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ABSTRACT
Collaborative applications running on 3G devices often rely
on cloud-based servers for computation and storage. A peer-
to-peer approach to building these applications can provide
benefits such as enhanced privacy and bandwidth efficiency.
We propose Contrail, an asynchronous network architecture
that uses the cloud to relay messages between 3G devices.
Contrail employs selective receiver-specific filters at send-
ing devices to ensure that only relevant data consumes pre-
cious bandwidth. Our framework offers pull-based commu-
nications primitives suitable for mobile devices that are often
either inactive or subject to poor network connectivity. Con-
trail enables robust mobile applications without making as-
sumptions about the security of individual cloud providers.
We have implemented Contrail within Windows Azure and
demonstrate several sample applications executing across Win-
dows Mobile devices.

1. INTRODUCTION
Smartphones connected to ubiquitous 3G networks

are enabling new and diverse applications. One class
of applications consists of data sharing services, where
data generated by a device – location updates, photos,
video clips and real-time feeds – is shared with other
devices based on specific policies. These policies are
usually based on the generated content; for example, a
tourist backpacking through Europe with a smartphone
may want to broadcast her location to friends who live
nearby, receive tweets that mention her name, share
videos that her family wants to see, or even receive a
feed from her home’s security camera if it detects move-
ment.

Currently, such services are structured as client-server
applications; all data generated by a device is uploaded
via 3G to a central server which provides it selectively

to other devices. The centralized approach allows data
to be uploaded just once by a sender for multiple re-
cipients, without requiring any of them to be online at
the time. As an additional benefit, client-server appli-
cations do not require inbound connections into devices,
allowing cell ISPs to provide greater security by block-
ing such connections.

However, the centralized approach can be inefficient
if devices generate substantial data that no other device
wishes to receive. In the example of the location-sharing
application, the device will continually upload its loca-
tion to the cloud even if nobody lives nearby, wasting
network resources and battery life in the process. A
second problem with the centralized approach relates
to privacy: users expose all data to application servers
and the third-party cloud providers hosting them, and
potentially even to other customers of the same cloud
[11]. Since the centralized server has to apply sharing
policies on the data, simple encryption is not a viable
solution. Privacy-preserving computing on encrypted
data [3, 15] holds great promise, but is problem-specific
and not yet widely deployed.

In this paper, we introduce Contrail, a new commu-
nication architecture for mobile data-sharing applica-
tions that eliminates the drawbacks of the client-server
approach while retaining its positive attributes. Specif-
ically, Contrail’s goal is to enable applications that have
the following properties:

• Efficiency: Data is uploaded by a device at most
once, and only if it is explicitly requested by some
other device.

• Non-Intrusiveness: Data arrives at a device only if
it is explicitly requested from some other device.

• Privacy: Data sent by one device to another is not
viewed by any other entity.
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• Decoupling: Data can be sent from one device to
another even if they are not simultaneously online.

Contrail provides these properties via two primary
mechanisms. First, all communication is driven by the
abstraction of sender-based content filters, which allow
devices to explicitly request information from other de-
vices. A device that installs a filter on a remote device
receives data from it that matches the filter. Second,
Contrail uses the cloud as a scalable message relay; de-
vices periodically ‘dial’ into this infrastructure via 3G
connections and use it to transfer encrypted filters and
data to and from other devices.

Contrail’s combination of sender-based filters and cloud
relays achieves all four desired properties. First, data
is uploaded once to the cloud if one or more filters on
the sender installed by other devices matches it; the
cloud caches this data and subsequently relays it to
all recipients. Second, devices connect to the cloud as
clients and pull data from it, not exposing themselves
to inbound connections. Third, data and filters are en-
crypted end-to-end between devices, offering the cloud
relays no visibility into either. Last, the cloud enables
decoupled communication by buffering data and filters
for offline recipients until they come online. In addition,
Contrail’s strategy of using the cloud purely for com-
munication – as opposed to persistent storage or com-
putation – enables robust applications that can easily
fail-over to different cloud providers, or even resort to
non-Contrail communication pathways.

While we center Contrail’s design on 3G devices such
as smartphones or netbooks, it has broad applicability
in a world of diverse devices and connectivity options.
Contrail can be a communication option for devices
behind public WiFi hotspots, which often suffer from
the same connectivity and bandwidth restrictions as 3G
clients. Contrail also naturally supports delegate-based
systems [5], where devices interact with trusted ma-
chines such as personal desktops behind home routers;
these machines would simply be first-class Contrail end-
hosts that use filters to pull data from smaller devices.

The contributions of this paper are the following:

• We describe a communication architecture for mo-
bile data-sharing applications that offers impor-
tant properties such as efficiency, non-intrusiveness,
data privacy, and sender-receiver decoupling.

• We discuss the design of this architecture on com-
modity cloud platforms and mobile devices.

• We implement the Contrail cloud component on
Windows Azure and its client component on Win-
dows Mobile.

• We evaluate the latency, throughput, power and
scalability characteristics of our Contrail imple-
mentation.

The remainder of the paper is organized as follows.
Section 2 talks about our model of device trust and
network characteristics. Section 3 describes the Con-
trail architecture, and Section 4 looks at the design of
the individual components within it. Section 5 talks
about the different applications that Contrail enables.
Section 6 describes our implementation and Section 7
evaluates it. Section 8 provides related work, and Sec-
tion 9 concludes.

2. THE Contrail MODEL

2.1 Trust Assumptions
Contrail assumes that devices trust each other. For

example, when one device sends data to another device,
it trusts the recipient to not redistribute that data. Sim-
ilarly, we assume that devices do not impersonate each
other. We expect this trust to result from social con-
tracts; for example, if the owner of the sending device
knows the owner of the receiving device. In concrete
terms, we assume the existence of a social graph where
the existence of a link between two users implies that
they trust each other completely.

We assume that it is unsafe to reveal data to a cloud
provider in unencrypted form. We do assume, however,
that cloud providers are reliable and do not lose in-
flight data. We assume that individual cloud providers
can become unavailable due to new ‘failure modes’, such
as quota overages, payment delays, increased rates and
changing business alliances. We assume that at least
one operational and feasible cloud provider exists at any
given point of time.

2.2 Network Model
Most deployed 3G networks are designed for short-

lived client-server interactions. As a result, IP addresses
assigned to end-hosts can change frequently and routing
state is short-lived. Most networks do not support in-
bound network connections, partly due to the threat of
phone-based malware but also to avoid expensive peer-
to-peer traffic. Additionally, upload capacity is usually
more constrained than download bandwidth.

We expect 3G devices to be frequently offline due to
limited battery and network coverage. Consequently,
NAT traversal services designed to tunnel IP packets
are of limited use with 3G end-hosts, since two devices
will rarely be online at the same time.

3. THE Contrail SYSTEM
Contrail consists of two primary subsystems: a client-

side module that executes on each device, and a messag-
ing layer that resides in the cloud. Each client-side mod-
ule periodically initiates a TCP/IP connection to the
cloud-based messaging layer via 3G (or a WiFi hotspot).
Contrail’s basic operation can be described in simple
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Figure 1: Contrail Architecture

terms: data sent from one device to another device is
first uploaded to the cloud via one device-to-cloud con-
nection, and subsequently pulled by the recipient device
via another such connection. These device-to-cloud in-
teractions are the only network-level connections that
occur in the system; for ease of exposition, we assume
no out-of-band interactions between devices via chan-
nels such as BlueTooth.

Applications on devices use Contrail by linking to a
library that exposes several functions for sending and
receiving data (see Figure 1). Internally, this library
uses IPC to communicate with the client-side module
running on the device. A single client-side module runs
on each device in a separate process, and is shared by
multiple applications.

In this section, we describe the overall architecture
of Contrail, along with the abstractions and API it ex-
poses to applications. For now, we treat the client-side
module and cloud-based messaging layer as black boxes;
in the next section, we will describe their internal design
in detail.

3.1 Abstractions
The basic unit of data in Contrail is an item. An

item is defined as the combination of a payload and
application-defined metadata. While metadata can be
in any form, the default option in Contrail is to rep-
resent it as a hash-table of key-value pairs. For exam-
ple, an item used by a photo-sharing application would
store the actual photograph in the payload, and attach
metadata pairs to it such as (“date”, “12/4/2009”) and
(“location”, “San Francisco, CA”). Each item has an
application-specified ItemID. The ItemID does not have
to be unique across items generated by different applica-
tions; later, we will describe the semantics of matching
ItemIDs on items generated by a single application.

A Contrail end-point is a pair consisting of a Devi-
ceID and a PortID. The DeviceID is a globally unique
identifier similar to a DNS name that is assigned to
each client-side module. The PortID is a locally unique
identifier used to multiplex traffic across different appli-
cations on the same device.

An end-point installs filters on other end-points to
receive items from them. In the absence of installed fil-
ters, no end-point in Contrail can send data to any other
end-point. In its most general form, a filter is simply
a function that accepts an item as input and returns
true or false. In this paper, we restrict ourselves to fil-
ters that are simple conjunctions of comparison tests
on key-value metadata: for example, a filter used by
the photo-sharing application could return true on an
item if the value for “location” matches “San Francisco,
CA”, or if the value for “size” is greater than 1024. Con-
trail filters can be extended to be arbitrarily expressive
queries on item data or metadata. In the limit, they
can consist of arbitrary code, though this requires ad-
ditional security mechanisms that are beyond the scope
of this paper.

3.2 The Contrail API
To use Contrail, an application creates an end-point

by calling the OpenPort function, specifying a PortID
and a filter installation callback function. Once the ap-
plication opens a port, other end-points – i.e., other
applications with open ports – can try to install filters
on it, in order to receive data from it. These filters are
delivered to the application via the filter installation
callback. When a filter is delivered, the application can
either accept or reject it, by returning true or false
from the callback, respectively.

To actually send data to other end-points, the ap-
plication calls the Publish function with an item as a
parameter. This results in all the installed filters be-
ing evaluated on the item. The evaluation of the filters
is performed by the Contrail library, within the appli-
cation’s own process. If the item is matched by one
or more filters, it is transferred by the library to the
client-side module via IPC, along with a list of desti-
nations, corresponding to the end-points that installed

3



OpenPort(PortID local, Callback cb)

Publish(PortID local, Item itm, ItemID iid)

InstallFilter(PortID local, Filter f,

DeviceID dest, PortID remote)

ReceiveItem(PortID local)

Figure 2: Contrail API

the matching filters.
To install filters on other end-points, the applica-

tion uses the InstallF ilter function. Once it has in-
stalled filters, the application can receive messages by
calling the ReceiveMessage function, which blocks for
incoming items. The Contrail library also supports
asynchronous interfaces for receiving messages; we omit
these for brevity.

3.3 Security
In Contrail, message flow between devices originates

with the installation of filters that specify, at the sender,
what data is desired and by which receivers. However,
secure communication between devices first requires the
establishment of trusted channels. Contrail channels
are uni-directional and offer both integrity and confi-
dentiality. Although all channels transit the cloud by
design, the cloud can neither tamper with nor read the
contents of messages. Similarly, the cloud cannot tam-
per with message headers without risking detection.
Channel end-points are identified by {DeviceID, Por-
tID} pairs. Channels have exactly one sender and at
least one receiver: they are either point-to-point or one-
to-many. The latter permits certain efficiencies by al-
lowing messages to be encrypted once for all receivers,
but it also permits any of the several receivers to im-
personate the true sender. This impersonation threat
is not important to us because we assume that client
devices are trusted.

We expect devices to hold a priori a white-list of De-
viceIDs with which communication is anticipated. In
many scenarios, all applications across a device can
share a single white-list. While it can be occasionally
desirable for applications to maintain individual sets
of correspondents, we will assume a single per-device
white-list here to facilitate discussion.

Each device stores a public key pair that it uses to
receive and distribute the symmetric keys that underlie
secure channels. We do not mandate a specific mecha-
nism for mapping between DeviceIDs and public keys,
however we assume that one exists. Existing tools for
performing this mapping, such as public key infrastruc-
tures, are well-known in the literature. Alternatively,
we can rely on manual key distribution or stipulate that
DeviceIDs be derived from associated public keys.

Prior to first communication between devices, the
sending device must construct a channel by a sending a
key distribution message to its intended recipients. This
message contains the source and destination PortID as
well as newly-generated symmetric keys to be used for
integrity and confidentiality on the channel; it is en-
crypted with the public key of each intended recipient,
and signed by the sender. Upon receiving a key distri-
bution message, each receiver must ascertain that the
originator of the message is acceptable to the applica-
tion controlling the local destination port. Channel keys
must, as usual, be of limited duration and are therefore
refreshed by periodic key distributions.

We expect Contrail white-lists to express the social
graph of devices (and therefore users) in the system.
In that sense, a device can ‘friend’ another device if
they mutually add each other’s identifiers to their re-
spective white-lists. We assume that the social graph
is undirected; i.e., trust relations are symmetric. Since
the white-lists represent the social graph, all commu-
nication between devices in Contrail travels along links
in the social graph. In other words, a device in Con-
trail will receive data or metadata from some other de-
vice only if that device is its friend. Additionally, a
device’s white-list, and in particular the set of devices
from which it will accept filters, can be made available
to the cloud. This can help prevent an unknown rogue
device from spamming another device with filters.

We would like to reiterate that a Contrail device re-
ceives no messages by default. In order to receive data
items and keys from other devices, it must first install
filters on them. To receive filter installation requests,
it must include devices in its filter white-list that are
allowed to install filters on it.

3.4 Extended Functionality
Contrail’s design provides the flexibility to add net-

work functionality that can be useful for mobile appli-
cations.

3.4.1 Data Caching
Contrail extensively caches uploaded items, retriev-

ing them when required using a concatenation of the
DeviceID, the PortID and the ItemID. Consequently,
items generated by an end-point are uploaded only once
to the cloud the first time they match a filter; on sub-
sequent filter matches of the same item, the client-side
module directs the cloud to retrieve the item from its
cache and route it to the receiver, without requiring
a new upload from the sender. The items are cached
in encrypted form; the cloud can satisfy a send using
a cached copy only if the recipient has the decryption
key.
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Figure 3: Path of an Item through the stack

3.4.2 Data Obsolescence and Expiration
Contrail allows an application to define obsolescence

relationships between items by assigning them the same
ItemID. For example, a device might send multiple Con-
trail items to an offline receiver that represent different
versions of the same document; when the receiver comes
online and connects to the cloud, it receives only the
latest version of the document as opposed to each suc-
cessive version.

In similar vein, Contrail also allows applications to
define data expiration times. Receivers can specify ex-
piration times on the filters they install on senders, pass-
ing in an extra optional parameter to the InstallF ilter
call. This ensures that a receiver connecting to the
cloud after a long hiatus is not flooded with old mes-
sages.

3.4.3 Publisher Groups
In many cases, a user may be interested in receiv-

ing data from a subset of her friends that satisfy some
criteria; for example, users who are in a particular loca-
tion. An obvious way to achieve this functionality is for
the user to install an appropriate filter on each of her
friends’ devices; however, this approach may become
cumbersome if she has hundreds of friends.

To allow for more efficient filter installation, Contrail

allows devices to join groups. A group is represented by
a GroupID. We overload the InstallF ilter call so that
devices can install filters on a GroupID. When a device
installs a filter on a GroupID, that filter is routed to
all its friends that have joined the group. Subsequently,
the installing device receives messages generated by its
friends in the group.

In the example of the photo-sharing application, all
Microsoft employees could join a group called “Microsoft”.
Now, any user can install a filter on the group “Mi-
crosoft”; the filter will be installed on all her friends who
belong to the group, and pull in any matching photos
from them. Alternatively, the membership of the group
could be dynamically determined; i.e., a group called
“Mountain View” could consist of all devices currently
in Mountain View. Devices would individually join or
leave this group based on their current location.

Note that our definition of a group is different from
the usage of the term in traditional networking: a Con-
trail group defines a set of devices that send data, whereas
an IP Multicast group is a set of nodes that receive data
together. Also, Contrail groups retain the property that
all traffic travels between friends on a social graph. De-
vices can use groups only to receive data from their
own friends. We believe that more general functional-
ity can be easily implemented at the application level;
i.e., if a user wants to retrieve photos from friends of
friends who currently belong to the “Mountain View”
group, her friends could duplicate her filter and install
it themselves on the group, forwarding any results back
to her.

3.5 Reliability and Flow Control
By default, Contrail does not provide end-to-end re-

liability; it uses reliable TCP/IP connections to trans-
fer data to and from the cloud, and assumes that the
cloud will not drop any in-flight data. Applications that
require stronger reliability guarantees can implement
their own reliability mechanisms, installing appropriate
filters that catch acknowledgments and retransmissions.

For example, consider a photo-sharing application with
two devices, A and B, where B has installed a filter on
A requesting specific photos, say those whose “location”
tag equals “Mountain View, CA”. The scenario we are
concerned with is when A sends B a photo which gets
lost in transit.

One option is for device A to install a filter back on
B to catch acknowledgments or negative acknowledg-
ments; B can then create and publish ACK or NACK
items that are routed back to A. Device B can then in-
stall additional filters (or modify existing ones) to catch
retransmissions meant for it; for example, by matching
items whose “retransmit” property equals B.

An issue with delegating reliability to the application
is that it has no means of detecting data loss. A sender
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cannot distinguish between the case where data is lost
and the case where data is merely delayed in the cloud
due to the receiver being offline. As a result, the sender
could retransmit data even if it hasn’t been lost. How-
ever, Contrail’s caching and obsolescence mechanisms
mitigate this problem; each retransmission of an item
is satisfied by the cloud’s cache, and the receiver only
obtains the latest retransmission since all prior trans-
missions are made obsolete by it. As a result, a retrans-
mission operation simply involves a small notification
by the sender to the cloud.

Applications that want increased reliability can also
utilize multi-homing. A device that is about to go offline
for a long period (due to a user forgetting her charger on
a trip, for example) will not be online for end-to-end re-
transmissions if in-flight data is lost. In such cases, the
device can upload an item to multiple Contrail instances
running on different cloud providers. The mechanics
of multi-homing are simple: the application deals with
multiple Contrail client-side modules as it would with
different conventional network interfaces.

Contrail’s flow control mechanism is simple; if the
cloud has too many in-flight items backed up for an
offline receiver, it simply returns a failure code to the
sending client module, which in turn relays it back to
the application as a return value to the Publish call.
The application can then try to publish the data again
after some interval. We expect applications to use ex-
piry and obsolescence functionality effectively to elimi-
nate large backlogs in the cloud.

4. Contrail DESIGN
Thus far, we have treated the client-side module and

the cloud layer as black boxes. In this section, we look
at the internal design of both these subsystems.

4.1 Contrail Client Module
The Contrail client-side module consists of two sepa-

rate components: a pull component that polls the cloud
periodically for inbound messages and a push compo-
nent responsible for uploading outgoing messages. Each
of these components connects to the cloud periodically,
‘sleeping’ in between connections by not using the wire-
less radio. Applications can individually set the fre-
quency with which these connections occur.

The pull component exposes a polling-interval pa-
rameter to applications, expressed in milliseconds; set-
ting this allows the application to regulate polling fre-
quency. More frequent polling results in lower laten-
cies for message delivery but uses up power and band-
width. Since the Contrail module is shared by multiple
applications, it chooses the lowest polling interval re-
quested across all applications. Once a connection has
been made, it persists as long as there is data left to be
downloaded. Once the cloud reports an empty queue

of incoming items to it, the pull component goes back
to sleep after waiting for a fixed time interval. The
time interval it waits for on an empty queue is a second
parameter, called the idle-timeout.

Similarly, the push component exposes a batch-size
parameter; this corresponds to the maximum number
of outbound items per application that are allowed to
queue up before the Contrail module connects to the
cloud. As with the pull component’s polling-interval pa-
rameter, this value can be set independently by each ap-
plication; the module uploads all outbound items across
applications when the batch-size value for any one of
the applications is exceeded. A default time-out value
between connections ensures that items are eventually
transmitted even if the batch-size is never exceeded by
any application.

By default, the push and pull components operate in-
dependently, driven by their respective parameters. A
simple optimization involves combining their operation,
so that the module both pushes and pulls data to the
cloud during a single connection. More sophisticated
optimizations that leverage the properties of the wire-
less hardware are possible; for example, utilizing knowl-
edge of radio power-down policies to minimize power
usage [1, 12].

When the push or pull components connect the cloud,
they exchange messages with it. There are three types
of messages: data messages encapsulating items, filter
installation messages, and key distribution messages.

The basic format of a data message is shown in Figure
3. The header of the data message includes the source
end-point information, the ItemID of the encapsulated
item, the number of destination end-points, and rout-
ing information for each destination. The routing infor-
mation for each destination consists of the (DeviceID,
ItemID) pair as well as the expiry time of the item for
that destination. Expiry times are destination-specific
since we believe their utility to be driven by receivers
that don’t wish to receive stale data.

When the client-side module receives an item via IPC
from the library running in the application process, it
encapsulates the item within a data message with the
appropriate header and adds it to an outgoing queue.
The push component then connects to the cloud and
uploads the message, either immediately or after some
interval if the batch-size parameter is not equal to 1.
We will shortly describe the data message’s path in the
cloud.

Similarly, the pull component receives data messages
from the cloud, from which it extracts the encapsulated
item and relays it via IPC to the library. In this case,
the data message typically has only one destination in
the header, i.e., the DeviceID and PortID of the current
device.

4.2 Contrail Design in the Cloud
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The Contrail messaging layer is designed to run on
any generic cloud provider; this flexibility allows for
applications to switch between cloud providers when
faced with faults and security issues. Consequently, it
is important to understand the common features – and
restrictions – of emerging cloud platforms.

4.2.1 What makes a Cloud?
Cloud platforms such as Microsoft Azure and Google

AppEngine mandate a three-tier architecture on devel-
opers (Amazons EC2 does not enforce separation be-
tween the web and the compute tiers, but does have
explicitly separate storage services). The first tier con-
sists of front-facing webservers that accept and man-
age connections from clients. Application code executes
in a second tier of stateless compute nodes, with all
persistent data stored within a separate storage tier.
The stateless nature of the compute tier allows such
platforms to easily scale out code written by inexperi-
enced developers; each incoming request can be load-
balanced to any compute node, allowing throughput
to be ramped up simply by adding more machines to
the system. The storage tier is separately scaled out
using more complex protocols that partition and repli-
cate data in order to provide fault-tolerant and scalable
storage.

Current cloud platforms provide multiple storage tiers
with different interfaces, performance and persistence
levels. Common to all three major platforms are queue-
ing services (e.g., Azures Queue Storage and Amazons
Simple Queue Service) and object stores with put/get
interfaces. Each storage tier exposes a name-space to
compute nodes that allows them to identify units of
storage. Storage tiers can be persistent (e.g., Amazon’s
Elastic Block Storage) or volatile (e.g., AppEngine’s
memcache).

In addition, cloud platforms are invariably geo-distributed,
allowing services to be replicated or partitioned across
multiple geographically distant data centers. Clients
attempting to access geo-distributed cloud services are
transparently directed to their closest data center through
region-specific DNS entries. Within the cloud infras-
tructure, the webserver and compute node handling a
particular request are usually collocated in the same
data center to ensure low latency; however, the state
modified or accessed by the request can exist at a stor-
age node in a remote data center. In the simple exam-
ple of a cloud-based email service, the mailbox data of a
European user resides in a storage node in Europe; how-
ever, when she visits the US, her requests are directed
to a webserver and compute nodes in a US data center,
which subsequently access the storage node remotely.

To summarize, contemporary cloud platforms exhibit
three properties of interest to us:

Storage Tier

Web Tier

Push Component

Compute Tier

Pull Component

Request

Data

Figure 4: Contrail’s cloud design.

• Applications must be built according to a three-
tier architecture with a web tier, a compute tier
and a storage tier.

• The compute tier is stateless and any request can
execute on any compute node.

• The storage tier is distributed across multiple data
centers, and any compute node can access any unit
of storage, irrespective of location.

4.2.2 Contrail Cloud Design
Current cloud providers offer different development

models for developers, ranging from general compute
nodes such as Amazon’s EC2 to constrained three-tier
platforms such as Google’s AppEngine. Since Contrail
is designed as a cloud service capable of executing on
any three-tier platform, it can be deployed on more gen-
eral cloud platforms as well. In Contrail, the web tier
is responsible for accepting connections from devices.
As described earlier, the client module on each device
periodically initiates a connection – for pushing data or
pulling it – to a webserver, which we will call the gate-
way for that device during that connection. If this is
the first time that the device is connecting to the cloud
infrastructure, the gateway executes a ‘join’ operation
on a compute node, which then creates a queue in the
storage tier for that device. The name of this queue is
simply the DeviceID of the connecting device. The pur-
pose of the queue is to hold incoming data items and
filters sent to the device from other devices.
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When the gateway receives a data message from the
client module on the device, it executes a ‘send’ opera-
tion at a compute node with the message as a parame-
ter. For each destination specified on the data message,
the compute node locates the queue of the destination
device (using its DeviceID as the queue name) and ap-
pends the message to it. Before it appends the mes-
sage to each destination device’s queue, it changes the
header so that it contains just that device as the sole
destination.

When a device initiates a pull connection into the
cloud, the gateway executes a ‘retrieve’ operation at
a compute node with the DeviceID of the connecting
device as a parameter, and waits for the response. The
compute node locates the queue corresponding to that
DeviceID and retrieves the messages in it. It checks
each message to eliminate those that have passed their
expiry time, or have been made obsolete by later items
in the queue. The remaining messages are relayed down
to the pulling device.

A device initiating a connection to the cloud for pulling
items is always directed to the data center closest to
it. The gateway and compute node reside in that data
center, while the device’s queue can potentially be in a
different data center (from the third property of cloud
platforms). Such a scenario can arise due to user move-
ment; for example, if the user resides on the US west
coast but is currently traveling in Europe. The compute
node that empties the device’s queue on a pull request
can potentially relocate the queue to the local data cen-
ter (from the US to Europe, in the example), based on
policies aimed at predicting the user’s home location.

Similarly, a device initiating a connection to the cloud
for pushing items is also directed to the closest data
center. The compute node in that data center updates
the queues of destination devices directly, even if those
queues reside in remote data centers. For example, if a
device in Mountain View, CA pushed an item to one in
Ann Arbor, MI, the item would first travel to a gate-
way and then a compute node in a local data center in
california, which would then directly update the desti-
nation device’s queue in a mid-west data center.

5. APPLICATIONS
Contrail makes it easy for developers to build data

sharing applications for mobile devices that provide the
four properties outlined in Section 1: efficiency, non-
intrusiveness, privacy and decoupling. These applica-
tions can be built by specifying appropriate Contrail
filters and parameters; Table 1 shows some examples.
In this section, we first elaborate on these applications,
and then describe the design of a specific Contrail ap-
plication.

5.1 Potential Contrail Applications

Real-Time Interactive: Applications such as chat,
collaborative document editing, audio/video-conferencing
and real-time games can be built easily using Contrail.
Currently, such applications use either centralized servers
(e.g., Google Wave) or – as in the case of Skype – lever-
age application-specific peer-to-peer networks on the
wired Internet to tunnel traffic from and to 3G devices.

To set up a chat session involving two or more people,
for example, the application would simply have each
participating device install filters on the other devices.
For real-time audio or video, applications can set the
polling-interval parameter to 0 and set the idle-time
parameter to a non-zero value, ensuring that outgoing
items are immediately dispatched to the cloud; later, in
the Section 7, we will evaluate the effectiveness of this
approach. In addition, applications can set expiry times
on outgoing items, ensuring that receivers do not get
stale video frames, for example. Similarly, they can set
up obsolescence relationships, ensuring that the receiver
only receives the latest video frame, for example.

Content Sharing/Searching: Contrail is useful
for sharing bulk data across users: for example, pho-
tographs or videos. We have already described the op-
eration of a photo-sharing application designed using
Contrail. An application that wants to let users search
their social network for content would simply have each
user install temporary filters with very short lifetimes
on each of their friends. Interestingly, each query can
be propagated at the application-level by recipients of
the filter installing it on their own friends, thus imple-
menting P2P search on the social graph.

Location Notification/Sharing: Contrail enables
privacy-aware location-based applications; for example,
an application that requires parents to be notified when
their children leave a particular GPS range. This is
achieved simply by having the parents’ devices install
filters on their children’s phones. Another example in-
volves an application that wants to alert users when
their friends are at some fixed location; each user’s
phone can install filters on her friends’ phones with
the appropriate location information. Extending this
application to one where users are notified when their
friends are near their current location is also easy; the
user’s phone has to periodically replace the filters on
her friends’ phones with updated ones.

Sensor Aggregation: 3G devices can be viewed as
sensors from which data can be aggregated, processed
and queried (for example, phones being used to track
traffic). Contrail is a great fit for sensor aggregation
applications, since filters can be used to construct arbi-
trary aggregation topologies that save bandwidth and
enforce privacy. For example, all Microsoft employ-
ees at the Silicon Valley campus could transmit their
GPS locations to a local Microsoft server they trust,
which then knows their individual locations; in turn,
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Application Filter polling-interval idle-timeout

Chat destination==“Bob” 5 sec 0 sec
Photo-Sharing resolution==“high” AND tag == “family” 60 sec 0 sec
Location Notification location==“Mountain View, CA” 600 sec 0 sec
Video streaming destination==“Bob” 0 sec 10 sec

Table 1: Examples of filter and Contrail parameters for different applications

this server could transmit anonymized or aggregated
data to a public server. This example would require
the local Microsoft server to install filters on employee
devices, and the public server to install a filter on the
Microsoft server.

5.2 The Location Notification Application
We built several applications using Contrail. In this

section, we describe the details of the location notifi-
cation application mentioned above. The goal of this
application is to notify users when the location of their
friends satisfies some fixed condition; for example, as
mentioned previously, a user (call her Alice) may want
to know if her child is outside a threshold distance from
his school, or if a friend she planned to meet at the
mall has reached there. We will describe how Contrail
allows such an application to be built in a manner that
conserves bandwidth and power without sacrificing pri-
vacy, using filters as well as functionality such as item
obsolescence and expiry times.

Figure 5 shows the pseudo-code for the location no-
tification application. At a high level, this application
uses filters in the following manner: Alice’s device in-
stalls a filter on her child’s device that includes the con-
dition to be checked. The application running on her
child’s device periodically publishes his location as an
item. Contrail checks the installed filter on the location
item, and pushes it to the cloud if it matches. Im-
portantly, each matching location update is published
using the same ItemID (”mycurrentlocation” in the fig-
ure), making previous updates obsolete; as a result, if
Alice’s device connects to the cloud after a prolonged
disconnection, she receives only the latest location up-
date.

In the pseudo-code, we omit the details of the filter.
In our example, the filter is a bounds check on the lo-
cation item’s latitude and longitude. We represent the
Mountain View area as a box with four corners, each
of which has a latitude and longitude. Our filter is a
conjunction of comparisons between the current coor-
dinates and that of the four corners. While our current
implementation is restricted to such filters, Contrail can
easily support more complex queries; for example, we
could compute the distance of the current coordinates
from a fixed point and check it against a threshold.

While expiration does not come into play in the spe-
cific case of a parent tracking her child, it does play

a major role in this application. For example, if Alice
installed a similar filter on her friends to facilitate meet-
ups, she would specify an expiry time of a day for any
location updates that her friends send her, so that she
is not flooded with old location updates from friends
that have become irrelevant.

6. IMPLEMENTATION
We have implemented a prototype of Contrail with

the client-side module running on Windows Mobile and
the Contrail cloud layer running inside Windows Azure.
Our prototype supports filters that are conjunctions of
comparison operators on metadata properties. It in-
cludes end-to-end encryption, though we did not im-
plement key distribution messages. Also, we did not
implement the batch-size knob; it is fixed to a value of
1, which means that data is always pushed out imme-
diately to the cloud.

The client-side module is implemented as a Windows
Mobile background service. At its core it is listening
on a TCP server socket for OpenPort requests relayed
by the Contrail library from local applications. Upon
receiving an OpenPort request it launches a thread to
process messages from and to that particular port. The
client-module stores a hashtable with all open ports and
their corresponding open connection. Items received
from applications are encapsulated within data mes-
sages and enqueued inside the module. Messages re-
ceived from the Contrail cloud layer are forwarded to
the right local application connection using the Por-
tID information in the message header. The client-side
module maintains two separate threads to communicate
with the contrail cloud layer, corresponding to the push
and pull components described in section 4.1.

Windows Azure cloud services are composed of a set
web roles and a set of worker roles. A web role runs
inside the IIS webserver and a worker role is an arbitrary
windows program. Each web or worker role is running
as a separate virtual machine inside one of the Azure
datacenters. Virtual machines might run on separate
physical machines or share one physical machine.

The Contrail cloud layer consists of many worker role
instances, where each worker role is hosting two sepa-
rate TCP servers: an incoming TCP server receiving
messages from mobile devices and an outgoing TCP
server transmitting messages to mobile devices. Ad-
ditionally, each worker role hosts a message process-
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Alice

PortID localPort = OpenPort("any_port", null);
SetPollingInterval(localPort, 30);
SetIdleTimeout(localPort, 0);
/* App-defined function that creates filter

to match locations within Mountain View */
Filter momfilter = create_mtnview_filter();
/* Install filter on the "location_update" port

on child’s remote device */
InstallFilter(localPort,momfilter,

remotedevice,"location_port");
/* Alice receives location updates from child’s

phone if he leaves the bounds of Mountain View */
Item msg = ReceiveItem(localPort);
if(msg!=null)
/*child has wandered out of Mountain View!*/

freak_out();

Alice’s Child

PortID localPort = OpenPort("location_port", null);
while(true)
{
/* Alice’s phone determines her location using GPS */
Location current_location = get_current_location();
Item msg = new Item();
AddMetadataToItem(msg, "location",current_location);
/* Publishing with same ItemID "mycurlocation" every time

makes previous location updates obsolete */
Publish(localPort, msg, "mycurlocation");
sleep(1 minute);
}

Figure 5: Location notification application using the Contrail API

ing thread which processes newly arrived messages and
passes them to persistent storage. Together, those three
components (TCP servers, message processing and per-
sistent storage) implement the three tiers (web tier,
compute tier, storage tier) described in Section 4.2.

A common sequence of steps for a data message travers-
ing the cloud layer is as follows. The message is re-
ceived by the incoming TCP server and placed into an
in-memory queue. The message processing thread de-
queues the message from the queue and stores it per-
sistently using the Azure blob service. Blobs are one of
several storage services provided by Azure, apart from
queues and tables. Blobs can contain a much larger
amount of data than queue messages or table entries,
which is suitable for Contrail where messages can have
arbitrary size. Moreover, blobs can be addressed di-
rectly, a feature we used to implement item obsoles-
cence (see Section 3). In Windows Azure, blobs are
organized in containers. We dedicate a container to a
contrail device name. Each message is stored in a sepa-
rate blob inside the destination device’s container. The
name of the blob is formed by a concatenation of the
DeviceID, the PortID and the ItemID. This guarantees
that no two messages from different ports will ever in-
terfere with each other.

A message is kept in persistent storage until either the
message’s expiry time is reached, or an outgoing TCP
server reads the message from storage and transmits it
downstream to the destination device. In most of the
cases the outgoing TCP server of a message runs within
a different worker role than the TCP server where that
message has entered the cloud. An outgoing TCP server
becomes active if a remote device connects to it and re-
quests messages for a certain device name. The TCP
server will then lookup the blob container of the corre-
sponding device name and transmit any message found
in one of the blobs. Once a message has been transmit-
ted it is deleted from the persistent storage.

7. EVALUATION
We have evaluated Contrail using our prototype im-

plementation. Our evaluation is divided into two parts,
micro-benchmarks and scalability. In the micro-benchmarks,
we show that Contrail offers applications a trade-off be-
tween latency and battery lifetime. We also show that
Contrail can saturate 3G upload speeds, and offers a
trade-off between throughput variance and battery life-
time. In the scalability part of our evaluation, we vali-
date the ability of Contrail to scale to large numbers of
clients by simply using more resources in the cloud. All
our experiments are on a real implementation of Con-
trail running on Windows Azure; for clients, we use a
mix of laptops tethered to 3G Windows Mobile phones,
and the phones themselves.

7.1 Micro-Benchmarks

7.1.1 Latency
We first show that the end-to-end latency provided

Contrail depends on the actual values of polling-interval
and idle-timeout, as described in Section 4.1. In this
experiment, we study the latency of sending a Contrail
item between two 3G devices. Our experimental setup
consists of a client/server application running on a lap-
top tethered with a 3G mobile phone. To simplify time
measurement both client and server are running on the
same laptop (we verify that this setup provides results
identical to having the client and server on separate
devices, detailed subsequently). Initially, the client in-
stalls a filter on the server matching items including
the client’s DeviceID as as part of the item’s metadata.
After the filter is installed and the server has received
the corresponding callback, the server periodically pub-
lishes a Contrail item which matches the client’s filter.
Thereby, we make sure a new message is sent only after
the previous message has been correctly received. We
measure the time between the server publishing an item
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Figure 6: Contrail latency: lower values of
polling-interval result in lower end-to-end la-
tency between two 3G devices

and the client receiving it.
Figure 6 shows the measured latencies for different

values of polling-interval while keeping idle-timeout zero.
Each point corresponds to one single message sent be-
tween the client and the server, for a given polling-
interval. Initially, as the polling-interval is small (1 sec-
ond), the latency is spread around 4 seconds. Note that
the latency includes the time to upstream the message,
the time to downstream the message and the time to
process the message inside the cloud. As we increase
the polling-interval, the latency is increasingly spread
over a larger range. For a polling-interval of 8 seconds
for instance, the latency shows values from 1 second up
to almost 15 seconds. In the worst possible scenario,
each the message sent by the server arrives at the cloud
just a moment after the client receiver has last polled
the cloud. In the best possible scenario a poll from the
client would just pick the message as it arrives.

Figure 7 shows how the end-to-end latency is affected
by the idle-timeout parameter. The setup matches the
one of the previous experiment, except that we keep
polling-interval 4 seconds while varying idle-timeout.
The experiments confirms the intuition that a higher
idle-timeout leads to lower latencies. As the connection
between the mobile phone and the cloud is kept open
during the idle-timeout seconds after it is established,
any message arriving during this time interval will be
received immediately.

We also ran experiments measuring the end-to-end
roundtrip time of a Contrail item in the situation where
the sender and receiver were on two separate laptops,
both tethered with a 3g phone. The roundtrip time
corresponds to the time it takes for a Contrail item
to be transmitted between sender to the receiver, and
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Figure 7: Contrail latency: longer idle-timeout
values result in improved end-to-end latency be-
tween two 3G devices

back from the receiver to the sender. As expected, the
roundtrip time we measured in those experiments was
roughly twice the latency of the corresponding one-way
latency experiment.

7.1.2 Battery Lifetime
The previous set of micro-benchmarks clearly indi-

cate the latency improvement that is achieved by having
a lower polling-interval or a higher idle-timeout. How-
ever, this comes at the cost of reduced battery lifetime
as the mobile device’s radio is being used more fre-
quently. To get a clear picture of this trade-off, we
measured power consumption for various values of the
polling-interval parameter. The results shown in Fig-
ure 8 were obtained on an HTC Touch Cruise device
running Windows Mobile 6.1 using the device’s 3G ra-
dio. The line marked ‘Always On’ corresponds to the
power-hungry configuration where the client-side mod-
ule continuously maintains a connection to the cloud
(by setting polling-interval to 0 and idle-timeout to a
large value). The Contrail application running on the
phone was setup to receive a continuous series of small
messages. The messages were being sent from a laptop
every 2 seconds. For each parameter combination, we
completely recharged the device and ran the experiment
until the device shutdown due to lack of power.

As we consider longer durations of polling-interval, we
observe that the device is able to stay running for longer
periods of time. Specifically, setting polling-interval to
90 seconds results in the device lasting for twice as long
versus when polling-interval is set to 5 seconds (8 hours
versus 4). As expected, the ‘Always On’ case results
in low battery lifetime; as the sender is publishing mes-
sages every 2 seconds, the receiver receives a continuous
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Figure 8: Battery Consumption: Higher val-
ues of polling-interval result in improved bat-
tery lifetime (measured on a Windows Mobile
phone).

stream of messages and never sleeps. We observe that
the price of low latency is reduced battery lifetime.

7.1.3 Bandwidth
We ran another set of experiments to study the data

rate at which two Contrail instances – both attached
to a 3G network – can communicate with each other.
Similar to the latency experiment the setup consists of
a client and a server, both having the necessary filters
installed so that they can exchange Contrailitems with
each other.

In the first experiment, the server injects 2000 items
in one batch, causing the Contrail module to upload
the items as fast as the 3G connection permits. Figure
9 shows the data rate at which messages are received
by the client over time. As can be observed, the data
rate at the client approaches 300 kbit/s after a warm-up
time. This rate is only slightly below the maximum 3G
upload capacity we measured, which was around 350
kbit/s. The warm-up time occurs since initially not
enough messages are available at the cloud to saturate
the client’s download capacity. To avoid the client en-
tering the Contrail sleep phase we were using a large
idle-timeout and a polling-interval of zero.

A reasonable data rate is important for applications
transferring bulks of data between phones, like, e.g. pic-
tures or small movie clips. Another type of potential ap-
plications for Contrail are streaming applications, like
video, audio, or sensor streaming. Those applications
typically send data at a fixed rate. We ran one ex-
periment to see how fixed data rates are affected by
the polling-interval and idle-timeout parameters. Our
setup differs from the previous experiment in that the
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Figure 9: Contrail throughput between two 3G
devices is limited by 3G upload bandwidth

server injects a 12.5 KB message every second, resulting
in a constant 100 kbit/sec data rate. Figure 10 (Left)
shows the bandwidth the client sees over time when
using a polling-interval of two seconds. As can be ob-
served, the throughput is interrupted, which is due to
the Contrail client module entering a sleep phase when-
ever no more messages are available to download. A
more or less constant throughput can be achieved, how-
ever, by increasing the idle-timeout parameter. This is
shown in Figure 10 (Right). A idle-timeout of 2 sec-
onds is enough to make sure the TCP connection be-
tween the Contrail client module and the cloud will not
terminate as long as there are messages being received
at the cloud. Remember that the TCP connection only
closes if no message is received for at least idle-timeout
seconds.

7.1.4 Discussion of Micro-Benchmarks
Our latency, battery life and bandwidth micro-benchmarks

illustrate the trade-offs for the polling-interval and idle-
timeout parameters exposed by Contrail. These two pa-
rameters constitute an explicit mechanism provided by
Contrail to alter communication performance. The ap-
propriate setting for these parameters is an application-
specific or user-preference policy decision. We conjec-
ture that further research on adaptive policies may make
it easier to build Contrail applications, and would be in-
teresting future work.

7.2 Scale
An important value proposition for cloud computing

is the notion of elasticity. As load increases, additional
computing resources can be harnessed to prevent degra-
dation in the user experience. In the case of Azure, the
unit of scaling is an instance, which corresponds roughly
to a single virtual machine. We conducted an experi-
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Figure 10: In cases where the receiver’s download capacity is not saturated, setting an appropriate
idle-timeout provides applications consistent throughput. (Left: idle-timeout: 0 secs, Right: idle-
timeout = 2 secs)

ment where we varied the number of clients that were
simultaneously connected to the cloud under two condi-
tions: one where all load was being handled by a single
Azure instance, and another where 10 instances were
used to handle traffic. In this experiment, the clients
ran on server-class machines with good network con-
nectivity. Each client sent a message to itself every 5
seconds. The polling-interval parameter was also set to
be 5 seconds. Figure 11 shows the average end-to-end
message latency across users. We see that while a sin-
gle instance can easily handle 10 simultaneous clients,
supporting 100 clients at the same time results in de-
graded performance (an average message latency of 6
seconds instead of 3.9 seconds). However, if we support
the same 100 clients with 10 instances, performance im-
proves (average message latency of 3.4 seconds). When
we ran 980 clients simultaneously on a single instance,
we observed extremely poor performance as expected.
However, when we increased the number of instances to
10, we were able to support 980 clients with slightly de-
graded performance (average message latency of 9 sec-
onds). While this is not shown in the graph, we at-
tempted to support 980 clients with 20 Azure instances
and observed a performance improvement (average mes-
sage latency of 6.5 seconds). These results indicate that
the elastic nature of the cloud provides a scalable rout-
ing fabric for Contrail applications.

8. RELATED WORK
Content-based Publish/Subscribe [6] is a well-known

paradigm that uses content filters to route messages
from publishers to subscribers. Contrail filters are sim-
ilar to those used by Pub/Sub systems and offer similar
benefits, such as decoupled transmission and bandwidth

efficiency. However, Contrail uses filters for one-to-
one and one-to-many communication between trusted,
known devices. In contrast, Pub/Sub is aimed at scaling
communication between anonymous sets of publishers
and subscribers who do not know each other directly.
Many of the results from the Pub/Sub literature on effi-
cient filter matching apply to Contrail as well. Content
filters are also to be found in replication frameworks
[10].

Prior work by Ford et al. [4] has investigated nam-
ing and interconnection schemes for personal mobile de-
vices. Haggle [17] is a network architecture for mo-
bile devices that includes addressing and routing. Mo-
biClique [8] explores opportunistic communication be-
tween devices on a social graph. All these projects are
focused on settings where devices do not necessarily
have ubiquitous 3G connectivity; as a result, many of
the design decisions involve cooperation between prox-
imal devices.

Contrail is an example of an Off-By-Default [2, 18]
network architecture; devices have to install filters on
each other to enable communication.

The design of the Contrail client-side module is re-
lated to work on efficient polling strategies for phones
[7]. Contrail can also leverage hierarchical power man-
agement techniques [16, 14]. In addition, Contrail can
be easily enhanced to support upload and download pri-
orities for data [9]; for example, if a user wants to pri-
oritize her tweets over her video uploads.

Privacy-aware architectures for mobile devices typi-
cally rely on trusted delegate machines for computing
[13, 5]. Contrail is complementary to such techniques;
it provides a networking layer that can be used to in-
terconnect devices and delegates.
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Figure 11: Contrail scalability: adding more
Azure instances enables Contrail to support
more clients without performance degradation.

Privacy-preserving computing techniques already en-
able specific functionality such as keyword search [3,
15]. Contrail is complementary to these solutions; it is
possible that applications will push simple functionality
into the cloud using privacy-preserving techniques while
retaining more general functionality on edge devices in
the form of Contrail filters.

9. CONCLUSION
As 3G devices grow in power and functionality, the

ability to share data seamlessly across them is increas-
ingly valuable. Contrail enables data-sharing applica-
tions that are bandwidth- and power-efficient, non-intrusive,
privacy-aware and supports decoupled communication
between devices with non-overlapping periods of con-
nectivity. In this paper, we showed that two primary
mechanisms used by Contrail – filters and cloud-based
relays – can be used to construct applications that have
these properties. We show that a Contrail implemen-
tation on the Windows Azure platform leverages the
scaling ability of the cloud to support large numbers of
clients while retaining good latency and throughput.
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