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Abstract

We introduce a new multi-player geometric game, which we will refer to as the
isolation game, and study its Nash equilibria and best or better response dynamics.
The isolation game is inspired by the Voronoi game, competitive facility location,
and geometric sampling. In the Voronoi game studied by Dürr and Thang, each
player’s objective is to maximize the area of her Voronoi region. In contrast, in the
isolation game, each player’s objective is to position herself as far away from other
players as possible in a bounded space.

Even though this game has a simple definition, we show that its game-theoretic
behaviors are quite rich and complex. We consider various measures of farness from
one player to a group of players and analyze their impacts to the existence of Nash
equilibria and to the convergence of the best or better response dynamics: We prove
that it is NP-hard to decide whether a Nash equilibrium exists, using either a very
simple farness measure in an asymmetric space or a slightly more sophisticated
farness measure in a symmetric space. Complementing to these hardness results,
we establish existence theorems for several special families of farness measures in
symmetric spaces: We prove that for isolation games where each player wants to
maximize her distance to her mth nearest neighbor, for any m, equilibria always
exist. Moreover, there is always a better response sequence starting from any con-
figuration that leads to a Nash equilibrium. We show that when m = 1 the game
is a potential game — no better response sequence has a cycle, but when m > 1
the games are not potential. More generally, we study farness functions that give
different weights to a player’s distances to others based on the distance rankings,
and obtain both existence and hardness results when the weights are monotonically
increasing or decreasing. Finally, we present results on the hardness of computing
best responses when the space has a compact representation as a hypercube.

Key words: Algorithmic game theory, Nash equilibrium, Computational
complexity.
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1 Introduction

In competitive facility location [4,5,7], data clustering [8], and geometric sam-
pling [10], a fundamental geometric problem is to place a set of objects (such
as facilities and cluster centers) in a space so that they are mutually far away
from one another. Inspired by the study of Dürr and Thang [3] on the Voronoi
game, we introduce a new multi-player geometric game called isolation game.

In an isolation game, there are k players that will locate themselves in a
space (Ω, ∆) where ∆(x, y) defines the pairwise distance among points in Ω.
If ∆(x, y) = ∆(y, x), for all x, y ∈ Ω, we say (Ω, ∆) is symmetric. The ith

player has a (k− 1)-place function fi(. . . , ∆(pi, pi−1), ∆(pi, pi+1), . . .) from the
k− 1 distances to all other players to a real value, measuring the farness from
her location pi to the locations of other players. The objective of player i
is to maximize fi(. . . , ∆(pi, pi−1), ∆(pi, pi+1), . . .), once the positions of other
players (. . . , pi−1, pi+1, . . .) are given.

Depending on applications, there could be different ways to measure the far-
ness from a point to a set of points. The simplest farness function fi() could be
the one that measures the distance from pi to her nearest player. Games based
on this measure are called nearest-neighbor games. Another simple measure is
the total distance from pi to other players. Games based on this measure are
called total distance games. Other farness measures include the distance of pi

to her mth nearest player, or a weighted combination of the distances from
player i to other players.

In some cases, the isolation games with simple farness measures have similar
behaviors as the multi-player Voronoi game [1,2,6] in discrete spaces. Recall
that in the Voronoi game, the objective of each player is to maximize the area
of her Voronoi cell in Ω induced by {p1, ..., pk} — the set of points in Ω that
are closer to pi than to any other player. The Voronoi game has applications
in competitive facility location, where merchants try to place their facilities
to maximize their customer bases, and customers are assumed to go to the
facility closest to them. Each player needs to calculate the area of her Voronoi
cell to play the game, which could be expensive. In the nearest-neighbor iso-
lation game, each player chooses to maximize her nearest-neighbor distance
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to other players. In some discrete spaces, like the discrete cycle graph, the
longer nearest-neighbor distance a player has, the larger Voronoi area this
player gains. This gives rise to the isolation game with these special farness
measures.

The generalized isolation games may have applications in product design in a
competitive market, where companies’ profit may depend on the dissimilarity
of their products to those of their competitors, which could be measured by the
multi-dimensional features of products. Companies differentiate their products
from those of their competitors by playing some kind of isolation games in
the multi-dimensional feature space. The isolation game may also have some
connection with political campaigns such as in a multi-candidate election, in
which candidates, constrained by their histories of public service records, try
to position themselves in the multi-dimensional space of policies and political
views in order to differentiate themselves from other candidates.

We study the Nash equilibria [9] and best or better response dynamics of the
isolation games. We consider various measures of farness from one player to a
group of players and analyze their impact to the existence of Nash equilibria
and to the convergence of best or better response dynamics in an isolation
game. For simple measures such as the nearest-neighbor and the total-distance,
it is quite straightforward to show that these isolation games are potential
games when the underlying space is symmetric. Hence, the game has at least
one Nash equilibrium and all better response dynamics converge. Surprisingly,
we show that when the underlying space is asymmetric, Nash equilibria may
not exist, and it is NP-hard to determine whether Nash equilibria exist in an
isolation game.

The general isolation game is far more complex even for symmetric spaces,
even if we restrict our attention only to uniform anonymous isolation games.
We say an isolation game is anonymous if for all i, fi() is invariant under the
permutation of its parameters. We say an anonymous isolation game is uniform
if fi() = fj() for all i, j. For instance, the two potential isolation games with
the nearest-neighbor or total-distance measure mentioned above are uniform
anonymous games. Even these classes of games exhibit different behaviors:
some subclass of games always have Nash equilibria, some can always find
better response sequences that converge to a Nash equilibrium, but some may
not have Nash equilibria and determining the existence of a Nash equilibrium
is NP-complete. We summarize our findings below.

First, We prove that for isolation games where each player wants to maxi-
mize her distance to her mth nearest neighbor, Nash equilibria always exist.
In addition, there is always a better response sequence starting from any con-
figuration that leads to a Nash equilibrium. We show, however, that this iso-
lation game is not a potential game — there are better response sequences
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that lead to cycles. Second, as a general framework, we model the farness
function of a uniform anonymous game by a vector ~w = (w1, w2, . . . , wk−1).

Let ~dj = (dj,1, dj,2, . . . , dj,k−1) be the distance vector of player j in a configu-
ration, which are distances from player j to the other k − 1 players sorted in
nondecreasing order, i.e., dj,1 ≤ dj,2 ≤ . . . ≤ dj,k−1. Then the utility of player

j in the configuration is ~w · ~d =
∑k−1

i=1 (wi · dj,i). We show that a Nash equilib-
rium exists for increasing or decreasing weight vectors ~w, when the underlying
space (Ω, ∆) satisfies certain conditions, which are different for increasing and
decreasing weight vectors. For a particular version of the decreasing weight
vectors, namely (1, 1, 0, . . . , 0), we show that: (a) it is not potential even on a
continuous one dimensional circular space; (b) starting from any configuration
there is a best-response sequence that converges to a Nash equilibrium in a
continuous one dimensional circular space; (c) in general symmetric spaces a
Nash equilibrium may not exist, and (d) it is NP-complete to decide if a Nash
equilibrium exists in general symmetric spaces. Combining with the previous
NP-completeness result, we see that either a complicated space (asymmet-
ric space) or a slightly complicated farness measure ((1, 1, 0, . . . , 0) instead of
(1, 0 . . . , 0) or (0, 1, 0, . . . , 0)) would make the determination of the existence
of Nash equilibria difficult.

Table 1 summarizes the rich behaviors we found for various versions of the
isolation games.

Table 1
Summary of results for various isolation games. “NE” stands for Nash Equilibrium;
“NPC” means NP-complete to determine if a Nash equilibrium exists.

farness func-
tion

complexity of space (Ω, ∆)

1-d continuous
circular

polarized finite symmetric asymmetric

1, 1, 1, ..., 1 potential potential potential
potential
[Thm 2]

NPC [Thm
4][Cor 5]

1, 0, 0, ..., 0 potential potential potential
potential
[Thm 1]

NPC [Thm
4][Cor 5]

0, 1, 0, ..., 0
not potential
[Lem 7]

∃ best-response
sequence to NE
[Thm 9]

∃ NE [Thm 6]

1, 1, 0, ..., 0

not potential
[Lem 13], ∃
best-response
sequence to NE
[Thm 14]

NPC [Thm 16]

single selection
∃ better-response
sequence to NE
[Thm 8]

∃ NE
[Thm 6]

monotonic in-
creasing

∃ NE
∃ NE
[Thm
10]

monotonic de-
creasing

∃ NE [Cor 12]
not potential
[Lem 13]

NPC [Thm 16]
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We also examine the hardness of computing best responses in spaces with
compact representations such as a hypercube. We show that for one class of
isolation games including the nearest-neighbor game as the special case it is
NP-complete to compute best responses, while for another class of isolation
games, the computation can be done in polynomial time.

The rest of the paper is organized as follows. Section 2 covers the basic defi-
nitions and notation. Section 3 presents the results for nearest-neighbor and
total-distance isolation games. Section 4 presents results for other general
classes of isolation games. Section 5 examines the hardness of computing best
responses in isolation games. We conclude the paper in Section 6.

2 Notation

We use (Ω, ∆) to denote the underlying space, where we assume ∆(x, x) = 0
for all x ∈ Ω, ∆(x, y) > 0 for all x, y ∈ Ω and x 6= y, and that (Ω, ∆) is bounded
— there exists a real value B such that ∆(x, y) ≤ B for every x, y ∈ Ω. In
general, (Ω, ∆) may not be symmetric or satisfy the triangle inequality. We
always assume that there are k players in an isolation game and each player’s
strategy set is the entire Ω. A configuration of an isolation game is a vector
(p1, p2, . . . , pk), where pi ∈ Ω specifies the position of player i. The utility func-
tion of player i is a (k − 1)-place function fi(. . . , ∆(pi, pi−1), ∆(pi, pi+1), . . .).
For convenience, we use ut i(c) to denote the utility of player i in configuration
c.

We consider several classes of weight vectors in the uniform, anonymous iso-
lation game. In particular, the nearest-neighbor and total-distance isolation
games have the weight vectors (1, 0, . . . , 0) and (1, 1, . . . , 1), respectively; the
single-selection games have vectors that have exactly one nonzero entry; the
monotonically-increasing (or decreasing) games have vectors whose entries are
monotonically increasing (or decreasing).

A better response of player i in configuration c = (p1, . . . , pk) is a new position
p′i 6= pi such that the utility of player i in configuration c′ by replacing pi with
p′i in c is larger than her utility in c. In this case, we say that c′ is the result of
a better-response move of player i in configuration c. A best response of player
i in configuration c = (p1, . . . , pk) is a new position p′i 6= pi that maximizes
the utility of player i while player j remains at position pj for all j 6= i. In
this case, we say that c′ is the result of a best-response move of player i in
configuration c.

A (pure) Nash equilibrium of an isolation game is a configuration in which no
player has any better response in the configuration. An isolation game is better-
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response potential (or best-response potential) if there is a function F from the
set of all configurations to a totally ordered set such that F (c) < F (c′) for any
two configurations c and c′ where c′ is the result of a better-response move (or
a best-response move) of some player at configuration c. We call F a potential
function. It is easy to see that any better- (best-) response sequence in a better-
(best-) response potential game is acyclic, and further more if Ω is finite, any
better- (best-) response sequence eventually leads to a Nash equilibrium. Note
that a better-response potential game is also a best-response potential game,
but a best-response potential game may not be a better-response potential
game. Henceforth, we use the shorthand “potential games” to refer to better-
response potential games.

3 Nearest-neighbor and Total-distance Isolation Games

In this section, we focus on the isolation games with weight vectors (1, 0, . . . , 0)
and (1, 1, . . . , 1). We show that both are potential games when Ω is symmetric,
but when Ω is asymmetric and finite, it is NP-complete to decide whether those
games have Nash equilibria.

Theorem 1 The symmetric nearest-neighbor isolation game is a potential
game.

Proof: Consider a configuration c = (p1, p2, . . . , pk). The utility of player
i in configuration c in the nearest-neighbor isolation game is the distance
between player i and her nearest neighbor. Let vector ~u(c) = (u1, u2, . . . , uk)
be the vector of the utility values of all players in c sorted in increasing order,
i.e., u1 ≤ u2 ≤ . . . ≤ uk.

We claim that for any configuration c and c′ such that c′ is the result of
a better-response move of a player i from position pi to p′i 6= pi, we have
~u(c) < ~u(c′) in lexicographic order.

Let ~u(c) = (u1, u2, . . . , uk), and uj be the utility of player i in c (i.e. ut i(c) =
uj). Consider another player s 6= i and her utility ut = uts(c). There are three
cases. Case 1: ut < uj. Since Ω is symmetric, ut cannot be the distance from s
to i. Thus, after i’s better-response move, the utility of s in c′ is still ut. Case
2: ut > uj. After i’s better-response move, if the utility of s decreases, then
uts(c

′) = ∆(ps, p
′
i) = ∆(p′i, ps) ≥ ut i(c

′) > ut i(c) = uj. That is, in any case the
utility of s in c′ is greater than uj. Case 3: ut = uj. After i’s better-response
move, the utility of s either remains the same or increases.

Therefore, comparing vector ~u(c′) with ~u(c), all elements in front of uj remain
the same or increase, and all elements after uj either remain the same or
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the new value is greater than uj, and uj itself increases. This implies that
~u(c′) > ~u(c) in lexicographic order. Thus, the above claim holds.

We now can define a potential function F (c) = ~u(c) to show that the nearest-
neighbor isolation game is potential. 2

Theorem 2 The symmetric total-distance isolation game is a potential game.

Proof: We define a function F on configurations c = (p1, p2, . . . , pk) to be
F (c) =

∑
1≤i,j≤k ∆(pi, pj), the sum of all pairwise distances of players in the

configuration. If a player i has a better response p′i 6= pi in c, then we know
that

∑
j 6=i ∆(p′i, pj) >

∑
j 6=i ∆(pi, pj). Since Ω is symmetric, we have F (c′) −

F (c) = (
∑

j, 6̀=i ∆(p`, pj)+
∑

j 6=i ∆(p′i, pj))−(
∑

j, 6̀=i ∆(p`, pj)+
∑

j 6=i ∆(pi, pj)) >
0. Therefore, F is a potential function, and the total-distance isolation game
is potential. 2

The following lemma shows that the asymmetric isolation game may not have
any Nash equilibrium for any nonzero weight vector. Thus, it also implies that
asymmetric nearest-neighbor and total-distance isolation games may not have
Nash equilibria.

Lemma 3 Consider an asymmetric space Ω = {v1, v2, . . . , v`+1} with the dis-
tance function given by the following matrix with t ≥ ` + 1. Suppose that for
every player i her weight vector ~wi has at least one nonzero entry. Then, for
any 2 ≤ k ≤ `, there is no Nash equilibrium in the k-player isolation game.




∆ v1 v2 v3 . . . v` v`+1

v1 0 t− 1 t− 2 . . . t− ` + 1 t− `

v2 t− ` 0 t− 1 . . . t− ` + 2 t− ` + 1
...

...
. . .

...

v` t− 2 t− 3 t− 4 . . . 0 t− 1

v`+1 t− 1 t− 2 t− 3 . . . t− ` 0




Proof: Consider any configuration c. Because 2 ≤ k ≤ ` and |Ω| = `+1, in
configuration c there exists at least one free point not occupied by any player.
Without loss of generality, we assume that one of the free points is vi and the
point vi−1 is already chosen by player t (if vi = v1, then vi−1 = v`+1). Then
we can see that for all j 6= i and j 6= i − 1, ∆(vi, vj) > ∆(vi−1, vj). Since
all weights are nonnegative and at least one weight is nonzero, player t could
achieve better utility by moving from vi−1 to vi. Therefore, c is not a Nash
equilibrium. 2

Theorem 4 It is NP-complete to decide whether a finite, asymmetric nearest-
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neighbor or total-distance isolation game has a Nash equilibrium.

Proof: We first prove the case of the nearest-neighbor isolation game.

Suppose that the size of Ω is n. Then the distance function ∆ has n2 entries.
The decision problem is clearly in NP. The NP-hardness can be proved by re-
duction from the Set Packing problem. An instance of the Set Packing problem
includes a set I = {e1, e2, . . . , em} of m elements, a set S = {S1, . . . , Sn} of
n subsets of I, and a positive integer k. The decision problem is to decide
whether there are k disjoint subsets in S. We now give the reduction.

The space Ω has n + k + 1 points, divided into a left set L = {v1, v2, . . . , vn}
and a right set R = {u1, u2, . . . , uk+1}. For any two different points vi, vj ∈ L,
∆(vi, vj) = 2n if Si ∩ Sj = ∅, and ∆(vi, vj) = 1/2 otherwise. The distance
function on R is given by the distance matrix in Lemma 3 with ` = k and
t = k + 1. For any v ∈ L and u ∈ R, ∆(v, u) = ∆(u, v) = 2n. Finally, the
isolation game has k + 1 players.

We now show that there exists a Nash equilibrium for the nearest-neighbor
isolation game on Ω if and only if there are k disjoint subsets in the Set Packing
instance.

First, suppose that there is a solution to the Set Packing instance. Without
loss of generality, assume that the k disjoint subsets are S1, S2, . . . , Sk. Then
we claim that configuration c = (v1, v2, . . . , vk, u1) is a Nash equilibrium. In
this configuration, it is easy to verify that every player’s utility is 2n, the
largest possible pairwise distance. Therefore, c is a Nash equilibrium.

Conversely, suppose that there is a Nash equilibrium in the nearest-neighbor
isolation game. Consider the set R. If there is a Nash equilibrium c, then the
number of players positioned in R is either k + 1 or at most 1 because of
Lemma 3. If there are k + 1 players in R, then every player has utility 1, and
thus each of them would want to move to points in L to obtain a utility of 2n.
Therefore, there cannot be k + 1 players positioned in R, which means that
there are at least k players positioned in L.

Without loss of generality, assume that these k players occupy points
v1, v2, . . . , vk (which may have duplicates). We claim that subsets S1, S2, . . . , Sk

form a solution to the Set Packing problem. Suppose, for a contradiction, that
this is not true, which means there exist Si and Sj among these k subsets
that intersect with each other. By our construction, we have ∆(vi, vj) = 0 or
1/2. In this case, players at point vi and vj would want to move to some free
points in R, since that will give them utilities of at least 1. This contradicts
the assumption that c is a Nash equilibrium. Therefore, we find a solution for
the Set Packing problem given a Nash equilibrium c of the nearest-neighbor
isolation game.
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The proof for the case of the total-distance isolation game is essentially the
same, with only changes in players’ utility values. 2

If the space is infinite and asymmetric, we can also make reduction from the
Set Packing problem. Given an instance of the Set Packing problem, we can
construct a (k +1)-player isolation game. There are two types of points in the
game space Ω: “particular” points and “normal” points.

There are n + k + 1 “particular” points, divided into a left set L and a right
set R. The distances between “particular” points are defined the same as in
Theorem 4. There are infinitely many “normal” points. For these “normal”
points, let the distance between any two remaining points be 0 and let the
distance between any “particular” point and any “normal” point be 0.

With similar analysis, we can prove that the Set Packing instance has a solu-
tion if and only if there is a Nash equilibrium for the nearest-neighbor isolation
game on Ω. The proof for the case of the total-distance isolation game in an
infinite and asymmetric space is essentially the same with only changes in
players’ utility values. Hence we get the following corollary.

Corollary 5 It is NP-complete to decide whether an infinite, asymmetric
nearest-neighbor or total-distance isolation game has a Nash equilibrium.

4 Isolation Games with Other Weight Vectors

In this section, we study several general classes of isolation games. We consider
symmetric space (Ω, ∆) in this section.

4.1 Single-selection Isolation Games

First we consider the single-selection isolation games. Recall that the single-
selection games have weight vectors that have exactly one nonzero entry.

Theorem 6 A Nash equilibrium always exists in any single-selection sym-
metric game.

Proof: We denote the k-player single-selection symmetric game as G, in
which the mth entry of the weight vector is 1. We partition the k players into
t = d k

m
e groups G1, G2, . . . , Gt. If m | k, then let each group consist of m

players; otherwise, let each group except Gt consist of m players, and let Gt

consist of the remaining k − (t − 1)m players. We denote a t-player nearest-
neighbor isolation game on Ω as G ′. By Theorem 1, we know that in game G ′
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there exists a Nash equilibrium c′ = (p1, . . . , pt). Without loss of generality,
we assume that in G ′ player t at pt has the minimum utility value among all
the t players. Now we generate a configuration c for game G in which all the
players in group Gi choose position pi. We show that c is a Nash equilibrium
for game G.

If m | k, we consider an arbitrary player i of game G that belongs to group Gj

and locates at pj. It is easy to verify that the utility of player i of game G in c
equals the utility of player j of game G ′ in c′, because each group consists of m
players. If player i of game G could increase her utility to ∆(pa, pb) by moving
to pa, then player j of game G ′ would also have a better response of pa to
increase her utility to ∆(pa, pb), which contradicts the assumption that c′ is a
Nash equilibrium of game G ′. Hence no player of game G in the configuration
c has a better response, and thus c is a Nash equilibrium for game G.

If m - k, we consider an arbitrary player i of game G that belongs to group Gj

and locates at pj. Suppose that the position of the m-th nearest neighbor of
player i in configuration c of game G is pu. It is easy to verify that pu is also
the position of the nearest neighbor of player j in configuration c′ of game G ′.
Suppose, for a contradiction, that player i of game G has a better response pa.
We consider the following cases.

Case 1: pa 6∈ {p1, . . . , pt}. Then in game G ′, player j could move to position pa

and strictly increase her utility, which contradicts the assumption that c′ is a
Nash equilibrium for game G ′.

Case 2: pa ∈ {p1, . . . , pt−1}. This is impossible because in game G, at each
position in {p1, . . . , pt−1}, there are m players, and if player i moves to pa 6= pj,
her m nearest neighbors are all at position pa and thus her utility would be
zero.

Case 3: pa = pt. Since group Gt has less than m players, the m-th nearest
neighbor of player i after her move is positioned at some point ps 6= pt. Since
this is a better response of player i in game G, we have ∆(pt, ps) > ∆(pj, pu).
It is easy to verify that ps is the position of the nearest neighbor of player t
in configuration c′ of game G ′. Thus we have that in game G ′ player t’s utility
in configuration c′ is larger than player j’s utility in c′, which contradicts our
selection of pt.

We reach contradictions in all three cases. Therefore, c must be a Nash equi-
librium of game G. 2

Although Nash equilibria always exist in single-selection isolation games, the
following lemma shows that they are not potential games.

Lemma 7 Let Ω = {A,B,C,D,E, F} contain six points on a one-
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Fig. 1. An example of a better-response sequence that loops forever for a five-player
isolation game with weight vector (0, 1, 0, 0) on a one dimensional circular space
with six points.

dimensional circular space with ∆(A,B) = 15, ∆(B, C) = 11, ∆(C, D) = 14,
∆(D,E) = 16, ∆(E, F ) = 13, and ∆(F,A) = 12. The five-player single-
selection game with the weight vector (0, 1, 0, 0) on Ω is not potential.

Proof: Let the five players stand at A, B, C, D, and E respectively in
the initial configuration. Their better response dynamics can iterate forever
as shown in Figure 1. Hence this game is not a potential game. 2

Surprisingly, the following theorem complements the previous lemma.

Theorem 8 If Ω is finite, then for any single-selection game on Ω and any
starting configuration c, there is a better-response sequence in the game that
leads to a Nash equilibrium.

Proof: Suppose that the nonzero weight entry is the mth entry in the
k-player single-selection isolation game with m > 1 (the case of m = 1 is
already covered in the nearest-neighbor isolation game). For any configuration
c = (p1, . . . , pk), the utility of player i is the distance between player i and her
mth nearest neighbor. Let vector ~u(c) = (u1, u2, . . . , uk) be the vector of the
utility values of all players in c sorted in nondecreasing order, i.e., u1 ≤ u2 ≤
. . . ≤ uk. We claim that for any configuration c, if c is not a Nash equilibrium,
there must exist a finite sequence of configurations c = c0, c1, c2, . . . , ct = c′,
such that ci+1 is the result of a better-response move of some player in ci for
i = 0, 1, . . . , t− 1 and ~u(c) < ~u(c′) in lexicographic order.

We now prove this claim. Since the starting configuration c0 = c is not a
Nash equilibrium, there exists a player i that can make a better response
move to position p, resulting in configuration c1. We have ut i(c0) < ut i(c1).
Let Si be the set of player i’s m − 1 nearest neighbors in configuration c1.
We now repeat the following steps to find configurations c2, . . . , ct. When in
configuration cj, we select a player aj in Si such that utaj

(cj) < ut i(c1) and
move aj to position p, the same position where player i locates. This gives
configuration cj+1. This is certainly a better-response move for aj because
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utaj
(cj+1) = ut i(cj+1) = ut i(c1) > utaj

(cj), where the second equality holds
because we only move the m − 1 nearest neighbors of player i in c1 to the
same position as i, so it does not affect the distance from i to her mth nearest
neighbor. The repeating step ends when there is no more such player aj in
configuration cj, in which case cj = ct = c′.

We now show that ~u(c) < ~u(c′) in lexicographic order. We first consider any
player j 6∈ Si. Either her utility does not change (ut j(c) = ut j(c

′)), or her
utility change must be due to the changes of her distances to player i and
players a1, a2, . . . , at−1, who have moved to position p. Suppose that player j
is at position q. Then ∆(p, q) ≥ ut i(c1) because j 6∈ Si. This means that if j’s
utility changes, her new utility ut j(c

′) must be at least ∆(p, q) ≥ ut i(c1). For
a player j ∈ Si, if she is one of {a1, . . . , at−1}, then her new utility ut j(c

′) =
ut i(c

′) = ut i(c1); if she is not one of {a1, . . . , at−1}, then by definition ut j(c
′) ≥

ut i(c1). Therefore, comparing the utilities of every player in c and c′, we know
that either her utility does not change, or her new utility is at least ut i(c

′) =
ut i(c1) > ut i(c), and at least player i herself strictly increases her utility
from ut i(c) to ut i(c

′). With this result, it is straightforward to verify that
~u(c) < ~u(c′). Thus, our claim holds.

We may call the better-response sequence found in the above claim an epoch.
We can apply the above claim to concatenate new epochs such that at the
end of each epoch the vector ~u strictly increases in lexicographic order. Since
the space Ω is finite, the vector ~u has an upper bound. Therefore, after a
finite number of epochs, we must be able to find a Nash equilibrium, and
all these epochs concatenated together form a better-response sequence that
leads to the Nash equilibrium. This is clearly true when starting from any
initial configuration. 2

We now consider a simple class of single-selection isolation games with weight
vector ~w = (0, 1, 0, . . . , 0), for which we are able to achieve the following
stronger result than Theorem 8.

Theorem 9 If Ω is finite, then for any isolation game with weight vector
~w = (0, 1, 0, . . . , 0) on Ω and any starting configuration c, there is a best-
response sequence in the game that leads to a Nash equilibrium.

Proof: Since the weight vector is ~w = (0, 1, 0, . . . , 0), for any configuration
c = (p1, p2, . . . , pk), the utility of player i is the distance between player i
and her second nearest neighbor. Let vector ~u(c) = (u1, u2, . . . , uk) be the
vector of the utility values of all players in c sorted in nondecreasing order,
i.e., u1 ≤ u2 ≤ . . . ≤ uk. We claim that for any configuration c, if c is not
a Nash equilibrium, there must exist a finite sequence of configurations c =
c0, c1, c2, . . . , ct = c′, such that ci+1 is the result of a best-response move of
some player in ci for i = 0, 1, . . . , t− 1 and ~u(c) < ~u(c′) in lexicographic order.
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We now prove this claim. Since the starting configuration c0 = c is not a Nash
equilibrium, there exists a player i that can make a best response move to
position p, resulting in configuration c1. We have ut i(c0) < ut i(c1). Suppose
that the nearest neighbor of player i in configuration c1 is player j1 and her
position is pj1 .

First we consider any player t such that t 6= j1, and suppose her position is pt

in both c0 and c1. We show that if ut t(c1) < ut t(c0), then ut t(c1) ≥ ut i(c1). If
this is not true, since only player i moves in configuration c0 resulting in c1, the
decrease of player t’s utility must be caused by the change in distance between
player i and player t, i.e., ∆(p, pt) ≤ ut t(c1). Then we have ∆(p, pt) ≤ ut t(c1) <
ut i(c1). Since player j1 is the nearest neighbor of i in c1, we have ∆(p, pj1) ≤
∆(p, pt) < ut i(c1). However, since the utility of player i is her distance to
the second nearest neighbor, we have ut i(c1) ≤ max(∆(p, pt), ∆(p, pj1)), a
contradiction.

Thus, we know from above that for any player t 6= j1, her utility either does
not decrease, or decreases but is still at least ut i(c1). Now consider player j1.
If ut j1(c1) ≥ ut i(c1), then it is easy to verify that ~u(c0) < ~u(c1). In this case,
let c′ = c1 and we are done.

Suppose now that ut j1(c1) < ut i(c1). We select player j1 for the next best
response move. Suppose player j1 has a best response position q and the
configuration changes to c2. Note that player j1 could move to position p and
overlap with player i, in which case her new utility is ut j1(c2) = ut i(c1). Thus
we know that ut j1(c2) ≥ ut i(c1). If ut j1(c2) = ut i(c1), we can select q to be p,
i.e., overlapping j1 with i to achieve the best utility. In this case, it is again
easy to verify that ~u(c0) < ~u(c2), and we let c′ = c2 and we are done. If
ut j1(c2) > ut i(c1), suppose j2 is the nearest neighbor of j1 in configuration c2.
We can repeat the above argument on j2 in configuration c2, and so on.

The above iteration either stops after a finite number of rounds, in which case
we find a sequence of configurations c = c0, c1, c2, . . . , ct = c′ such that ci+1 is
the result of a best response move of some player in ci for i = 0, 1, . . . , t − 1,
and ~u(c) < ~u(c′) in lexicographic order, or it continues infinitely often, in
which case we find an infinite sequence of configurations c0, c1, c2, . . . as well
as an infinite sequence of players i, j1, j2, . . . such that ut i(c1) < ut j1(c2) <
ut j2(c3) < . . .. The latter cannot be true, because the space is finite and
bounded, the utility (or the distance) sequence cannot increase forever. Thus,
our claim holds.

We may call the best-response sequence found in the above claim an epoch.
We can apply the above claim to concatenate new epochs such that at the
end of each epoch the vector ~u strictly increases in lexicographic order. Since
the space Ω is finite, the vector ~u has an upper bound. Therefore, after a
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finite number of epochs, we must be able to find a Nash equilibrium, and all
these epochs concatenated together form a best-response sequence that leads
to the Nash equilibrium. This is clearly true when starting from any initial
configuration. 2

4.2 Monotonically-increasing Games

For monotonically-increasing games, we provide the following general condi-
tion that guarantees the existence of a Nash equilibrium. We say that a pair
of points u, v ∈ Ω is a pair of polar points if for any point w ∈ Ω, the in-
equality ∆(u,w) + ∆(w, v) ≤ ∆(u, v) holds. We refer to spaces with a pair
of polar points as polarized spaces, which include n-dimensional sphere (one-
dimensional circular space being a special case), n-dimensional grid with L1

norm as its distance function, etc.

Theorem 10 If Ω has a pair of polar points, then any monotonically-
increasing isolation game on Ω has a Nash equilibrium.

Proof: Consider the k-player monotonically-increasing game with weight
vector ~w = (w1, . . . , wk−1) on Ω, where w1 ≤ w2 ≤ . . . ≤ wk−1. Let (u, v) be a
pair of polar points of Ω. Construct the following configuration c = (p1, . . . , pk)
such that p1 = . . . = pd k

2
e = u and pd k

2
e+1 = . . . = pk = v. We show below that

c is a Nash equilibrium.

First we prove that for any player j at u, she has no better response in c. By
definition, her utility in configuration c is

ut j(c) =
k−1∑

i=d k
2
e
wi∆(u, v)

If player j moves to position w with ∆(u,w) ≤ ∆(w, v) to obtain a new
configuration c′, then her new utility is

ut j(c
′) =

d k
2
e−1∑

i=1

wi∆(u,w) +
k−1∑

i=d k
2
e
wi∆(w, v)

≤∆(u,w)
k−1∑

i=d k
2
e
wi + ∆(w, v)

k−1∑

i=d k
2
e
wi

(since the weight vector is monotonically increasing)

≤∆(u, v)
k−1∑

i=d k
2
e
wi = ut j(c) (since (u, v) is a pair of polar points)
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If player j moves to w with ∆(u,w) > ∆(w, v) to obtain a new configuration
c′′, then her new utility is

ut j(c
′′) =

b k
2
c∑

i=1

wi∆(w, v) +
k−1∑

i=b k
2
c+1

wi∆(u,w)

≤∆(w, v)
k−1∑

i=d k
2
e
wi + ∆(u,w)

k−1∑

i=d k
2
e
wi

≤∆(u, v)
k−1∑

i=d k
2
e
wi = ut j(c)

Therefore, in either case, the utility of j does not increase after her move, and
thus j has no better response in c.

In a similar manner, we can show that players at position v do not have better
responses either. Therefore, configuration c is a Nash equilibrium. 2

4.3 Monotonically-decreasing Games

Monotonically-decreasing games are more difficult to analyze than the pre-
vious variants of isolation games, and general results are not yet available.
In this section, we first present a positive result for monotonically-decreasing
games in a continuous one-dimensional circular space. We then present some
hardness result for a simple type of weight vectors in general symmetric spaces.

The following theorem is a general result with monotonically-decreasing games
as its special cases.

Theorem 11 In a continuous one-dimensional circular space Ω, the isola-
tion game on Ω with weight vector ~w = (w1, w2, . . . , wk−1) always has a Nash
equilibrium if

∑k−1
t=1 (−1)twt ≤ 0.

Proof: Assume without loss of generality that the length of the full one-
dimensional circle is k. We consider the configuration c = (p1, p2, . . . , pk) where
∆(pk, p1) = ∆(pi, pi+1) = 1 for 1 ≤ i ≤ k − 1 . We show below that c is a
Nash equilibrium for the weight vector satisfying the condition in the theorem
statement.

In configuration c, the distance vector of player i is ~di = (1, 1, 2, 2, 3, 3, . . .),

and her utility is ~wi · ~di. Suppose that player i moves from pi to pi
′ and

∆(pi, p
′
i) = j + ε where j = 0, 1, . . . , b(k − 1)/2c, and 0 ≤ ε < 1. Note that

there are in general two points on the circle having the same distance to pi,

15



and since they are symmetric, the analysis of these two cases is the same. Let
the new distance vector of player i after the move be ~d′i.

Case 1. 0 ≤ ε ≤ 1/2. In this case, we have

~d′i = (ε, 1− ε, 1 + ε, 2− ε, . . . , j − 1 + ε, j − ε︸ ︷︷ ︸
2j

, j + 1− ε, j + 1 + ε, j + 2− ε, . . .︸ ︷︷ ︸
k−1−2j

).

And the difference of ~di and ~d′i is

~d′i − ~di = (ε− 1,−ε, ε− 1,−ε, . . . , ε− 1,−ε︸ ︷︷ ︸
2j

,−ε, ε,−ε, ε, . . .︸ ︷︷ ︸
k−1−2j

).

Therefore, we have

~w · (~d′i − ~di)≤−ε
2j∑

t=1

wt + ε
k−1∑

t=2j+1

(−1)twt

(since ε− 1 ≤ −ε when 0 ≤ ε ≤ 1/2)

≤ ε
k−1∑

t=1

(−1)twt ≤ 0

This means that in this case the move of player i does not improve her utility.

Case 2. 1/2 < ε < 1. Note that in this case, when k is odd, j is at most
(k− 3)/2, since, the largest distance to pi is (k− 1)/2+1/2, implying ε ≤ 1/2
when j = (k − 1)/2. Thus k − 2j − 2 ≥ 0. In this case, we have

~d′i = (1− ε, ε, 2− ε, 1 + ε, . . . , j − 1 + ε, j + 1− ε︸ ︷︷ ︸
2j+1

, j + 2− ε, j + 1 + ε, j + 3− ε, . . .︸ ︷︷ ︸
k−2j−2

).

Furthermore, we have

~d′i − ~di = (−ε, ε− 1,−ε, ε− 1, . . . , ε− 1,−ε︸ ︷︷ ︸
2j+1

, 1− ε, ε− 1, 1− ε, ε− 1, . . .︸ ︷︷ ︸
k−2j−2

)

Therefore, we have

~w · (~d′i − ~di)≤−(1− ε)
2j+1∑

t=1

wt + (1− ε)
k−1∑

t=2j+2

(−1)twt

(since − ε < ε− 1 when 1/2 < ε < 1)

≤ (1− ε)
k−1∑

t=1

(−1)twt ≤ 0

Thus the move of player i does not improve her utility either in this case.
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Combining the two cases above, we conclude that configuration c is a Nash
equilibrium. 2

A monotonically-decreasing isolation game with weight vector ~w =
(w1, w2, . . . , wk−1) automatically satisfies the condition

∑k−1
t=1 (−1)twt ≤ 0.

Hence we have the following corollary.

Corollary 12 In a continuous one-dimensional circular space Ω, any
monotonically-decreasing isolation game on Ω has a Nash equilibrium.

We now consider a simple class of monotonically-decreasing games with weight
vector ~w = (1, 1, 0, . . . , 0) and characterize the Nash equilibria of the isolation
game in a continuous one-dimensional circular space Ω. Although the game has
a Nash equilibrium in a continuous one-dimensional circular space according
to the above corollary, it is not potential, as shown by the following lemma.

Lemma 13 Consider Ω = {A,B,C,D,E, F} that contains six points in a
one-dimensional circular space with ∆(A,B) = 13, ∆(B, C) = 5, ∆(C, D) =
10, ∆(D,E) = 10, ∆(E, F ) = 11, and ∆(F,A) = 8. The five-player
monotonically-decreasing game on Ω with weight vector ~w = (1, 1, 0, 0) is not
best-response potential (so not better-response potential either). This implies
that the game on a continuous one-dimensional circular space is not better-
response potential.

Proof: Suppose that these five players stand at A, B, C, D, and E

Fig. 2. An example of a best-response sequence that loops forever for a five-player
isolation game with weight vector (1, 1, 0, 0) on a one dimensional circular space
with six points.

respectively in the initial configuration. Their best response dynamics can
iterate forever as shown in Figure 2. Therefore, this special isolation game is
not best-response potential on Ω. 2

Even though the game is not potential, there exists a best-response sequence
that converges to a Nash equilibrium starting from any configuration. This is
similar to Theorem 8 for single-selection games, except that here the sequences
are best-response ones, which are stronger than better-response ones.
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Theorem 14 For the monotonically-decreasing isolation game with weight
vector ~w = (1, 1, 0, . . . , 0) in a continuous one-dimensional circular space Ω,
from any configuration c, there exists a sequence of best-response moves in
which each player makes at most one best-response move and the sequence
ends in a Nash equilibrium.

Proof: Without loss of generality, we represent Ω as real points from 0
to 1 with 1 wrapped around to be the same as 0, and thus the position q of
any player is a real value with 0 ≤ q < 1. We define clockwise distance α in
Ω to be α(x, y) = y − x if x ≤ y and α(x, y) = 1 − x + y if x > y. Note that
∆(x, y) = min(α(x, y), α(y, x)), so the two distances are different. An arc from

x to y, denoted as
a
a(x, y), is the portion of Ω from x to y in the clockwise

direction, i.e.,
a
a(x, y) = {z ∈ Ω | α(x, z) ≤ α(x, y)}.

Given a configuration c = (p1, p2, . . . , pk), we sort the positions of all k players
in increasing order, breaking ties with players’ identifiers, giving us a vector of
positions (q1, q2, . . . , qk) with q1 ≤ q2 ≤ . . . ≤ qk, and a corresponding vector of
players (a1, a2, . . . , ak). For i ∈ {1, 2, . . . , k}, define i+ = i+1, and i− = i−1,
except that k+ = 1 and 1− = k. For every qi, we denote succc(qi) = qi+ and
predc(qi) = qi−. We say that each player ai is adjacent to two players ai− and
ai+.

After the above preparation, we are now ready to proceed with the proof. Sup-
pose that player i located at position pi in configuration c has a best response
p′i, giving a new configuration c′. Let pa = predc(pi), pb = succc(pi), pc =

predc′(p
′
i), and pd = succc′(p

′
i). Let p′′i be the middle point of the arc

a
a(pc, pd),

i.e., α(pc, p
′′
i ) = α(pc, pd)/2. We claim that p′′i must also be a best response of

player i in c, and α(pa, pb) ≤ α(pc, pd). This is because, in c′, there are at least
one player at pc and one player at pd, so ut i(c

′) ≤ ∆(pc, p
′
i) + ∆(p′i, pd) ≤

α(pc, p
′
i) + α(p′i, pd) = α(pc, pd). On the other hand, if player i moves to

p′′i to give configuration c′′, we have ut i(c
′′) = ∆(pc, p

′′
i ) + ∆(p′′i , pd) =

α(pc, p
′′
i ) + α(p′′i , pd) = α(pc, pd). The first equality holds because with player

i at the middle point in arc
a
a(pc, pd), the two players on pc and pd must

be the two nearest players to i in c′′, while the second equality holds be-
cause α(pc, p

′′
i ) = α(p′′i , pd) ≤ 1/2, so they are the same as the correspond-

ing ∆ distances. Therefore, we have ut i(c
′′) ≥ ut i(c

′). Since p′i is already a
best response of i in c, p′′i must also be a best response of i in c. Finally, if

α(pa, pb) > α(pc, pd), i would be able to move to the middle point of
a
a(pa, pb)

to gain a utility α(pa, pb) > α(pc, pd) ≥ ut i(c
′), contradicting the fact that c′

is the result of i’s best response move in c. Thus α(pa, pb) ≤ α(pc, pd).

With the above claim, we only need to focus on a best response that is at the
middle point of two adjacent players. Henceforth, we refer to these as middle-
point best responses. We denote maxarc(c) as the length of the maximum
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arc of two adjacent players in configuration c, that is, for c = (p1, p2, . . . , pk),
maxarc(c) = max{α(pi, succc(pi)) | i = 1, 2, . . . , k}. Next we claim that if
configuration c′ is the result of a middle-point best response move of some
player in configuration c, then maxarc(c′) ≤ maxarc(c).

Suppose, for a contradiction, that maxarc(c′) > maxarc(c). Let player i be
the one that makes a best response move in c. Let pi be the position of i in c,
and let pa = predc(pi) and pb = succ(pi). Let p′i be the position of i in c′. There

are two cases. In the first case, p′i is not in the arc
a
a(pa, pb). In this case, all

arcs of two adjacent players in c remain the same or decrease in length, except
a
a(pa, pb), so by maxarc(c′) > maxarc(c) we have α(pa, pb) = maxarc(c′),
which is strictly greater than all other arcs in c. However, this would imply that
player i’s middle-point best response has to be the middle point of α(pa, pb),

which means p′i is still in the arc
a
a(pa, pb), a contradiction. In the second

case, we consider that p′i is still in the arc
a
a(pa, pb). The only arc length

changes are from α(pa, pi) and α(pi, pb) to α(pa, p
′
i) and α(p′i, pb). However, we

know that p′i is the middle point of arc
a
a(pa, pb), so max(α(pa, pi), α(pi, pb)) ≥

α(pa, p
′
i) = α(p′i, pb). Thus maxarc(c′) ≤ maxarc(c). Therefore, the claim that

maxarc(c′) ≤ maxarc(c) holds.

We now consider a player i who takes a middle-point best response move in a
configuration c, resulting in c′. We claim that for all subsequent middle-point
best response sequence starting from c′ resulting in c′′, both of the two adjacent
arcs of player i in c′′ have lengths at least maxarc(c′′)/2. We prove this claim
by an induction on the number k of moves in the middle-point best response
sequence starting in c′. In the base case k = 0, which means we consider c′.
Since i just made a middle-point best response move, her two adjacent arcs
in c′ are of equal length, and the combined length must be maxarc(c). From
the previous claim, maxarc(c) ≥ maxarc(c′), so each adjacent arc of i in c′

is at least maxarc(c′)/2. Hence the base case is true. We now show that the
case of k + 1 is true if the case of k is true. If the (k + 1)th move is again
by player i, then she moves to the middle point of the longest arc, and the
case is the same as the base case. Let us now consider that a player j 6= i
makes the (k + 1)th move. Suppose the configuration after k middle-point
best responses is ck, and the configuration after one more middle-point best
response is ck+1. Let pi be the position of i in both ck and ck+1. Let pa =
predck

(pi) and pc = predck+1
(pi). If α(pa, pi) ≤ α(pc, pi), then by induction

hypothesis α(pc, pi) ≥ α(pa, pi) ≥ maxarc(ck)/2. By the previous claim we
showed, maxarc(ck) ≥ maxarc(ck+1), so we have α(pc, pi) ≥ maxarc(ck+1)/2.
If α(pa, pi) > α(pc, pi), it must be that player j moves to pc as her best

response in ck. Then pc is the middle point of
a
a(pa, pi), and because pc is j’s

best response in ck, α(pc, pi) = maxarc(ck)/2 ≥ maxarc(ck+1)/2. Therefore,

in ck+1 player i’s adjacent arc
a
a(pc, pi) must be at least maxarc(ck+1)/2. The
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other adjacent arc of i can be argued symmetrically. Hence the claim is true.

We are now ready to construct the best response sequence leading to a Nash
equilibrium from any configuration c. Initially let S = {1, 2, . . . , k} be the set
of all players, and let c0 = c. In each round i = 1, 2, . . . , find a player ji ∈ S
that can make a best response move in ci−1. If no such player exists, then let
ci−1 = c′ and we find the best response sequence c0, c1, . . . , ci−1 = c′. We will
show that c′ is a Nash equilibrium. If such a player exists, remove ji from S,
let ji take a middle-point best response resulting in a configuration ci, and
then we go to round i+1. Suppose that the sequence ends at ct = c′. We have
t ≤ k since each player makes at most one move in the sequence.

We now show that c′ is a Nash equilibrium. Suppose, for a contradiction, that
this is not true, which means there exists a player l who could make a best
response move in c′. Then this player l cannot be in S, since otherwise we will
continue the iteration. Therefore player l makes one move in the sequence, and
suppose that she ends at position pl. Let pa = predc′(pl) and pb = succc′(pl).
From the previous claim, we know that α(pa, pl) ≥ maxarc(c′)/2 and
α(pl, pb) ≥ maxarc(c′)/2. This means that α(pa, pb) ≥ maxarc(c′), and if l has
a best response in c′, she always has a middle-point best response by moving to

the middle point p′l of arc
a
a(pa, pb). Since l’s utility strictly increases, we know

that pl 6= p′l, and in c′ there must be another player j closer to l than one of the
players at pa and pb. Without loss of generality, suppose that j is positioned
at pj in c′ such that pj = predc′(pa) and α(pj, pl) < α(pl, pb). Since α(pj, pl) =
α(pj, pa) + α(pa, pl), α(pa, pl) ≥ maxarc(c′)/2, and α(pl, pb) ≤ maxarc(c′), we
have α(pj, pa) < maxarc(c′)/2. Suppose that player s is positioned at pa in
c′. From α(pj, pa) < maxarc(c′)/2, we know that player s does not make a
move in the middle-point best response sequence from c0 to ct = c′, because
otherwise by the previous claim we must have α(pj, pa) ≥ maxarc(c′)/2. So s
is still in S when we conclude the sequence at ct = c′. However, in c′, we have
uts(c

′) ≤ α(pj, pa) + α(pa, pl) = α(pj, pl) < α(pl, pb), so player s may move to

the middle of
a
a(pl, pb) and obtain a better utility α(pl, pb). This means that

we can still find a player s in S that has a better (and thus best) response
in c′, contradicting the terminating condition of the sequence ending at c′.
Therefore, c′ must be a Nash equilibrium. It is clear that in the sequence ev-
ery player makes at most one move. This concludes the proof of the theorem.
2

If we extend from the one-dimensional circular space to a general symmetric
space, there may be no Nash equilibrium for isolation games with weight vector
~w = (1, 1, 0, . . . , 0) at all, as shown in the following lemma.

Lemma 15 There is no Nash equilibrium for the four-player isolation game
with weight vector ~w = (1, 1, 0) in the space with five points {A,B,C,D,E}
and the following distance matrix, where N > 21 (note that this distance
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function also satisfies the triangle inequality).




∆ A B C D E

A 0 N − 6 N − 11 N − 1 N − 6

B N − 6 0 N − 8 N − 10 N − 1

C N − 11 N − 8 0 N − 1 N − 6

D N − 1 N − 10 N − 1 0 N − 10

E N − 6 N − 1 N − 6 N − 10 0




Proof: Because the number of players is k = 4 and |Ω| = 5, there exists at
least one free point not occupied by any player in any configuration c. Now we
will consider an arbitrary configuration c and show that it cannot be a Nash
equilibrium.

If there exist two players i and j standing at the same point in c, then the
utilities of player i and j are at most N − 1. However, player i could achieve
utility at least 2N − 20 by moving to a free point. Since N > 21, we have
2N − 20 > N − 1. Hence a configuration with two players standing at the
same point could not be a Nash equilibrium.

If the four players stand at different points in c, then we consider the remaining
free point. There are five cases.

Case 1: the free point is A. The player standing at B has utility 2N − 18, and
she could achieve utility 2N − 17 if she moves to A.

Case 2: the free point is B. The player standing at C has utility 2N − 17, and
she could achieve utility 2N − 16 if she moves to B.

Case 3: the free point is C. The player standing at D has utility 2N − 20, and
she could achieve utility 2N − 19 if she moves to C.

Case 4: the free point is D. The player standing at E has utility 2N − 12, and
she could achieve utility 2N − 11 if she moves to D.

Case 5: the free point is E. The player standing at A has utility 2N − 17, and
she could achieve utility 2N − 16 if she moves to E.

Combining the five cases above, a configuration with four players standing at
different points is not a Nash equilibrium either. Therefore, there is no Nash
equilibrium for the isolation game in this space. 2

Using the above lemma as a basis, we further show that it is NP-complete
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to decide whether an isolation game with weight vector (1, 1, 0, . . . , 0) on a
general symmetric space has a Nash equilibrium. The proof is by reduction
from the 3-Dimensional Matching problem.

Theorem 16 In a finite symmetric space (Ω, ∆), it is NP-complete to decide
the existence of a Nash equilibrium for the isolation game with weight vector
~w = (1, 1, 0, . . . , 0).

Proof: It is straightforward to verify that the problem is in NP. We prove
NP-hardness by reduction from the 3-Dimensional Matching problem.

An instance of the 3-Dimensional Matching problem includes three disjoint
sets X, Y and Z (each of size n) and a set T = {T1, . . . , Tm} ⊆ X × Y ×Z of
ordered triples. The decision problem is to decide whether there are n triples
in T so that each element of X ∪ Y ∪ Z is contained in exactly one of these
triples. The construction of an instance of the isolation game from the above
3-Dimensional Matching instance is given below.

The finite symmetric space Ω has m + 5n points, divided into a left set L =
{v1, v2, . . . , vm} and n right sets R1, . . . , Rn such that Ri = {ui1, ui2, . . . , ui5}
for 1 ≤ i ≤ n. Select a number N > 46. For any two different points vi, vj ∈ L,
∆(vi, vj) = N if Ti and Tj have no common element, and ∆(vi, vj) = N/2 + 1
otherwise. The distance within each Ri is given by the distance matrix in
Lemma 15 with ui1 = A, . . . , ui5 = E. For any v ∈ L and u ∈ Ri, ∆(u, v) =
∆(v, u) = N and for any u ∈ Ri and u′ ∈ Rj with i 6= j, ∆(u, u′) = N . Finally,
the isolation game on Ω has 4n players.

We claim that there exists a Nash equilibrium for this isolation game on Ω if
and only if there are n disjoint triples in the 3-Dimensional Matching instance.

First, suppose that there is a solution to the 3-Dimensional Matching instance.
Without loss of generality, assume that the n disjoint triples are T1, . . . , Tn.
Then we claim that configuration c = (v1, . . . , vn, u11, . . . , un1, u12, . . . , un2,
u15, . . . , un5) is a Nash equilibrium. In this configuration, every player in L
has utility 2N . Since it is the maximum possible utility, no player in L would
want to change. Consider a player in Ri. Her utility is at least 2N − 12. If
she moves to some point vj in L, then because Tj at least intersects with one
of T1, . . . , Tn, the maximum utility she may obtain is 3N/2 < 2N − 12 since
N > 46. So she will not move to L. If she moves to some other point in some
Rj, using the distance matrix in Lemma 15, it is easy to verify that she will
not gain any better utility either. Hence c is a Nash equilibrium.

Conversely, suppose that there is a Nash equilibrium in the isolation game.
Because k = 4n, |Ω| = 5n + m and |L| = m , there exist at least n free points
not occupied by any player in the right sets in any configuration.
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Consider the number of players positioned in the right set Ri. If there is a
Nash equilibrium c, then the number of players positioned in Ri cannot be 4
because of Lemma 15. We show that Ri has at most three players by arguing
that the following two cases are impossible.

Case 1: There are more than five players positioned in Ri. Then there exist
two players standing at the same point, and their utilities are at most N − 1.
Hence each of them would like to move to a free point to obtain a better utility
of at least 2(N/2 + 1).

Case 2: There are five players positioned in Ri. If two or more players choose
the same point, then it is the same as Case 1. If the five players are positioned
in different points in Ri, then there must exist another right set Rj in which
at most three players are positioned. Hence there are at least two free points
in Rj. Select a free point ujs 6= uj4. The player at ui4 could increase her utility
value from 2N − 20 to at least 2N − 19 by moving to ujs.

Therefore, we know that every right set Ri contains at most three players in
c, which means that there are at least n players positioned in L. Without loss
of generality, we assume that there are n players who occupy points v1, . . . , vn

(which may have duplicates). We claim that triples T1, . . . , Tn form a solution
to the 3-Dimensional Matching problem. Suppose, for a contradiction, that
this is not true, which means that there exist Ti and Tj among these n triples
that have some common element. By our construction, we have ∆(vi, vj) = 0
or N/2 + 1. Then the utility of the player positioned at vi or vj is at most
3N/2 + 1. In this case, both of them would want to move to a free point in
a right set, since that will give them a utility of at least 2(N − 11). When
N > 46, we have 2(N −11) > 3N/2+1. This contradicts the assumption that
c is a Nash equilibrium. Therefore, we find a solution for the 3-Dimensional
Matching problem given a Nash equilibrium c of the isolation game. 2

5 Computation of Best Responses in High Dimensional Spaces

We now turn to the problem of computing the best response of a player in a
configuration. A brute-force search on all points in the space can be done in
O(k log k

√
D), where D is the size of the distance matrix. This is fine if the

distance matrix is explicitly given as input. However, it could become expo-
nential if the space has a compact representation, such as an n-dimensional
grid with the L1 norm as the distance function. In this section, we present
results in an n-dimensional hypercube {0, 1}n with the Hamming distance, a
special case of n-dimensional grids with the L1 norm.

Theorem 17 In a 2n-dimensional hypercube {0, 1}2n, it is NP-complete to
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decide whether a player could move to a point so that her utility is at least n−1
in the k-player nearest-neighbor isolation game with k bounded by poly(n).

Proof: Computing the distance between a pair of vertices in {0, 1}2n can
be done in O(n) time. Since k is bounded by poly(n), verifying whether a
player is at least n− 1 away from all her neighbors can be done in polynomial
time. Hence this problem is in NP.

We prove the NP-hardness by reduction from the NAE-3-SAT problem. NAE-
3-SAT stands for ”Not All Equal” 3SAT. An instance of NAE-3-SAT (which
is a CNF formula) has m clauses C1, C2, . . . , Cm, where each clause consists
of three literals and there are n variables x1, . . . , xn in total. The decision
problem is to decide whether there is a feasible assignment such that the CNF
formula is satisfied and no clause of the formula has all literals evaluated to
the same value. The construction of a configuration c of the nearest-neighbor
isolation game from the above NAE-3-SAT instance is given below.

The space Ω is the 2n-dimensional hypercube {0, 1}2n, so that each point in Ω
is determined by 2n bits. The nearest-neighbor isolation game has 4m(n−2)+1
players, divided into m+1 sets S1, . . . , Sm, Sm+1. The set Sm+1 consists of only
one player who is going to compute a better response, so her initial position
does not matter. The set Si (i 6= m+1) consists of 4(n−2) players. Clause Ci

corresponds to Si, with 4(n − 2) players positioned at pi,1, . . . , pi,4(n−2) in Ω.
Since each point pi,j is determined by 2n bits, we partition these 2n bits into
n consecutive pairs such that the kth pair stands for the (2k − 1)th and 2kth

bits of pi,j. We now show how to determine the 2n bits of pi,j given clause Ci.

Case 1: 1 ≤ j ≤ 2(n− 2). We first fix the three pairs of pi,j corresponding to
the three literals of Ci, in the following way:

• If Ci contains the literal xk, then the kth pair of pi,j is 11.
• If Ci contains the literal x̄k, then the kth pair of pi,j is 00.

We then fix the remaining n − 3 pairs. In the following description, the kth

remaining pair means the kth pair after excluding the three pairs already
determined above.

• If j = 1, then all the n− 3 remaining pairs are 01.
• If j = 2, then all the n − 3 remaining pairs are 10, i.e., flipping the bits of

all n− 3 remaining pairs in pi,1.
• If j = 2k + 1 for 1 ≤ k ≤ n − 3, the kth remaining pair is 10 and all other

n− 4 remaining pairs are 01.
• If j = 2k +2 for 1 ≤ k ≤ n− 3, flipping the bits of all n− 3 remaining pairs

in pi,j−1.
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Case 2: 2(n − 2) + 1 ≤ j ≤ 4(n − 2). In this case, pi,j is obtained by flipping
all bits of pi,j−2(n−2).

Here we have fixed the 2n bits for all pi,j such that 1 ≤ i ≤ m and 1 ≤ j ≤
4(n−2). We claim that there exists a p0 in Ω such that mini,j ∆(p0, pi,j) ≥ n−1
if and only if there is a feasible assignment for the NAE-3-SAT instance.

First, suppose that there is a feasible assignment for the NAE-3-SAT in-
stance. Then we fix the n pairs of p0 in the following way, and claim that
mini,j ∆(p0, pi,j) ≥ n− 1.

• If xi is 0 in this feasible assignment, then let the ith pair of p0 be 00.
• If xi is 1 in this feasible assignment, then let the ith pair of p0 be 11.

Consider an arbitrary point pi,j whose corresponding clause Ci contains three
variable xa, xb and xc. Therefore, the ath, bth and cth pairs of pi,j are either 00
or 11, and the remaining pairs are either 01 or 10. Since p0 is fixed according
to a solution of NAE-3-SAT, p0 and pi,j have at least one and at most two
common pairs among the ath, bth, and cth pairs. Hence these three pairs could
contribute two to ∆(p0, pi,j). For each of the remaining n−3 pairs, p0 is either
11 or 00, and pi,j is either 01 or 10. Thus the remaining n − 3 pairs will
contribute n− 3 to ∆(p0, pi,j). Therefore, ∆(p0, pi,j) ≥ 2 + (n− 3) = n− 1 for
any 1 ≤ i ≤ m and 1 ≤ j ≤ 4(n− 2).

Conversely, suppose that there is a point p0 such that ∆(p0, pi,j) ≥ n − 1 for
any 1 ≤ i ≤ m and 1 ≤ j ≤ 4(n − 2). We first show that each pair of p0 is
either 00 or 11. Suppose, for a contradiction, that at least one pair in p0 is
neither 00 nor 11.

Case 1: Only one pair in p0 is neither 00 nor 11. Let this pair be the kth

pair, and its value is 01 (the argument for 10 is symmetric). There must exist
a clause Ci that does not contain variable xk, otherwise all clauses contain
variable xk and the instance is solvable in P . Suppose that Ci contains variables
xa, xb, and xc. We look at the remaining n − 3 pairs of p0 excluding the ath,
bth, and cth pairs. Consider position pi,1, whose n − 3 remaining pairs are all
01. The number of bits that are different between p0 and pi,1 in these n − 3
remaining pairs is n − 4, since the kth pairs are the same, while each other
pairs differ in exactly one bit. The number of bits that are different between
p0 and pi,1 in the ath, bth, and cth pairs could be 0, 2, 4 or 6, since all these
pairs are either 00 or 11. If it is 0 or 2, then ∆(p0, pi,1) ≤ n − 4 + 2 < n − 1.
If it is 4 or 6, then we instead use pi,2(n−2)+2, whose ath, bth, and cth pairs are
flipped from pi,1 while the remaining n− 3 pairs are the same as pi−1. In this
case, ∆(p0, pi,2(n−2)+2) ≤ n − 4 + 2 < n − 1. Therefore, we can always find a
position pi,j such that ∆(p0, pi,j) < n− 1, contradicting the choice of p0.
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Case 2: At least two pairs in p0 are neither 00 nor 11. Let the kth and the sth

pairs be such two pairs. There must exist a clause Ci that does not contain
variable xk and xs, otherwise all clauses contain variable xk or xs and the
instance is solvable in P . Suppose that Ci contains variables xa, xb, and xc.
We look at the remaining n− 3 pairs of p0 not containing the ath, bth, and cth

pairs. Suppose that these n− 3 remaining pairs contain t1 number of 00 or 11
pairs, t2 number of 01 pairs, and t3 number of 10 pairs, with t1+t2+t3 = n−3.
Without loss of generality we assume that t2 ≥ t3 (the argument for t2 ≤ t3 is
symmetric). Moreover, since the kth and sth pairs are in the n − 3 remaining
pairs, we have t1 ≤ n − 5. By the construction of the 4(n − 2) positions of
pi,1, . . . , pi,4(n−2), we first find a position pi,j with 1 ≤ j ≤ 2(n − 2) with
the following property: (a) if t3 = 0, then all the n − 3 remaining pairs of
pi,j are 01 (actually j = 1 in this case); and (b) if t3 ≥ 1 with the `th pair
being 10, then all the n− 3 remaining pairs of pi,j are 01 except that the `th

pair is 10. With this selection of pi,j, the number of different bits between p0

and pi,j in the n − 3 remaining pairs is t1 when t3 = 0 and t1 + 2(t3 − 1)
when t3 ≥ 1. For the former, we already have t1 ≤ n − 5, and for the latter,
t1 + 2(t3 − 1) ≤ t1 + t2 + t3 − 2 = n− 5. So they differ in at most n− 5 bits
among the n−3 remaining pairs. For the ath, bth, and cth pairs, if they differ in
at most 3 bits, then we have ∆(p0, pi,j) ≤ n−5+3 < n−1. If they differ in at
least 4 bits, then let j′ = j+2(n−2)+(−1)j+1, and it is easy to verify that pi,j′

flips all bits from pi,j in the ath, bth, and cth pairs while has the same bits as
pi,j in the remaining n−3 pairs. Then we have ∆(p0, pi,j′) ≤ n−5+3 < n−1.
Thus, we can always find a pi,j whose distance to p0 is less than n − 1, a
contradiction.

Therefore all pairs of p0 are either 00 or 11. Then we can construct an assign-
ment according to p0 and prove that this assignment is a feasible solution for
the NAE-3-SAT instance. The assignment is as follows.

• If the ith pair in p0 is 00, then we assign 0 to xi.
• If the ith pair in p0 is 11, then we assign 1 to xi.

To show that the above assignment is a solution, consider an arbitrary clause
Ci. Comparing p0 with pi,1, we know that they differ in exactly n−3 bits in the
n−3 remaining pairs excluding the three pairs corresponding to Ci’s variables.
For the three pairs corresponding to the three variables, they cannot differ in
0 pair or 3 pairs. If they differ in 0 pair, then ∆(p0, pi,1) = n − 3 < n − 1;
if they differ in 3 pairs, then taking pi,1+2(n−2), we have ∆(p0, pi,1+2(n−2)) =
n− 3 < n− 1, both contradicting the choice of p0. So p0 and pi,1 differ in one
or two pairs. This means exactly that the above assignment will make one or
two literals true but not all of them or none of them. Since this is true for all
clauses, it shows that the assignment is a solution to the NAE-3-SAT problem.
2
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The above theorem leads to the following hardness result in computing best
responses for a general class of isolation games, with the nearest-neighbor
game as a special case.

Corollary 18 It is NP-hard to compute a best response for an isolation game
in the space {0, 1}2n with weight vector ~w = (∗, . . . , ∗, 1︸ ︷︷ ︸

c

, 0, . . . , 0) where c is a

constant and ∗ is either 0 or 1.

Proof: If we want to compute a best response for a player x with weight
vector ~w′ = (1, 0, . . . , 0), we can construct a configuration of the isolation game
with weight vector ~w = (∗, . . . , ∗, 1, 0, . . . , 0). In the new game, we replace each
player except x by c new players on the same point. And we can see that a
best response for player x in the new game with weight vector ~w is just a
best response in the original game with weight vector ~w′. If we can compute
a best response for the game with ~w efficiently, then we can compute a best
response for the game with ~w′ efficiently. However, Theorem 17 implies that it
is NP-hard to compute a best response for ~w′, so it is also NP-hard to compute
a best response for ~w. 2

Contrasting to the above corollary, if the weight vector has only nonzero entries
towards the end of the vector, it is easy to compute the best response, as shown
in the following theorem.

Theorem 19 A best response for a k-player isolation game in the space
{0, 1}n with ~w = (0, . . . , 0, 1, ∗, . . . , ∗︸ ︷︷ ︸

c

) can be computed in polynomial time

where c is a constant, k is bounded by poly(n) and ∗ is either 0 or 1.

Proof: Consider a configuration κ = (p1, . . . , pk) in {0, 1}n with player i
positioned at pi for all 1 ≤ i ≤ k. And here we consider player k positioned
at pk. Let ~wc be the vector of c entries that are the last c entries of ~w. We
give the following algorithm that computes a best response p′k of player k in
configuration κ, and we prove that its running time is bounded by poly(n).

Step 1: Repeat step 2 for all
(

k−1
c

)
possible subsets S of c players among

players {1, 2, . . . , k − 1}.

Step 2: Given such a subset S, consider a reduced isolation game with c + 1
players S ∪ {k} and weight vector ~wc. Consider the configuration κS in which
every player j ∈ S takes position pj as in κ and player k takes position pk.
Compute the best response pS of player k in this reduced game and its utility
uS.

Step 3: Return the best response p′k as the pS computed in step 2 with the
largest utility uS.
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We prove the correctness of the algorithm by contradiction. Let player k’s
utility at position p′k be u1 in the original game. Suppose that p′k is computed
in step 2 in a reduced game with S as the subset and utility uS. Since adding
more players into the reduced game will only increase the c largest distances
to player k at p′k, we know that u1 ≥ uS. Now suppose for a contradiction that
there exists another position q that gives a better utility uq to player k than
position p′k in the original game, i.e. uq > u1. Let S ′ be the subset of c players
who have the c largest distances to q. Consider the reduced game with S ′ as
the subset in step 2. Since in the original game, player k only cares about the
c largest neighbors, in the reduced game k’s utility at position q is also uq. So
the best response pS′ computed in step 2 has utility uS′ ≥ uq. Thus, we have
the sequence uS′ ≥ uq > u1 ≥ uS. However, since p′k is selected according to
the largest utility in step 2, we have uS ≥ uS′ , a contradiction.

For time complexity, the number of iterations of step 2 is
(

k−1
c

)
, which is

poly(n) because k is bounded by poly(n) and c is a constant. We now show
how to compute each iteration of step 2 in polynomial time, and thus the
overall algorithm is polynomial.

Consider a set S of c players. To compute the best response pS in the reduced
game with subset S, we argue that we only need to check a polynomial num-
ber of candidate positions. Without loss of generality, let S = {1, 2, . . . , c}.
Construct matrix M = (mij)c×n where mij represents the j-th bit of point pi.

Note that the number of unique column vectors in M is at most 2c, which
is a constant. Suppose that for the ith unique column vector, there are ti
columns in M , corresponding to ti bits in a candidate position. Given any
point p in the hypercube, let np

i denotes the number of bits 1 in the ti bits
corresponding to the ith unique column vector in M . We claim that, for any
two points p and q, if np

i = nq
i for all i, then p and q give the same utility

to player k in the reduced game. This is because the distance function ∆
is the Hamming Distance function, which means the distance between two
points only depends on the number of different bits between the two points.
Therefore, only the number of bits 1 corresponding to each unique column
vector affects the distances to the players in S. Hence, given matrix M , we
only need to check ti + 1 different bit assignments for each unique column
vector. The total number of candidate positions we need to check is then∏2c

i=1(ti + 1) = O(n2c
). Since c is a constant, this is polynomial to n. For

each candidate position, computing the utility at this position certainly takes
polynomial time. Therefore, each iteration of step 2 takes only polynomial
time to complete. 2
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6 Final Remarks

The isolation game is very simple by its definition. However, as shown in this
paper, the behaviors of its Nash equilibria and best response dynamics are
quite rich and complex. This paper presents the first set of results on the
isolation game and lays the ground work for the understanding of the impact
of the farness measures and the underlying space to some basic game-theoretic
questions about the isolation game. We summarize the results of this paper in
Table 1. It remains an open question to fully characterize the isolation game.
In particular, we would like to understand for what weight vectors the isolation
game on simple spaces, such as d-dimensional grids, hypercubes, and torus grid
graphs, has potential functions, has Nash equilibria, or has converging best
(better) response sequences. What is the impact of distance functions, such
as L1-norm or L2-norm to these questions? We would like to know whether
it is NP-hard to determine if Nash equilibria exist in these special spaces
when the input is the weight vector. What can we say about other continuous
spaces such as squares, cubes, balls, and spheres? For example, is there a
sequence of better response dynamics that converges to a Nash equilibrium in
the isolation game on the sphere with ~w = (1, 1, 1, 0, . . . , 0)? What can we say
about approximate Nash equilibria?

More concretely, in Lemma 7 we show an example in which a single-selection
game with weight vector (0, 1, 0, . . . , 0) is not better-response potential in one
dimensional circular space. However, we verify that the game is best-response
potential. This phenomenon of being best-response potential but not better-
response potential is rarely seen in other types of games. Moreover, our exper-
iments lead us to conjecture that all games on the continuous one dimensional
circular space with weight vector (0, 1, 0, . . . , 0) are best-response potential. If
the conjecture is true, we will find a large class of games that are best-response
potential but not better-response potential (the latter is implied by Lemma 7
for the continuous one dimensional space), an interesting phenomenon not
known in other common games.

Another line of research is to understand the connection between the isolation
game and the Voronoi game.
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