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Abstract

In online discussion forums, users are more motivated
to take part in discussions when observing other users’
participation — the effect of social influence among fo-
rum users. In this paper, we study how to utilize social
influence for increasing the overall forum participation.
To this end, we propose a mechanism to maximize user
influence and boost participation by displaying forum
threads to users. We formally define the participation
maximization problem, and show that it is a special in-
stance of the social welfare maximization problem with
submodular utility functions and it is NP-hard. How-
ever, generic approximation algorithms is impractica-
ble for real-world forums due to time complexity. Thus
we design a heuristic algorithm, named Thread Alloca-
tion Based on Influence (TABI), to tackle the problem.
Through extensive experiments using a dataset from
a real-world online forum, we demonstrate that TABI
consistently outperforms all other algorithms in maxi-
mizing participation.
The results of this work demonstrates that current rec-
ommender systems can be made more effective by con-
sidering future influence propagations. The problem
of participation maximization based on influence also
opens a new direction in the study of social influence.

1 Introduction
The emergence of computer mediated communications has
dramatically changed many people’s social lives in the past
decade. Among them, online forums have been serving as
a major medium that facilitates discussions of any kind. In
an online forum, some discussions could be very specific
(e.g. answering one particular question in Yahoo! Answers)
while others could be more general (e.g. discussing travel
experiences in TripAdvisor). Beyond the social values asso-
ciated with the online forums, the owners of the forums also
directly benefit from the traffic of active forums, e.g. more
traffic means more advertising revenue.

Being able to build an active online forum platform that
encourages users to participate in discussions would also be
beneficial to individual users. When a user submits a new
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thread (a new thread means one user creates an initial post
to start a new discussion in a forum), besides accurate an-
swers or valuable suggestions, he also hopes for an active
participation of other users in the thread. In fact, the users’
psychological need of seeking attention exists in most so-
cial media, e.g. clip posters care about the number of views
in YouTube, Twitter users care about their follower/retweet
counts, and blog users care about the number of comments.

To this date, albeit the considerable progress in system de-
sign to enable the building of large-scale and robust online
forum platforms, only moderate progress has been made in
the design of intelligent and automatic mechanisms that in-
crease user participation into online discussions. However,
there have been several successful Q&A services that lever-
age information from social networking profiles, such as
Aardvark (Horowitz and Kamvar 2010) (http://vark.com/)
and Quora (http://quora.com/) that connect to Facebook or
Twitter networks. Facebook itself also rolled out an am-
bitious Q&A service “Questions” in July 2010, which has
been billed as Killer App considering its resource of 600
million users. The success of the above services revealed
that social ties have a positive effect on users’ participation.

Although there are typically no explicit social ties (i.e.
friendship in Facebook) in online discussion forums, we ob-
serve that users tend to post after certain users — the effect
of social influence. Inspired by this phenomenon, we pro-
pose strategies to increase participation based on influence
among users. More specifically, we address this problem by
delivering threads to forum users appropriately, so that dis-
cussion participation grows in a measurable way.

Delivering selected threads to users is similar in its form
to recommendation. In recommender systems, usually the
criteria of matching a thread with a user is whether the user’s
friends also participate in the thread or whether there is any
indication that the thread falls in the user’s interests. While
there are signs that the current practice of deciding recom-
mendations is always beneficial to users, it is quite unclear
how these isolated recommendations to individuals are im-
pacting the ecosystem of a forum as a whole. Hence, be-
sides predicting which threads users will be most interested
in through historical data, we should further look into the
future to maximize the forthcoming influence diffusion.

Existing models in maximizing influence diffusion that
market to the influencers only (Kempe, Kleinberg, and Èva



Tardos 2003; Chen, Wang, and Yang 2009) also do not fit
into our scenario. For example, suppose that we identified
the influencers and recklessly encouraged them to partici-
pate in every thread, they would feel disturbed and find the
recommendation unhelpful. Moreover, everybody is an in-
fluencer in some way. Thus, for practicability and the bene-
fit of the social media ecosystem, a small number of threads
should be allocated to every user. This leads to a new formu-
lation — the participation maximization problem — an op-
timal allocation problem to maximize overall participation
in a forum through influence propagation.

More specifically, with the purpose of maximizing the
total participants, each online users will be displayed B
threads, to increase the chance of his participation as well
as the subsequent influence propagation to more users. We
then prove that for any given thread, the expected num-
ber of total participants as a set function of users allo-
cated with the thread is monotone and submodular. This
characterizes the optimization problem as a specific in-
stance of the social welfare maximization problem with sub-
modular utility functions (Dobzinski and Schapira 2006;
Vondrák 2008). For efficiency, we further propose a heuris-
tic algorithm, Thread Allocation Based on Influence (TABI),
in which we explicitly consider both the factor of influence
from the past in affecting the current user to post, and the
factor of influence into the future for the current user to af-
fect others. Through comparison with other algorithms in-
cluding a personalized recommendation algorithm (Song,
Tseng, and et al. 2006) and a social welfare maximization al-
gorithm (Dobzinski and Schapira 2006) on data from a real
forum, we show that TABI performs consistently as the most
effective algorithm in maximizing total participation.

To summarize, our main contributions are as follows:
(i) We formulate the problem of participation maximiza-

tion to utilize social influence for maximizing user partici-
pation in online forums, and connect the problem with the
social welfare maximization problem;

(ii) We propose an effective heuristic algorithm that
beats existing recommendation algorithms and social wel-
fare maximization algorithms empirically in maximizing
participants in online forums;

(iii) We suggest that when making recommendations, be-
sides predicting users’ interests based on historical data,
considering the future influence propagation is also impor-
tant for the overall forum participation.

2 Related Work
In the context of online social media, there are many re-
search works studying various aspects of social networks
and social influence. We briefly discuss two relevant areas
of works as below.
Learning social influence in the social network. An im-
portant task in the study of social influence is to learn the
strength of social influence among users. Gruhl et al. (Gruhl,
Guha, and et al. 2004) used a variant of independent cascade
model in blogspere and informally derived an Expectation-
maximization(EM)-like algorithm to induce the influence
probabilities among users. Saito et al. (Saito, Nakano, and

Kimura 2008) derived a similar E-M algorithm in a more
formal analysis to estimate influence probabilities. Goyal
et al. (Goyal, Bonchi, and Lakshmanan 2010) tackled the
same problem in another variant of the influence propagation
model, and applied Maximum Likelihood Estimator (MLE).
Influence learning provides the social influence graph as the
input to the participation maximization problem, but itself
is not the focus of our paper. We adapt the E-M algorithm
of (Saito, Nakano, and Kimura 2008) to extract social influ-
ence in TripAdvisor, and use it as input to our participation
maximization algorithm.
Applications of social influence in social media. Exten-
sive studies have been conducted to apply social influence
in viral marketing (Kempe, Kleinberg, and Èva Tardos 2003;
2005; Chen, Wang, and Yang 2009; Chen, Wang, and Wang
2010), personalized recommendation (Song, Tseng, and et
al. 2006), ranking (Weng, Lim, and et al. 2010), etc. Very
recently, in (Ienco, Bonchi, and Castillo 2010), a similar
problem was studied independently—how to maximize the
activity of Microblogging network by showing each user k
memes. Compared to their work, we provide more detailed
proof in problem formulation and formulate it to a special in-
stance of Social Welfare Maximization problem. Moreover,
we compare our result to recommendation methods.

3 User Posting Model Based on Influence
In this section, we describe our model of user posting be-
havior in online discussion forums based on social influence.
Before providing the stochastic user posting model, we first
describe the underlying social influence network.

A social influence network among the forum users is a
directed and weighted graph G = (U , E, w), where U is the
set of forum users, E is the set of directed edges among these
users, and w is a weight function from the set of edges to real
number in [0, 1]. The weight of an edge (u, v) ∈ E, referred
to as the influence probability from u to v and denoted as
wu,v , indicates how likely user u would influence user v to
write a post. As a convention, if (u, v) is not an edge in G,
we denote wu,v = 0.

A forum F consists of its users U , a set of threads T ,
and sequences of posts generated by the users for every
thread T in the forum. We now describe the dynamic pro-
cess of generating posts based on the social influence ef-
fect. To do so, we first augment the social influence graph
G by adding a virtual user τ , together with edges from τ
to all users in U . We denote the extended influence net-
work as Gτ = (Uτ , Eτ , w), where U = U ∪ {τ}, Eτ =
E ∪ {(τ, u) | u ∈ U}, and w also contains weight wτ,u for
each edge (τ, u) with u ∈ U . Intuitively, the virtual user
τ represents the content of the threads, and wτ,u represents
how the content of the threads affect users’ posting behav-
iors. Note here F indicates one forum on a specific topic,
more specifically, one category in TripAdvisor, U indicates
users who participate in F and T of F is a group of threads
with the specific topic (a.k.a. all threads in one category).
Thus we only introduce one virtual user for one F , without
adding different virtual users per thread.

Figure 1 shows the diagram of the user posting model. For
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Figure 1: Diagram on the user posting model

an online user v, once v visits a thread T ∈ T , v will start
reading unvisited posts in order. When v reads the post by
u, v is influenced by u to write a post in this thread T with
probability wu,v . If v has written a post in T , v’s revisits to
T are ignored, explained in more detail presently. A thread
will eventually stop growing when (a) all users have read all
the existing posts in the thread but are not influenced to write
one; or (b) all users have posted in the thread.

We now provide some intuitive explanation and justifica-
tion of our model.
Social influence network. The social influence network we
defined is based on the Independent Cascade (IC) model
for influence propagation defined in (Kempe, Kleinberg, and
Èva Tardos 2003). However, the dynamic model is differ-
ent: IC model is for influence propagation in social networks
starting from a seed set, while our model is for user append-
ing posts to existing threads due to the social influence.

For our study of participation maximization, we consider
the social influence network (with influence probabilities)
as a given network. A number of researches provide meth-
ods in extracting the social network and influence proba-
bilities (Gruhl, Guha, and et al. 2004; Anagnostopoulos,
Kumar, and Mahdian 2008; Tang, Sun, and et al. 2009;
Saito, Kimura, and et al. 2010; Goyal, Bonchi, and Lak-
shmanan 2010). In our experiment section (Section 6), we
will adapt one of the methods to extract the social influence
network from a real-world forum dataset, but this is not the
focus of our paper.
Topic differentiation. In our model, we treat threads in
one F (category) equally important. One may argue that
some threads are more popular. We could further categorize
threads by topic model or level of quality to obtain different
wτ,v . But the further categorization can be viewed as divid-
ing one F into a set of sub-categories {F ′}. Recall that for
one F , we allocate threads T of F to users U who partici-
pate in F . Hence, we do not further differentiate topics for
simplicity and clarity.
Single post vs. multiple posts. In our model, we only record
each user’s first post in each thread, so that users’s revis-
its to threads which they already participated are ignored.
This simplification can be justified as follows. First, our op-
timization object is to maximize the number of distinct par-
ticipants, not the number of posts generated, and thus mul-
tiple posts by a single user do not directly affect. Second, if
we want to model that multiple posts by a single user have
an increased influence to other users, we could allow users
to re-post, and model that each post of the user has the same
and independent influence to other users. This is a direct ex-
tension of our model and our results still hold in this case.
However, one may argue that repeated posts of a single user
may not have the same and independent influence on other

users, and this could make the model much more compli-
cated. We left this extension as a future research item.

4 Participation Maximization
We propose a novel use of the sidebar mechanism based on
influence propagation to increase user participation in on-
line discussion forums. Sidebar is used as an example to il-
lustrate our mechanism, other user interfaces such as pop-
up list could also be adopted. We first introduce our sidebar
mechanism and incorporate it into the user posting model
to define the participation maximization problem. We then
show that the expected number of participants has the sub-
modularity property, making the problem as an instance of
social welfare maximization with submodular functions.

For convenience, we discretize continuous time into time
slots denoted as slot 1, 2 and so on. Threads added into F
at different time slots, which share the same optimization
function as presently shown in Equation (1), are treated as
different instances for the optimization purpose. Hence, in
the following, we take threads generated in one slot to ex-
emplify our approach.

4.1 Problem formulation
We define the participation maximization problem as fol-
lows. Each user has a budget constraint sidebar to display
B threads, where B is a small constant (usually 5 or 10).
With a scheme that optimizes the total participation among
all the threads, at a certain time slot s, the system allocates
B different threads to each user, so that the user would visit
threads in his sidebar with a higher probability δ∗, compared
to the original probability δ. We use only one time slot for
the allocations, and threads initiated at other time slots can
be allocated at other time slots with the identical mechanism.

According to our user posting model as shown in Figure 1,
because visit probabilities to the threads displayed in side-
bars are boosted, the mechanism can increase the probabil-
ity that users posts in their suggested threads in succession.
In turn, these posts may further influence subsequent users
and increase the probability that others write posts in the
threads. Thus, the overall number of participants (those who
write posts) in F is increased.

Formally, let Sj ⊆ U be the set of users whose sidebars
display thread Tj , and InfUserj(Sj) be the expected num-
ber of participants of Tj after we display Tj on the sidebars
of a set of users Sj , calculated by our stochastic user post-
ing model. Let m = |T | be the number of threads. Let MU
be a multiset version of U such that each user u ∈ U ap-
pears B times in MU . Given as inputs (1) the social influ-
ence graph Gτ , (2) a sequence of visit probabilities δj’s, (3)
thread set T , (4) time slot s ≥ 1 for sidebar allocation, (5)
prefix of posts sequences up to slot s−1, (6) sidebar size B,
(7) boosted visit probability δ∗, the problem of participation
maximization is to find a partition {S1, S2, . . . Sm} of MU
which maximizes the total (expected) number of participants
in all threads as

m∑
j=1

InfUserj(Sj) (1)



4.2 Submodularity of InfUserj(·)
Function InfUserj(·) satisfies an important property called
submodularity. A set function f on U is submodular if for
any set S, T ⊆ U , we have

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

Moreover, a set function f on U is monotone if for all S ⊆
T ⊆ U , f(S) ≤ f(T ). For set function InfUserj(·), we have

Theorem 1. The function InfUserj(·) is monotone and sub-
modular, for all j ∈ [m].
Proof. (Outline). It is similar to the proof of submodularity
of the original influence function in (Kempe, Kleinberg, and
Èva Tardos 2003). However, we have to address the chal-
lenge in our model: encoding more random events, in partic-
ular, the visiting events and the influence propagation events.
Therefore, we build a graph consisting of multiple levels.
Each level represents the influence social network at a partic-
ular time slot. The visiting events of each node are encoded
by a random coloring process. Then the influence function
is simply to count the number of reachable nodes with a par-
ticular color from a seed set, which is clearly submodular.
Due to space constraint, the complete proof is included in
our full technical report (Sun, Chen, and et al. 2010).

4.3 Comparison with related problems
The participation maximization problem defined above bear
some resemblance to several related problems, but also have
unique characteristics. To further understand the problem,
we compare it with several problems below.
Comparison with recommender systems. In the context of
online discussion forums, techniques in recommender sys-
tems (Song, Tseng, and et al. 2006; Sarwar, Karypis, and et
al. 2001) can certainly be used to assign threads to sidebars
of interested users and potentially increase their participa-
tion. However, in the participation maximization problem, a
good solution needs to recommend threads not only to the
users who are likely to post in these threads, but also to the
users who potentially will influence others to post. This is
because our optimization object is to maximize the total par-
ticipation, not just the number of posts immediately caused
by recommendations. Considering the future influence gen-
erated by the current recommendations is the novelty differ-
entiating our work from other recommender systems.
Comparison with influence maximization for viral mar-
keting. The influence maximization problem is to find a
small seed set in a social network to maximize their eventual
influence spread (Kempe, Kleinberg, and Èva Tardos 2003;
2005; Chen, Wang, and Yang 2009). By comparison, we aim
at maximizing the total participation among all the threads,
not participants in a specific thread; and the constraint is on
the number of threads each user can be recommended, not
on the number of users each thread can be recommended
to. Hence, the problem formulation becomes markedly un-
like influence maximization, and thus requires different so-
lutions.
Comparison with social welfare maximization. In social
welfare maximization problems (Dobzinski and Schapira
2006; Vondrák 2008), resources are allocated to consumers

who have certain utility for every combination of the re-
sources, and the goal is to maximize the total utility of all
consumers. In the context of online discussion forums with
sidebars, panels in sidebars can be viewed as resources and
threads as consumers, and the utility function of thread Tj is
InfUserj(Sj) with submodular property. Therefore, partici-
pation maximization is a specific instance of social welfare
maximization with submodular utility functions.

5 Thread Allocation Algorithms
In this section, we discuss algorithms to allocate threads, and
propose a heuristic algorithm TABI as an effective and effi-
cient solution to the participation maximization problem.

Due to the combinatorial nature of the problem, one can-
not enumerate all possible allocations to find the optimal so-
lution. In fact, we show that it is NP-hard.
Theorem 2. Finding the optimal solution to the participa-
tion maximization problem is NP-hard, even if there are only
two threads in the forum and computing InfUserj(S) for any
S ⊆ U is a polynomial-time task.
Proof. (Outline). The proof is by a reduction from the Max-
Cut problem. The complete proof is included in our techni-
cal report (Sun, Chen, and et al. 2010).

Now we discuss several approaches to overcome the NP-
hardness result.
Random allocation. The most straightforward approach is
to allocate threads to sidebars uniformly at random. In gen-
eral, random allocations would not perform well, but in a
special case to allocate threads as soon as they are gener-
ated, it is indeed an approximation algorithm. More specif-
ically, when s = 1, all threads in T only have the same
initial post by the virtual user τ , and thus the utility func-
tions InfUserj(·) are same for all threads, in which case
Vondrák (Vondrák 2008) proved that random allocation is
a (1 − 1/e)-approximation algorithm. Moreover, Vondrák
pointed out that this approximation is tight when utility func-
tion evaluation is given as an oracle. Even though in our case
the utility function InfUserj(·) is not an oracle, it still indi-
cates that it is not likely to beat the simple random allocation
for the special case of s = 1.

But when s ≥ 2, most threads already have some posts
(by users at slot 1) and they are likely to be different. This
causes the utility function InfUserj(·) to be different among
threads, and random allocation is no longer a good choice.
Our simulation results will show that it is indeed the case.
Approximation algorithms, in particular Randomized
Proportional Allocation (RPA) algorithm of (Dobzinski
and Schapira 2006). As proved in Theorem 1, the util-
ity function InfUserj(·) is monotone and submodular, thus
approximation algorithms for the general social welfare
maximization problem with submodular functions (Dobzin-
ski and Schapira 2006; Vondrák 2008) can be applied to
solve the participation maximization problem. Algorithm 1
presents our adaptation of a (2 − 1

m )-approximation algo-
rithm (Dobzinski and Schapira 2006), where m is the num-
ber of threads in our model. Essentially, the algorithm com-
putes the incremental effect Rj of assigning thread Tj to



Algorithm 1 Approximation Algorithm
1: /* n users, m threads, Pv is the constraint panel number for

each v*/
2: initialize Pv = B for all v ∈ U , Sj = ∅ for all j ∈ T
3: for each v ∈ U with Pv > 0 do
4: for each j ∈ T do
5: Rj = InfUserj({v} ∪ Sj)− InfUserj(Sj)
6: select exactly one thread j randomly as follows: each thread

j is chosen with probability
Rm−1

j∑
Tk∈T

Rm−1
k

7: update Sj = Sj ∪ {v} and Pv = Pv − 1.

Algorithm 2 TABI
1: for each v ∈ U do
2: for each j ∈ T do
3: calculate ∆Infjv as Equation 2
4: Rank threads by ∆Infjv in descending order
5: Select top B threads to display in v’s sidebar

user v, given that Tj has already been assigned to a set of
users Sj (line 5), and then pick a thread Tj at random with a
probability proportional to Rm−1

j (line 6). We select this al-
gorithm because of its simplicity and it supports online com-
putation — the computation of assigning threads to a user’s
sidebar could be done for the user when he is online, inde-
pendent of assignments of users who log in later.

However, RPA as well as other approximation algorithms
assumes that the computation of utility function is done
by an oracle. Thus RPA is infeasible in real forums, be-
cause it requires sufficient amount of simulations to estimate
InfUserj(S). Our experimental results in the next section
show that RPA is extremely time consuming and preforms
poor under insufficient number of simulations. This leads us
to consider fast heuristic algorithms.
Our heuristic algorithm: Thread Allocation Based on In-
fluence (TABI). We propose TABI, a heuristic algorithm
to solve the participation maximization problem. The idea
of TABI is to estimate the incremental effect of allocating
thread Tj to a user v by a fast neighborhood calculation.

Let EPj denote the set of Existing Participants in thread
Tj before the allocation time slot s. Let Iv and Ov de-
note the set of v’s in-neighbors and out-neighbors in the
influence graph Gτ , respectively. The probability that v
is influenced by at least one of its in-neighbors in EPj

is (1 −
∏

u∈EPj∩Iv
(1− wu,v)). Provided that v is influ-

enced, the expected number of additional users would in-
clude (i) v itself, with probability 1; (ii) each of v’s inac-
tive out-neighbor x, x ∈ Ov \ EPj , who would be influ-
enced by v rather than any users in EPj , with probability
wv,x(

∏
u∈EPj∩Ix

(1− wu,x)).

Thus, the additional users ∆Infjv that brought by display-
ing thread Tj to v is estimated as:

(1−
∏

u∈EPj∩Iv

(1− wu,v))(1+
∑

x∈Ov\EPj

wv,x

∏
u∈EPj∩Ix

(1− wu,x))

(2)
Once the estimates are obtained on all threads, we rank these
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Figure 2: CDF of influence probabilities
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estimates and select the top B threads to allocate to user v
(Algorithm 2). Notice that δ∗ is the same value for all v ∈ U
if we display Tj to v, so we don’t have to multiply the ∆Infjv
by δ∗ for ranking and selection.

The above estimate contains two parts: (i) the first paren-
thesis, which captures how likely user v is influenced by
existing participants; and (ii) the second parenthesis, which
captures how likely v will influence other users in the fu-
ture. Conceptually, the first part is similar to a recommender
system, while the second part focuses on incorporating fu-
ture influence into thread selection, which we believe is our
unique consideration differing from recommender systems.
The estimation in TABI is simplified, without considering
further influence cascades and visit probabilities in the fu-
ture slots. Nevertheless, the simulation results will show that
the performance of TABI already beats other algorithms.

6 Experiments
In this section, we use data from a real-world online discus-
sion forum to evaluate the effectiveness of TABI and com-
pare it against several other algorithms. We first extract pa-
rameters, such as the influence network and visit probabili-
ties, from the forum data as inputs for algorithms, and then
compare the expected number of participants via simulation.

6.1 Datasets
Our datasets are crawled from TripAdvisor’s World travel
forum, which represents the largest travel community in the
world. The forum is discussion oriented, where users share
candid opinions, hotel reviews, traveling experience or raise
questions and discuss possible solutions. It consists of a
number of discussion categories (one F for one category in
our model) typically separated by locations. To conduct the
experiments, we select three most popular categories: Or-
lando, London and New York City (NYC).

Even though we have crawled data for several years, most
users have a short active period on social media (Guo, Tan,
and et al. 2009). The influence among users are also likely
to change over time. Thus we choose a window size t win to
ensure around 80% of users have their forum life spans (the
period between his first and last post) within t win. In Tri-
pAdvisor, t win is about 60 days. Thus, we choose a 60 day



period from 01/01/2009 to 03/01/2009 for our experiments.
Within the period, in category Orlando, London and NYC,
there are 4062, 1800, 2455 threads and 2085, 1467, 1694
distinct users, respectively.

6.2 Extracting parameters
The Social Influence Network. In the formulation of the
participation maximization problem (Section 4), the social
influence network is treated as an input of the problem. But
no explicit social relationships are maintained in TripAdvi-
sor, so we need to construct an implicit influence network
and learn the influence probabilities on the network.

Intuitively, if one user’s post influences another user and
lead to his posting on the same thread, there will be a link
from the first user to the second user. Thus in the influence
graph Gτ = (Uτ , Eτ , w), we keep edge (u, v) iff v follows
u to post in at least N threads (N = 2 in our experiment).

There are several studies on learning the influence prob-
abilities in a network (Gruhl, Guha, and et al. 2004; Saito,
Nakano, and Kimura 2008; Goyal, Bonchi, and Lakshmanan
2010; Saito, Kimura, and et al. 2010). Based on our forum
context, we adapt the E-M algorithms in (Gruhl, Guha, and
et al. 2004; Saito, Nakano, and Kimura 2008) to fit into
our user posting model as described in Section 3. Roughly
speaking, to calculate wu,v’s, the algorithm iterates between
two conditional probabilities: i) in threads that v posts after
u, compute the conditional probability that v posts because
of u’s influence given v posts in Tj . ii) update wu,v by esti-
mating the probability that v is influenced by u given v reads
u’s post. The algorithm converges after a number of itera-
tions, at which we obtain wu,v on each directed edge (u, v).
To avoid cluttering the main flow of our paper, the detailed
learning algorithm is given in our technical report (Sun,
Chen, and et al. 2010). The Cumulative Distribution Func-
tions (CDF) are given as Figure 2 (London with similar dis-
tribution is omitted due to limited space).
Visit probabilities. Since TABI (Algorithm 2) does not de-
pend on visit probabilities, we would like to test the algo-
rithm against different visit probability sequences. Mean-
while, we want to obtain a visit probability sequence that
is similar at least in trend to the real data. However, accurate
estimation of visit probabilities is impossibile due to the lack
of login and browsing data of TripAdvisor users. Therefore,
we make estimation from the crawled posting data.

Following previous studies on visit probability (Hogg and
Szabo 2009; Ienco, Bonchi, and Castillo 2010), we get the
estimation based on recency. More specifically, we define
thread rank r of thread T ∈ T at a time t as: its rank in
the reversed chronological order of all threads at t. For ex-
ample, among all m threads at t, the latest (submitted most
recently) thread has r = 1, while the oldest has r = m.
Every time there is a post in T , the post can be assigned
with T ’s thread rank value r. Then the visit probability δr
for threads with rank r, is proportional to the ratio between
the number of posts with r and the total number of posts
among all threads, as shown in Figure 3. Both curves of Or-
lando and NYC fit very well into power-law curves, with
power-law exponents α being −0.974 and −1.044 respec-
tively. Results in other categories show similar power-law

Algorithm 3 Simulate Existing Participants
1: Input: visit probability sequence δt, influence network Gτ ,

time slot s for thread allocation
2: Output: existing participants in each thread j, denoted as EPj

3: Initialize EPj = {τ} for each j
4: for time slot t = 1 to s− 1 do
5: for each v ∈ U do
6: for each j ∈ T with v /∈ EPj do
7: if v visits j with probability δt then
8: for each u ∈ EPj do
9: if v hasn’t read u’s post and is influenced with

probability wu,v then
10: EPj = EPj ∪ {v}
11: break

Algorithm 4 Simulate New Participants

1: Input: visit probability sequence δt, boosted visit pr δ∗, influ-
ence network Gτ , time slot s for thread allocation, maximum
slot K, existing participants EPj in each j, sidebar size B

2: Output: the number of new participants (newParticipant)
3: Allocate B threads to each v by one algorithm, so that each j

is displayed to a set of users Sj

4: for time slot t = s to K do
5: for each v ∈ U do
6: for each j ∈ T with v /∈ EPj do
7: if v ∈ Sj and t == s then
8: δt = δ∗

9: if v visits j with probability δt then
10: for each u ∈ EPj do
11: if v hasn’t read u’s post and is influenced with

probability wu,v then
12: newParticipant++
13: EPj = EPj ∪ {v}
14: break

distributions. We anticipate that the visit probabilities would
have a similar power-law trend, which coincides with our in-
tuition that people pays more attention to recent threads than
earlier threads but there is always users visiting old threads.

6.3 Simulation tests and results
Since we have not deployed our mechanism in a real on-
line forum environment, we demonstrate its effectiveness via
simulations based on the user posting model (Figure 1) and
the analyzed parameters (influence network and visit prob-
abilities). In our simulation, for simplicity, we assume that
every user is online for a period of time in every time slot so
that they have a chance to visit each thread. We compare the
following five algorithms:

1) NoSidebar, as the baseline;
2) Random, allocation at uniformly random;
3) RPA, as described in Algorithm 1;
4) TEABIF, a personalized recommendation algorithm,

named topic-sensitive early adoption based information flow
(TEABIF) (Song, Tseng, and et al. 2006), which recom-
mends items to users by estimating whom the information
will propagate to with high probabilities.

5) TABI, as described in Algorithm 2.
To simulate the process of participation, first, we generate
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Figure 4: Results on different visit probability sequences

one group of {EPj} by Algorithm 3 to get existing partici-
pants. Then, we run Algorithm 4 for 1000 times to obtain an
average number as new participants (newParticipant) for
this group. We simulate 500 such groups and take the aver-
age number of newParticipant as the final reported result.
RPA would be extremely slow if we also run 1000 simula-
tions to obtain one InfUserj(S) value in Algorithm 1. To
finish RPA in a reasonable amount of time, we run 10 simu-
lations to estimate InfUserj(S). Even in this case, RPA still
takes hours to finish one group, while all other algorithms
only take seconds. Thus for RPA, we have to compromise
and collect average value from 50 groups, instead of 500
groups. It demonstrates that the RPA (and other social wel-
fare maximization algorithms based on utility oracles) can-
not be used in practice, where we need efficient and online
computations for thread allocations.
Comparing the effectiveness of different algorithms. In
the first test, we compare the effectiveness among the above
five algorithms when thread number m(= |T |) is 30, 40, and
50. We set sidebar size B = 5, the slot for allocation s = 2,
maximum time slot K = 15, and use δr described in Sec-
tion 6.2 to approximate the visit probability δt. The boosted
visit probability is set as δ∗ = 0.8. The value of δ∗ would
not affect thread allocation of Random, TEABIF and TABI,
and thus total participation has a linear relationship with δ∗.
For RPA, its thread allocation depends on δ∗ when calculat-
ing InfUserj(S), but our simulation results show that total
participation is still close to a linear relationship with δ∗.
Therefore, results for other δ∗ values only have a constant
factor difference and can be derived, so we do not report the
exact numbers here.

The results of category NYC, London and Orlando are
given in Figure 5. In all nine tests covering three categories
and three different numbers of threads m, TABI performs
consistently as the best algorithm. Comparing to TEABIF,
take m = 40 as the example, the improvement of TABI
over TEABIF in NYC, London and Orlando are 19.87 ±
6.32,20.13±6.51,27.52±9.01, respectively, corresponding
to percentage increases of 6.2%, 5.7%, 5.5% respectively,
and all improvements are statistically significant. RPA algo-
rithm performs worse than TABI and TEABIF, which can
be partly attributed to insufficient number of iterations trad-
ing accuracy for efficiency. Comparing to NoSidebar and
Random, TABI significantly outperforms both of them, with
a large margin of 50-60% and 30-40%, respectively. It in-
dicates that sidebar mechanism with our TABI algorithm
could significantly increases participation, comparing with

the case of no sidebars or randomly targeted sidebars.
Effectiveness on different visit probabilities. As men-
tioned above, TABI does not depend on visit probabilities.
In the second test, we intend to verify that TABI could per-
form consistently better than other algorithms under differ-
ent visit probability sequences. To do so, we remain all the
parameter settings in the first test except that replacing δt
with the following two visit probability sequences:

i) Power law: δt = kt−α, with k = 0.3 and α = 0.6, to
simulate the decreasing trend with a larger visit probability
values compared to δr.

ii) Constant value: δt = 0.1 for all t.
Figure 4 shows the result with threads number m = 40 in

all the three categories. In the first test, RPA approximation
algorithm has already been shown to be exceedingly time
consuming and ineffective, so RPA is excluded here. We can
see that under both visit probability sequences, TABI’s im-
provement over all other methods are consistent.
Effectiveness on different allocation time slots. In the
third test, we aim at checking whether TABI could perform
consistently better than other algorithms under different al-
location slot s. To this end, we vary s from 2 to 10 (s = 1 can
be solved by random allocation), set m = 40 and a different
δ∗ = 0.5. Since different allocation time slots have different
groups of pre-existing participants, in order to compare the
results of different allocation slots in a fair way, we use the
number of participants, instead of the additional number of
participants (newParticipant) as metric. It is computed as
| ∪j EPj | after running Algorithms 3 and 4.

Our results show that TABI outperforms TEABIF and
Random in all the allocation time slot s, which proves that
TABI works well with different existing participants and dif-
ferent future visit probability sequences. We also notice the
increasing trend of participation as s increases. From this,
one may be tempted to conclude that we need to use sidebars
for “older” threads. However, we need to take such conclu-
sion cautiously. The reason of the increasing trend is mainly
due to the fact that the visit probability sequence is a de-
creasing sequence, and thus in later slots threads receive a
larger boost in visit probabilities when shown in the side-
bars. However, recommending “older” threads may result in
poor user experiences. Therefore, we believe a better con-
clusion is that larger boost in visit probabilities may provide
more participation, but the selection of time slot s for alloca-
tion should consider other factors such as user experiences.
This is why we use s as a parameter of the problem rather
than a variable to be tuned empirically.
Summarization Our simulation results demonstrate that
sidebar mechanism based on social influence can signifi-
cantly improve participation, and TABI outperforms the four
aforementioned algorithms, including an approximation al-
gorithm and a personalized recommendation algorithm. We
believe that the reason of the better performance of TABI,
especially when comparing with recommender systems such
as TEABIF, is because TABI considers social influence that
may increase future participation.

Although simulation-based evaluation provides valuable
insights to the understanding of the algorithms, it certainly
has its limitations. Our simulation is based on a simplified
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user model, which does not cover several effects in the real
world, such as off-topic posts, login frequency, patience to
read existing posts, etc. To overcome the limitations, we
have to further enrich the user model, and rely on user stud-
ies for model validation, which will be our future directions.

7 Conclusion
To summarize, in this paper, we propose a personalized allo-
cation mechanism to maximize total participation based on
social influence in online discussion forums. We formulate
the problem as participation maximization problem, a spe-
cial case of social welfare maximization problem with the
property of monotonicity and submodularity. In real appli-
cations, in order to overcome the inefficiency of previous
approximation algorithms, we propose a heuristic algorithm
TABI, and validate the robustness and effectiveness of TABI
through extensive simulations. The whole approach can also
be applied to other social media, with the purpose of maxi-
mizing overall participations, activities or attentions.

For future work, we plan to conduct user study to system-
atically verify our method, and to transcend the limitations
of simulation. We will investigate heuristics that consider
further influence cascades and find out the best timing for
thread allocation. Furthermore, we will study the application
of similar approaches to other social media that also possess
rich interaction and social network data.
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