
Wave Computing in the Cloud
Bingsheng He† Mao Yang† Zhenyu Guo† Rishan Chen†‡

Wei Lin† Bing Su† Hongyi Wang† Lidong Zhou†

†Microsoft Research Asia ‡Beijing University

ABSTRACT

We introduce the new Wave model for exposing the tem-
poral relationship among the queries in data-intensive
distributed computing. The model defines the notion of
query series to capture the recurrent nature of batched
computation on periodically updated input streams. This
seemingly simple concept captures a significant portion
of the queries we observed in a production system. The
recurring nature of the computation on the same input
stream opens up surprisingly significant opportunities for
achieving better performance and higher resource utiliza-
tion.

1 INTRODUCTION

Recent work on data-intensive distributed computing
(e.g., MapReduce [4], Dryad [7], and Hadoop [6]) has
enabled large-scale data analysis as a query to exe-
cute in parallel on a large cluster of machines, despite
failures during the computation. While the emergence
of high-level languages, such as Sawzall [11], Pig [9],
SCOPE [3], and DryadLINQ [14], has further reduced
programming complexity, the research remains largely
centered on individual queries. In reality, we are fac-
ing the challenging system problem of executing a large
number of potentially complicated queries on a large
amount of data every day on a large-scale cluster. Ques-
tions naturally arise: is the system doing a good job of
utilizing the resources fully? Is the system executing the
queries in a globally optimal way? We have not yet been
able to answer such basic system questions satisfactorily
or even to define the system goals precisely.

Our experience with a production computing cluster
shows that we are far from reaching the ideal. For ex-
ample, in the cluster we investigate, we have seen signif-
icant redundancy in computation across queries; that is,
the same computation is performed multiple times on the
same data for different queries, resulting in wasted I/O
and computation. Load imbalance is also evident over
time with periods of system overload and periods of re-
source under-utilization. Those can be attributed to inad-
equate data and resource management in the system.

Performance and resource optimization through the
management of data and resources has been studied ex-
tensively in databases systems and (distributed) operat-
ing systems for decades. It is natural for us to look for
solutions and inspirations from those fields, as proposed
by Olston et al. [1, 8]. For example, the notion of views in

databases and the view matching [15] techniques are par-
ticularly effective in identifying common computations
or sub-computations across queries and in allowing the
results to be reused.

While leveraging the proven concepts in the fields
such as databases is clearly a step in the right direc-
tion, applying those concepts in the current computing
environment itself is particularly challenging due to the
inherent complexity and unpredictability in the system.
For example, query optimization in databases hinges on
a cost model. For a query in our environment, the sys-
tem often has little knowledge about the data being pro-
cessed; a query could use custom functions with un-
known performance characteristics; a query is often com-
plicated and contains sub-queries, resulting in compu-
tation consisting of multiple distributed steps. All those
make a reliable cost model nearly impossible.

With challenges also come opportunities. We observe
that log data mining has been the original motivation for
such data-intensive distributed computing systems and it
remains a dominant workload in such systems. We there-
fore introduce a new Wave model that captures the key
properties of log mining. In the Wave computing, we
model the data not as a static file, but as a stream that
is periodically updated. The stream is append-only and
partitioned on multiple machines. A segment is the data
from a single bulk update, e.g., the daily generated log.
We further define the notion of query series to refer to re-
current computations on a stream, with each performed
on one or more stream segments. Query series captures
a sequence of the same computation on different sets
of segments of the same stream and explicitly exposes
the correlations among the queries in the query series in
terms of both data and computation.

This seemingly simple notion of query series brings
predictability into the system, and opens up new re-
search opportunities by making previously unsolvable
problems tractable. For example, with query series, the
system knows the queries that need to be executed as
data streams are updated. Query series makes the occur-
rence of these queries predictable. This offers flexibility
in the scheduling decisions: Queries in different query
series might share the same I/O to scan the input data and
might even share common computation. Those queries
could be scheduled to run together as a single combined
query by removing redundancies. Furthermore, query se-
ries makes the construction of a reliable cost model a

1



possibility by leveraging the knowledge of data and com-
putation from the executions of the previous queries in
the same query series. Data distribution within a stream
tends not to change when the stream grows over time.
Knowledge about the data collected from the executions
of the early queries in a query series could provide excel-
lent hints for the distribution of the data in the stream and
allow later queries to be optimized accordingly. Previous
executions in the same query series could help predict the
cost of custom functions used in the recurring computa-
tion, as well as the cost of computation in each individual
step.

Organization. The remainder of this paper is orga-
nized as follows. To exemplify the problems and oppor-
tunities in the current systems and to justify the Wave
computing model, Section 2 presents the preliminary re-
sults on a query trace in a production cluster. We then
outline the research directions for enabling Wave com-
puting in Section 3. Finally, we present the concluding
remarks in Section 4.

2 WAVES IN THE CLOUD: PRELIMINARY
STUDIES

To confirm the problems and the opportunities, as well
as the dominance of the Wave-like patterns in the current
system, we studied a query trace obtained from a pro-
duction cluster. The queries are written in SCOPE [3], a
declarative scripting language designed for massive data
analysis. The query trace stores the basic information re-
lated to the execution of each query in the system, in-
cluding the query itself, the submission time, the query
plan, the performance statistics, such as I/O of each step
in the query plan, and the completion status. The trace
contains nearly 20 thousands of successfully executed
queries, taking a total of 29 millions of machine hours.
These queries are on around 140 data streams stored in a
reliable append-only distributed file system.

Redundancy. We first studied the redundant opera-
tions across queries in the query trace. Specifically, we
identified two kinds of redundant operations: input data
scans and common sub-query computation.

Redundant I/O for scanning the input files are com-
mon in the cluster. For all the query executions in the
trace, the I/O of scanning the input files contributes to
about 66% of the total I/O. The total size of the input files
is about 33% of the total I/O. Thus, the redundant I/O on
scanning the input files contributes to around 33% of the
total I/O, causing significant waste in the disk bandwidth.
The most frequently accessed input stream is accessed
more than 200 times on average per day.

Figure 1 illustrates the submission day and the input
data window of three sample query series on the same
stream in August. Query series 2 and 3 have recurring

computation on a per-day data window, and the inputs
of queries in query series 1 overlap. Comparing the sub-
mission days of different queries with the same input
data window, we find that these queries are sometimes
submitted on the same day, and others on different days,
which results in redundant I/O scans. Examples are high-
lighted in Circle A.

Redundant computation on common sub-queries is
also significant. A query execution is divided into mul-
tiple steps. We sort all the queries in the trace into a
sequence based on the query submission time. A step
s is defined to have a match if there exists a step s′ of
a previous query in the sequence, where s and s′ have
the same input and a common computation. Each step
with a match is redundant computation because the same
computation has been performed on the same data pre-
viously. We consider all the successful queries and find
that 30% of the steps have a match. In Figure 1, since
queries in query series 1 have common computation on
the overlapping input windows, there is often redundant
computation among them, as highlighted in Circle B.

Load Imbalance. Our next step is to study the tem-
poral distribution of the workload in the production clus-
ter. Figure 2 shows the normalized total machine time
for all query executions per day in August. The total ma-
chine time fluctuates with a certain pattern: the total ma-
chine time in weekdays is on average 50% higher than
that in weekends. The temporal load imbalance results in
resource utilization problems including contention and
under-utilization. In Figure 1, comparing the submission
day and the input data window of each query, we find that
their submission day is not aligned with the data window.
One example is highlighted using Circle C. Some daily
queries for the data in those three days are delayed due
to a weekend. This results in the load imbalance that we
have seen in Figure 2.

Success Rate vs. Window Size. We further observed
that the success rate of query executions is affected by
the input window size. The window size1 of a query is
defined to be the size of the time-window of the query’s
input on the stream. Table 1 shows the success rate of
query executions categorized in their window sizes. As
the window size increases, the input data size becomes
large, and the query execution is more likely to fail, of-
ten due to resource contentions or exhaustion. This is
also consistent with the findings in a previous study [11].
Due to the lower success rate, the queries with large input
windows tend to reduce the effective resource utilization
significantly.

Waves in the Cloud. We studied the recurring com-

1Theoretically, the input of a query such as the one consisting of a
join operation can have multiple streams with different time windows.
In practice, the input streams of most queries align to the same time
window.

2



Input data window on the same stream (Day in August)
1 5 10 15 20 25 30

S
u

b
m

is
si

o
n

 d
a

y
 in

 A
u

g
u

st

5

10

15

20

25

30

Query series 2

Query series 1

Query series 3

C

A

B

Figure 1: Sample query series on the same stream

0.0

0.3

0.5

0.8

1.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

N
o

rm
a

li
ze

d
 t

o
ta

l m
a

ch
in

e
 t

im
e

Timeline (day in August)

Figure 2: Daily total machine time

putation in the query trace to look for the Wave pattern.
We looked at around 20 thousand queries that were suc-
cessfully executed. These queries can be categorized into
around 1100 query series. Over 95% of the query series
have at least two queries. Over 74% of the query series
are performed on the per-day input data window, and
over 14% on the per-month input data window. There are
in total 143 streams accessed around 40 thousand times.
The top ten accessed streams have around 75% of the to-
tal number of accesses. The update is appended to the
stream daily or when the update reaches a predefined
threshold in terms of size. Thus, in the query trace, re-
curring computation is common and a small number of
streams are frequently accessed. The Wave model there-
fore matches well with the computation needs of the pro-
duction cluster.

Table 1: Success rate of queries with different window
sizes

Window
size

one
day

one
week

one
month

one
quarter

six
months

one
year

Success
rate

90% 78% 75% 58% 52% 6%

0.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
o

rm
a

li
ze

d
 t

o
ta

l m
a

ch
in

e
 t

im
e

N
o

rm
a

li
ze

d
 d

a
ta

 s
iz

e

Input data window (day in August)

Input

Output

Total machine time

Figure 3: Normalized input and output data sizes for
query series 2

Predictability. We further validated the similarities
among the executions of the queries in the same query
series. Figure 3 shows the normalized input and output
data sizes, and the normalized total machine time of the
queries in query series 2 of Figure 1. We normalize the
value according to the maximum value of its kind during
the period. For each query, the output data is obtained
through applying the same set of filters on the input data.
The output data size is clearly correlated with the input
data size, thereby providing excellent hints on the filter-
ing ratio of the filters. Furthermore, the total machine
time is also well correlated to the input data size. These
results show promises in predicting the behavior of the
executions of later queries in a query series from the pre-
vious ones.

3 WAVES OF OPPORTUNITIES

The Wave model opens up potential opportunities, but
research challenges remain on how to turn those oppor-
tunities into better data-intensive distributed systems. We
look at how the system can enable predictions, leverage
the predictions in a variety of optimizations, and discuss
their implications on the current systems.

3.1 Enabling predictions
When executing a query in a query series, the defining
characteristics of the execution are captured and stored
for prediction purposes. The characteristics fall into the
following categories: (a) the input and output data char-
acteristics including sizes and distribution, (b) the com-
putation complexity of the operation such as the cus-
tom function, and (c) the cluster execution environment
such as the network topology and computation resource
configuration. The system collects statistics on the first
two kinds of factors for each execution, and stores the
statistics of the cloud environment as constants. All these
statistics are stored in a catalog. Because the predictions
are used to decide between the different options of ex-
ecuting the queries, transient behaviors such as failures
during the execution are not captured or modeled for the
prediction.

3



Data distribution of the stream tends to be important
in a variety of optimization decisions, especially consid-
ering that the stream will be processed many times. It is
sometimes advantageous to piggyback the collection of
the extra statistics of the stream into the execution of an
earlier query in a query series.

Collecting the data is the easy part; the challenge
is to formulate a model for the execution behavior of
the operation, which involves modeling the network, the
distributed storage system, and other components in the
cluster, as well as the behavior of the individual steps in
the query. The benefit of the Wave model is that recur-
ring execution can provide the knowledge of the query
execution behavior and data properties on the same com-
putation and the same data stream.

The key is to identify the characteristics that remain
largely unchanged across the queries in the same query
series and reuse those in the prediction for the later
queries in the same query series. Such stable characteris-
tics help model the cost of query processing based on the
previous executions of the query series. Previous work
on cost modeling in databases, both those using an an-
alytical model [10] and those using a machine learning
approach [5], could provide useful insights, even though
the Wave model has simplified the problem and made
possible more accurate predictions.

3.2 Wave optimizations
The Wave model enables a set of optimizations and pro-
vides predictions that help the system make the appropri-
ate choices.

Shared Scan and Computation. Queries from a
set of different query series might be reading from the
same input stream segments at the same schedule or
even contain common computation on the same data
segments. Because the occurrences of those queries are
known in advance in the Wave model, those queries can
be folded into a single large query with a single scan
on the input and without redundant computations in the
sub-queries. Identifying opportunities for shared scans is
often straightforward as the input stream segments for
each query are precisely specified and can be matched
easily. (Note that, with the Wave model, the system no
longer needs to build a stochastic model as proposed by
Agrawal et al. [1].) Research in databases, such as those
on incremental computation [12] and on view match-
ing [15], can help discover common sub-queries.

Query Decomposition. A query might be decom-
posed into a series of smaller queries each on a subset of
input stream segments, followed by a final step of aggre-
gating the results of the smaller queries to obtain the final
result. Not all queries can be decomposed easily with-
out significantly increasing the overall complexity of the
execution, but many queries, such as computing the his-

togram, can. Often, the decomposability can be decided
based on the properties of the operators and the custom
functions used in a query. For those that can be decom-
posed, query decomposition could be beneficial in the
following three ways.

• Query decomposition might help uncover more op-
portunities for shared scan and computation. For ex-
ample, if the decomposition makes all queries on
the same stream process the data on aligned daily
windows, there would clearly be more opportunities
for sharing among the queries.

• Query decomposition can alleviate the load imbal-
ance. For example, for a query operating on a data
window of a month, it can be decomposed to a se-
ries of daily queries, followed by a final aggregation
query for the final result. The load of that query is
therefore no longer concentrated at the end of the
month, but spread over the duration of the month.

• Query decomposition can potentially help improve
the success rate of the queries by reducing the size
of each individual query, as indicated in Table 1.
Further investigation is needed to understand the de-
tailed root causes of the query failures and to assess
whether decomposition truly helps.

Query Planning. A query can be executed in a
variety of ways; query planning aims at finding the
optimal way to execute a query. This is a traditional
database problem. In our distributed execution environ-
ment, another dimension of choices are available; for
example, in terms of the number of servers to use in
each step of the computation and the locations of those
servers. The consideration of the opportunities for shared
scan/computation and for decomposition further compli-
cates the process. That said, the predictability offered by
the Wave model can potentially allow the system to zoom
in on a small set of choices rather quickly. And the sys-
tem can converge to the optimal query plan as more and
more queries get executed in the same query series.

Query Scheduling. With multiple queries to be ex-
ecuted, the system must schedule the queries for best
performance in terms of resource utilization and query
completion time. Overall, the predictions from the Wave
model can potentially lead to better schedules. Besides
the traditional considerations such as priorities and query
dependencies, the Wave model offers new options and
challenges.

In order to exploit shared scan and computation, the
system tends to bundle a number of queries from dif-
ferent query series together for better resource utiliza-
tion. This is not without drawbacks. The resulting jumbo-
query after bundling tends to exacerbate the load imbal-
ance in the system. The scheduling mechanism should

4



preserve the semantics of individual queries in schedul-
ing the jumbo-query. For example, in order to reduce the
response time of individual queries, the system should
provide flexibility in scheduling a specific query. More-
over, the system should provides a query-level fault tol-
erance mechanism. When a query fails, fault tolerance
mechanisms are performed on the failed query only, and
other queries can continue their executions.

3.3 Waves into the cloud
A typical workload will likely consist of those conform-
ing to the Wave model and those ad hoc queries that do
not. The support for the Wave model can be built on
top of the existing systems, thereby leveraging the the
capabilities such as failure handling, single query com-
pilation/optimizations, and job scheduling. To support
the Wave model and enable the optimizations, the sys-
tem should (i) extend the language for describing query
series, (ii) incorporate a cost model with useful statis-
tics captured in a catalog, and (iii) enable a variety of
query rewriting for cross-query optimizations. Examples
of query rewriting include query decomposition and that
of combining multiple queries into a jumbo-query with
reduced redundancies. Ad hoc queries can also benefit
from these mechanisms; for example, by leveraging the
statistics and the cost model for query optimization.

From our preliminary experiences of incorporating
the Wave model into an existing system, such as SCOPE
and DryadLINQ, we have found that we can benefit
greatly from a high-level declarative language, especially
through query rewriting; compared to the well-defined
operators in the relational algebra, arbitrary custom func-
tions supported in those systems tend to reduce the op-
timization opportunities. Furthermore, although the con-
cept of cost model and query rewriting has been proposed
and extensively studied in database systems, the unique
characteristics in the cloud demand significantly differ-
ent designs and implementations.

4 CONCLUSION

Wave computing introduces a simple new model that sits
between the traditional batch processing [13] and the
stream processing models [2]. While the data is consid-
ered as streams that are constantly updated, the updates
are persisted and available. As a result, the periodic pro-
cessing on the stream is of the batch nature, without the
resource and time constraints normally found in stream
processing systems. And unlike batch processing that
looks at individual queries, the Wave model defines a se-
ries of correlated queries.

Wave computing is practically interesting because
it matches a large portion of the workload on the cur-
rent systems and is practically feasible because it can be
largely enabled on top of the existing systems. Despite its

simplicity, by capturing the correlations among queries
in terms of the data and the computation, the Wave model
can potentially further unlock the full power of data-
intensive distributed computing. The Wave model fosters
a set of interesting new research directions; the research
is likely to yield exciting results that go beyond the Wave
model itself, further advancing the state of the art.

Acknowledgements
We would like to thank the Cosmos team for the access
to the query trace. We are also grateful to Yuan Yu, Jin-
gren Zhou, Li Zhuang, the System Research Group of
Microsoft Research Asia, as well as the anonymous re-
viewers, for their insightful comments.

REFERENCES
[1] P. Agrawal, D. Kifer, and C. Olston. Scheduling shared scans of

large data files. Proc. VLDB Endow., 1(1):958–969, 2008.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In ACM PODS, 2002.

[3] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. Proc. VLDB Endow., 1(2), 2008.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[5] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Fox, M. Jordan,
and D. Patterson. Predicting multiple performance metrics for
queries: Better decisions enabled by machine learning. In IEEE
ICDE, 2009.

[6] Hadoop. http://hadoop.apache.org/.

[7] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. SIGOPS Oper. Syst. Rev., 41(3):59–72, 2007.

[8] C. Olston, B. Reed, A. Silberstein, and U. Srivastava. Automatic
optimization of parallel dataflow programs. In USENIX ATC,
2008.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig Latin: a not-so-foreign language for data processing. In
ACM SIGMOD, 2008.

[10] M. T. Ozsu and P. Valduriez. Principles of distributed database
systems. Prentice-Hall, Inc., 1991.

[11] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting
the data: Parallel analysis with Sawzall. Sci. Program., 13(4),
2005.

[12] G. Ramalingam and T. Reps. A categorized bibliography on
incremental computation. In POPL, 1993.

[13] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. SIGMOD
Rec., 29(2), 2000.

[14] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. In OSDI, 2008.

[15] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner. Efficient
exploitation of similar subexpressions for query processing. In
ACM SIGMOD, 2007.

5


