, ..., authL, authL+1, auth

′
1, ..., auth

′
L, auth

′
L+1) :

VerifyAuth(SkO, (Sk1, Rn1, r1), auth1)∧(Rn1 /∈ BL)∧VerifyAuth(SkIA, (Sk1,
Rn1), auth′1) ∧
VerifyAuth(Sk1, (Sk2, Rn2, r2), auth2)∧(Rn2 /∈ BL)∧VerifyAuth(SkIA, (Sk2,

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 33

Rn2), auth′2) ∧ ... ∧
VerifyAuth(SkL−1, (SkL, RnL, rL), authL)∧ (RnL /∈ BL)∧VerifyAuth(SkIA,
(SkL, RnL), auth′L) ∧
VerifyAuth(SkL, (Sk,Rn, rL+1), authL+1) ∧ (Rn /∈ BL) ∧ VerifyAuth(SkIA,
(Sk, Rn), auth′L+1)}.

– This is a method adopted from group signatures [?]. There is a Managing
Authority (MA), who can open any credential proof of a misbehaved or dis-
puted prover to find its r-nym for BA to revoke, and also plays as the IA
above. There is another algorithm
OpenRnym(ParaDC , SkMA, DBRn, CredProof) that takes MA’s secret key
SkMA, r-nym database DBRn and a credential proof CredProof and out-
puts the credential prover’s r-nym. MA just needs to be trusted only for
Anonymity, not for Unforgeability and Correctness.
In the RDAC instantiation above, the IA could be extended to be an MA by
using the Linear Encryption (LE) scheme [?], which is semantically secure
against a chosen plaintext attack based on DLIN, as follow. It extends the
public bilinear pairing parameters (p,G1,G2,GT , e, P1, P2) with the LE pub-
lic key consisting of U, V,H,G← G1 such that there are k, l← Zp satisfying
kU = lV = H. MA’s private key now also includes k, l.
Each time generating a credential proof, the prover with r-nym y also returns
an LE encryption (T1 = rU, T2 = sV, T3 = yG+ (r+ s)H), where r, s← Zp,
and concatenates a GS proof of these equations with variables r, s, y to its
output proof.
When MA needs to open a credential proof, it decrypts the LE ciphertext
to get yG = T3− kT1− lT2, which is used to look up DBRn to find r-nym y.

– There could be an authority who could force any user to reveal his r-nym to
BA and prove his ownership of the r-nym by using CredProve and showing
openings of his r-nym’s commitment. For example, users may be required to
give deposits to the authority when entering the system. If an user does not
follow the enforcement, he loses his deposit.

12 Security Proofs for the RDAC System

This section presents security proofs for the proposed Revocable Delegatable
Anonymous Credential system, based on security proofs for the BCCKLS dele-
gatable anonymous credential scheme [1]. The proofs are provided for the more
general case, where a user must prove that her credential and all of its ances-
tors are not revoked. The other case, where a user only has to prove that her
credential is not revoked, is simpler and can be derived from this.

12.1 Correctness

The scheme meets the Correctness requirements as follows.

1. This requirement holds based on the definitions of validAux and NymGen.

34 Tolga Acar and Lan Nguyen

2. The verifications by the issuer on NymI , Cred, DeInf , SkI , RnI and NymU

at the beginning of Issue↔ Obtain make sure that Issue aborts if one of the
predicates properPair and validAuxs fails.

3. Obtain terminates unsuccessfully if NymU is not correctly computed from
SkU , RnU and
Aux(NymU), or if AuthPro fails, or if PKVerify on CredProofI rejects, or
if one of r-nyms on the chain is blacklisted, or if verifying DeInfU , which
verifies the validity of its delegating keys by using Vali and the correctness of
the relationship between CredU and DeInfU by checking EQProofj , fails.
And CredU is formed from AuthPro’s output and CredProofI . So if Obtain
ends successfully, its output is a proper pair.

4. As indicated above, either Issue or Obtain aborts if their inputs are invalid.
If their inputs are ‘proper’ and they execute honestly, Obtain outputs a
proper pair, based on Completeness of CredPS, NMPS, EQPS and AU , and
Delegability and Redelegability of the accumulator.

5. CredProve first verifies validity of Nym, Cred and DeInf with regard to Sk,
Rn, Aux(Nym) and NymO. It also cannot generate a proof if Rn or one of
Rnj is blacklisted, due to Delegability and Redelegability of the accumulator.
So if Cred and DeInf is not ‘proper’ or Nym is invalid, CredProve will
abort. Otherwise, it should generate a proof accepted by CredVerify, as in
the definition of properPair.

12.2 Anonymity

We prove that the proposed RDAC scheme provides Anonymity if the building
blocks are secure. The simulator algorithms are defined as follows:

– SimSetup(1k): As CredPS, NMPS and EQPS are composable ZK and EQPS’s
setup consists of PKSetup of CredPS and AcSetup of NMPS, there is a
simulation setup algorithm SimConSetup for the combination of PKSetup
and AcSetup. SimSetup first uses AtSetup(1k) to generate ParaAt for an F-
unforgeable certificaton secure authentication scheme; then uses SimConSetup
to generate corresponding ParaPK , ParaAc, AuxAc and trapdoor sim. Let
H be a collision resistant hash function whose output range is the au-
thentication scheme’s message space. The output includes an empty BLe,
ParaDC = (ParaPK , ParaAt, ParaAc, H), SkBA = AuxAc and sim.

– SimProve(ParaDC , sim,NymO, Nym,BL,L, flag): Abort if flag = false.
Otherwise, generate random Sk1,...,SkL−1 and Rn1,...,RnL−1 /∈ BL and
their nyms Nym1,...,NymL−1; let Nym0 = NymO and NymL = Nym;
and get r1, ..., rL where ri = H(NymO, attributes, i). Run the NIZKPK
simulators with the trapdoor sim for the composable ZK CredPS, NMPS
and EQPS to output simulated proofs π1,...,πL as follows
πi ← SimNIZKPK[Ski−1 in Nymi−1[1], Ski in Nymi[1], Rni in Nymi[2]]
{(F (Ski−1), F (Ski), F (Rni), authi) :
VerifyAuth(Ski−1, (Ski, Rni, ri), authi) ∧ (Rni /∈ BL)}
Concatenate π1◦...◦πL and return Nym0, ..., NymL with the concatenation.

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 35

– SimObtain(ParaDC , sim,NymO, Nym,NymA, BL,L, flag): Abort if flag =
false.
Otherwise, given CredProofI , NMChainProof and the proof that RnA /∈
BL from the adversary, verify that PKVerify(ParaPK , (Nym0, NymA),
CredProofI) accepts and the other two proofs pass. Compute rL =H(NymO,
atributes, L) and simulate the two party computation protocol AuthPro with
the adversary to obtain a proof of knowledge of an authentication tag for
(Sk,Rn, rL). Compute CredU as in Obtain and also receive DeInf which is
totally generated by A2.

– SimIssue(ParaDC , sim,NymO, Nym,NymA, BL,L, flag): Abort if flag =
false. Otherwise, generate random r-nyms Rn1,...,RnL /∈ BL and random
Sk1,...,SkL−1; compute their L delegating keys Dei ← Dele(ParaAc, Rni)
and their nyms Nym1,...,NymL−1; let Nym0 = NymO, NymL = Nym and
NymL+1 = NymA; and get r1, ..., rL+1 where ri = H(NymO, attributes, i).
Run the NIZKPK simulators with the trapdoor sim for the composable ZK
CredPS and EQPS to simulate proofs Proof 1,...,Proof L+1, EQProof1, . . .,
EQProofL as follows
Proof i ← SimNIZKPKCredPS [Ski−1 in Nymi−1[1], Ski in Nymi[1], Rni
in Nymi[2]]
{(F (Ski−1), F (Ski), F (Rni), authi) :
VerifyAuth(Ski−1, (Ski, Rni, ri), authi)} and
EQProofi ← SimNIZKPKEQPS [Rni in Nymi[2], Rn′i in Dei]
{(F (Rni), F (Rn′i)) : Rni = Rn′i}
It sends the adversary Nym0, ..., NymL, and CredProofI = Proof 1 ◦ ... ◦
Proof L, and DeInfU including De1,...,DeL and EQProof1◦ ...◦EQProofL,
and simulates the two party computation protocol AuthPro to give Proof L+1

to the adversary.

We see that the accumulator’s 4 delegation properties still hold under pa-
rameters generated by SimSetup, otherwise an adversary breaking one of the
properties could distinguish SimSetup and Setup. The followings show that these
algorithms satisfy the required properties, using similar arguments from [1].

1. It holds as CredPS, NMPS and EQPS are composable ZK.
2. It holds as the commitment schemes are hiding.
3. Under the strong computational hiding property of the commitment schemes,

the distribution of the Nym commitments generated by SimProve is indistin-
guishable from the honest Nym commitments generated by CredProve. Due
to Delegability and Redelegability of the ADNMP scheme, the NMPS proofs
generated using CompNMProof with DeInf have the same distribution as
those generated using ProveNM with r-nyms. Additionally, the proof systems
are composable ZK, so the simulated proofs generated by SimNIZKPK are
indistinguishable from those generated by CredProve.

4. The difference between behaviors of SimObtain and Obtain is that SimObtain
performs the AuthPro protocol using its simulation. That is indistinguishable
from an honest Obtain’s AuthPro performance, due to AuthPro’s security.

36 Tolga Acar and Lan Nguyen

5. The 5 differences between SimIssue and Issue are as follows. First, SimIssue’s
delegating keys Dei are generated by r-nyms, which could be different from
those to generate Issue’s delegating keys. Second, SimIssue’s EQProofi are
generated by SimNIZKPKEQPS instead of, as in Issue, rerandomizing the
EQ proofs in the issuer’s DeInf or generating EQProofL. Third, SimIssue’s
CredProofI is formed using SimNIZKPKCredPS instead of by rerandom-
izing a real Cred. Next, SimIssue simulates the AuthPro protocol. Finally,
SimIssue’s ProofL+1 is generated by SimNIZKPKCredPS whereas Issue
uses the AuthPro protocol. SimIssue and Issue are indistinguishable, despite
of those differences, due to the following reasons:

– Based on the accumulator’s Unlinkability, Delegability and Redelegabil-
ity, the adversary can not distinguish the delegating key lists generated
by SimIssue and Issue, as r-nyms of input DeInf are randomly generated
and not revealed to the adversary.

– Outputs of NIZKPKEQPS and SimNIZKPKEQPS are indistinguish-
able.

– Outputs of NIZKPKCredPS and SimNIZKPKCredPS are indistin-
guishable.

– The AuthPro protocol is secured, so its real and simulated executions are
indistinguishable.

12.3 Unforgeability

The unforgeability proof is similar to the one in [1], based on F-unforgeability
and certification-security of the authentication scheme, partial extractability of
CredPS, and soundness of NMPS and EQPS. ExtSetup is constructed identically
to Setup except that the extraction setup of the partially extractable CredPS is
used to generate ParaPK , ParaAc and td. Extract is CredPS’s witness extractor.
We show that the requirements are satisfied as follows.

1. It holds as the output of CredPS’s extraction setup, without td, is indistin-
guishable from the output of its real setup.

2. A pseudonym is computed as the commitment of Sk and Rn using a perfectly
binding commitment scheme, so the pseudonyms are perfectly binding to Sk
and Rn.

3. CredPS is partly a proof of knowledge of (F (SkO), F (RnO), ...F (SkL), F (RnL))
for a level L credential proof. So Extract can extract these values from an
honest credential proof. In case L = 0, it can extract (F (SkO), F (RnO))
from its valid commitment NymO.

4. Similarly, if an adversary generates a CredProof accepted by CredVerify,
then Extract can extract (F (SkO), F (RnO), F (SkL), F (RnL)). Otherwise, it
aborts.

5. Suppose an adversary can win the real game G defined in this requirement,
that means it can forge a credential proof level L accepted by CredVerify
such that either of the following cases happens.

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 37

– Case 1: The probability that there exists i ≤ L satisfying (f0, f
′
0, i, fi−1,

f ′i−1, fi, f
′
i) /∈ V alidCredentialChains ∧ (fi−1, f

′
i−1) ∈ HonestUsers is

non negligible.
– Case 2: The probability that there exists i ≤ L satisfying F−1(f ′i) ∈ BL

is non negligible.
We show that in Case 1, the adversary can be used to break the authenti-
cation scheme’s security, and in Case 2, the adversary can be used to break
soundness of NMPS or EQPS.
Case1: Similar to [1], we let the adversary play the following game G′, which
is indistinguishable from the real game G. We then show that if an adver-
sary can win this game, it can break the authentication scheme’s security. In
G′, choose a random user u who is given (Sk∗, Rn∗) by the AddUser query.
G′ then proceeds the same as G, except that for queries IssueToAdv and
ObtainFromAdv on user u, the simulator of the AuthPro protocol is used in-
stead of the real one. That means when receiving IssueToAdv(Nym,Cred,
DeInf , NymA, BL, L, NymO) or ObtainFromAdv(NymA, Nym, NymO,
BL, L), if O can find (Sk,Rn,Nym,Aux(Nym)) in its pseudonym database
and (Sk,Rn) = (Sk∗, Rn∗), it uses AuthPro’s simulator to simulate the
interaction. Then due to AuthPro’s security, G′ is computationally indis-
tinguishable from G. Now assume that a PPT adversary A can win in
G′, we show that A can be used to build a PPT adversary B which can
break the authentication scheme AU ’s security. Suppose B is given AU ’s
challenge ParaAt, f

∗ = F (Sk∗) and oracles OAuthen(ParaAt, Sk
∗, ·) and

OCertify(ParaAt, ·, (Sk∗, · · ·)) where the secret key Sk∗ is not known to B.
B uses ParaAt as part of and creates other parameters in ParaDC and a
trapdoor td. B gives ParaDC and td to A and responds to A’s oracle queries
as follows.
(a) AddUser: B randomly chooses a query where its answer to A is (F (Sk∗),

F (Rn∗)) for some Rn∗ and it saves (�, Rn∗, F (Sk∗), F (Rn∗)) in the user
database and F (Sk∗), F (Rn∗)) in the HonestUsers set (‘�’ indicates
the unknown challenge key Sk∗). For other queries, it runs as a normal
AddUser.

(b) FormNym(f, f ′): If f 6= f∗, B runs as the defined FormNym. Other-
wise it generates a random Aux(Nym) to compute Nym, saves (�, Rn∗,
Nym, Aux(Nym)) in its pseudonym database and returns Nym to A.

(c) Issue(NymI , NymU , CredI , DeInfI , BL,L,NymO): B aborts if it can-
not find (SkU , RnU , NymU , Aux(NymU)) and (SkI ,RnI ,NymI ,Aux(NymI))
in pseudonym database or SkU = SkI . Otherwise, if F (SkU) 6= f∗ and
F (SkI) 6= f∗, B runs as the defined oracle. In the two cases F (SkI) = f∗

or F (SkU) = f∗, it executes as defined except that it usesOAuthen(ParaAt,
Sk∗, (SkU , RnU , H(NymO, attributes, L))) orOCertify(ParaAt, SkI , (Sk∗,
Rn∗, H(NymO, attributes, L))), respectively, to compute the credential
proof.

(d) IssueToAdv(NymI , CredI , DeInfI , Nym,BL,L,NymO): B aborts if it
cannot find (SkI , RnI , NymI , Aux(NymI)) in its pseudonym database.
Otherwise, if F (SkI) 6= f∗, B runs as the defined oracle. In the case

38 Tolga Acar and Lan Nguyen

F (SkI) = f∗, it executes as defined except that it simulates the AuthPro
protocol and uses OAuthen.

(e) ObtainFromAdv(Nym,NymU , NymO, BL,L):B aborts if it cannot find
(SkU , RnU , NymU , Aux(NymU)) in its pseudonym database. Otherwise,
if F (SkU) 6= f∗, B runs as the defined oracle. In the case F (SkU) = f∗,
it executes as defined except that it simulates the AuthPro protocol and
uses OCertify.

(f) Prove(Nym,Cred,DeInf,NymO, BL,L): B does not need Sk∗ for this
query, so it can execute and output as the defined oracle.

(g) Revoke(Sk,Rn,BL): Again, B does not need Sk∗ for this query, so it
can execute and output as the defined oracle.

So B can respond to all queries from A. Thus, A can output with non-
negligibility (CredProof,Nym,NymO, BL,L) such that CredVerify(ParaDC ,
NymO, CredProof , Nym, BL, L) = accept and ∃i such that (f0, f

′
0, i, fi−1,

f ′i−1, fi, f
′
i) /∈ V alidCredentialChains ∧ (fi−1, f

′
i−1) ∈HonestUsers, where

(f0, f
′
0, . . . , fL, f

′
L)← Extract(ParaDC , td, CredProof,Nym,NymO, L). As

the number of AddUser’s queries is bound, and A has no knowledge about
B’s randomly chosen AddUser query for injecting F (Sk∗), the probability
fi−1 = f∗ is non-negligible. In such case, B can extract authi such that
VerifyAuth(Sk∗, (Ski, Rni, H(NymO, attributes, i)), authi) accepts. That
forgery shows that B has broken AU ’s security.
Case2: Similarly, we show that from an adversary A of this case, we can
construct an adversary B to break the soundness of NMPS or EQPS. B
can perfectly simulate answers to A’s oracle queries AddUser, FormNym,
Issue, IssueToAdv, ObtainFromAdv, Prove and Revoke, as the only secret
B does not know is SkBA = AuxAc, which is not required to answer any of
these queries.

References

1. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In Halevi, S.,
ed.: CRYPTO 2009. Volume 5677 of LNCS., Santa Barbara, CA, USA, Springer,
Berlin, Germany (August 16–20, 2009) 108–125

2. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In
Smart, N.P., ed.: EUROCRYPT 2008. Volume 4965 of LNCS., Istanbul, Turkey,
Springer, Berlin, Germany (April 13–17, 2008) 415–432

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In Ashby, V., ed.: ACM CCS 93, Fairfax, Virginia, USA, ACM
Press (November 3–5, 1993) 62–73

4. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In Helleseth, T., ed.: EUROCRYPT’93.
Volume 765 of LNCS., Lofthus, Norway, Springer, Berlin, Germany (May 23–27,
1993) 274–285

5. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes
without trees. In Fumy, W., ed.: EUROCRYPT’97. Volume 1233 of LNCS., Kon-
stanz, Germany, Springer, Berlin, Germany (May 11–15, 1997) 480–494

Revocation for Delegatable Anonymous Credentials MSR-TR-2010-170 39

6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Yung, M., ed.: CRYPTO 2002. Volume
2442 of LNCS., Santa Barbara, CA, USA, Springer, Berlin, Germany (August 18–
22, 2002) 61–76

7. Nguyen, L.: Accumulators from bilinear pairings and applications. In Menezes,
A., ed.: CT-RSA 2005. Volume 3376 of LNCS., San Francisco, CA, USA, Springer,
Berlin, Germany (February 14–18, 2005) 275–292

8. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In Jarecki, S., Tsudik, G., eds.:
PKC 2009. Volume 5443 of LNCS., Irvine, CA, USA, Springer, Berlin, Germany
(March 18–20, 2009) 481–500

9. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In Katz, J., Yung, M., eds.: ACNS 07. Volume 4521 of LNCS., Zhuhai, China,
Springer, Berlin, Germany (June 5–8, 2007) 253–269

10. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In Fischlin, M., ed.: CT-RSA 2009. Volume 5473 of LNCS., San Francisco,
CA, USA, Springer, Berlin, Germany (April 20–24, 2009) 295–308

11. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In Franklin, M., ed.: CRYPTO 2004. Volume 3152 of LNCS.,
Santa Barbara, CA, USA, Springer, Berlin, Germany (August 15–19, 2004) 56–72

12. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In Canetti, R., ed.: TCC 2008. Volume 4948 of
LNCS., San Francisco, CA, USA, Springer, Berlin, Germany (March 19–21, 2008)
356–374

13. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In Atluri,
V., Pfitzmann, B., McDaniel, P., eds.: ACM CCS 04, Washington D.C., USA, ACM
Press (October 25–29, 2004) 132–145

14. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In Atluri, V., ed.: ACM CCS 02, Washington D.C.,
USA, ACM Press (November 18–22, 2002) 21–30

15. Microsoft: U-prove community technology preview. In:
https://connect.microsoft.com/. (2010)

16. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a
standard java card. In Al-Shaer, E., Jha, S., Keromytis, A.D., eds.: ACM CCS 09,
Chicago, Illinois, USA, ACM Press (November 9–13, 2009) 600–610

17. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: PEREA: towards practical TTP-
free revocation in anonymous authentication. In Ning, P., Syverson, P.F., Jha, S.,
eds.: ACM CCS 08, Alexandria, Virginia, USA, ACM Press (October 27–31, 2008)
333–344

18. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature
schemes. In Preneel, B., ed.: CT-RSA 2002. Volume 2271 of LNCS., San Jose,
CA, USA, Springer, Berlin, Germany (February 18–22, 2002) 244–262

19. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identifi-
cation protocols. In Matsui, M., ed.: ASIACRYPT 2009. Volume 5912 of LNCS.,
Tokyo, Japan, Springer, Berlin, Germany (December 6–10, 2009) 319–333

20. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. In: International
Journal on Information and Coding Theory. (2006)

21. Yun, A., Cheon, J., Kim, Y.: On homomorphic signatures for network coding. In:
Transactions on Computer. (2009)

40 Tolga Acar and Lan Nguyen

22. Johnson, R., Walsh, L., Lamb, M.: Homomorphic signatures for digital pho-
tographs. In: Suny Stony Brook. (2008)

23. Monnerat, J., Vaudenay, S.: Generic homomorphic undeniable signatures. In Lee,
P.J., ed.: ASIACRYPT 2004. Volume 3329 of LNCS., Jeju Island, Korea, Springer,
Berlin, Germany (December 5–9, 2004) 354–371

24. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In Desmedt, Y.,
ed.: PKC 2003. Volume 2567 of LNCS., Miami, USA, Springer, Berlin, Germany
(January 6–8, 2003) 145–160

25. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In Frankel, Y., ed.: FC 2000. Volume 1962 of LNCS., Anguilla, British
West Indies, Springer, Berlin, Germany (February 20–24, 2000) 90–104

26. Gentry, C.: Fully homomorphic encryption using ideal lattices. In Mitzenmacher,
M., ed.: 41st ACM STOC, Bethesda, Maryland, USA, ACM Press (May 17–20,
2009) 169–178

27. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks (2010)

28. Ghadafi, E., Smart, N., Warinschi, B.: Groth sahai proofs revisited. In: PKC.
(2010)

29. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. Technical
Report MSR-TR-2010-170, Microsoft Research, One Microsoft Way, Redmond, WA
98052 (December 2010)

30. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signa-
tures. In Okamoto, T., Wang, X., eds.: PKC 2007. Volume 4450 of LNCS., Beijing,
China, Springer, Berlin, Germany (April 16–20, 2007) 1–15

31. Boyen, X.: The uber-assumption family (invited talk). In Galbraith, S.D., Pater-
son, K.G., eds.: PAIRING 2008. Volume 5209 of LNCS., Egham, UK, Springer,
Berlin, Germany (September 1–3, 2008) 39–56

32. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In Naor, M., ed.: EUROCRYPT 2007. Volume 4515 of LNCS., Barcelona, Spain,
Springer, Berlin, Germany (May 20–24, 2007) 573–590

