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ABSTRACT
The growing popularity of mobile networks makes them increas-
ingly attractive to virus writers, and malicious code targeting mo-
bile devices has already begun to appear. Unfortunately, standard
techniques for modeling computer virus propagation cannot be ap-
plied to mobile settings. We describe why these models fail and in-
troduce a new framework calledprobabilistic queuingwhich treats
node mobility as a first-order concern. A network is modeled by
multiple queues which emulate the skewed connectivity levels com-
mon in mobile environments. Each queue represents a separate
epidemiological population, and as nodes shuttle between queues,
they bring their infections with them. Simulations show that for
realistic mobility parameters, our model is more accurate than the
standard Kephart-White framework.

Categories and Subject Descriptors:C.2.0 [Computer Systems
Organization]: Computer-Communication Networks —Security
and Protection, C.4 [Performance of Systems]: Modeling Tech-
niques, G.3 [Mathematics of Computing]: Probability and Statis-
tics

General Terms: Security, Theory, Algorithms

Keywords: Mobile networks, computer viruses, proximity attacks

1. INTRODUCTION

With the continuing proliferation of portable wireless devices
such as laptops and PDAs, mobile networks are becoming an im-
portant part of our everyday networking infrastructure. However,
the growth of mobile networking is leading to new security chal-
lenges. As the wired Internet became more popular, there was a
corresponding surge in the amount of malicious code which used
the Internet as its transmission mechanism. Similarly, as mobile
networks become more common, they too will become attractive
targets for virus writers. Just as boot sector viruses were supplanted
by viruses that spread through email attachments and other Internet
vectors [4], the emergence of widespread mobile networking will
lead to new types of malicious code. Indeed, IBM’s 2004 Business
Security Report forecast that malware propagation amongst mobile
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devices would be an increasingly dangerous problem [10]. Devis-
ing epidemiological models for mobile environments is therefore
an important research area.

Malicious code targeting mobile devices has already begun to
emerge. For example, the Brador virus [21] infects Pocket PCs
running Windows CE, installing a backdoor which allows a remote
attacker unlimited access to the device. The Cabir worm [9] in-
fects cell phones running the Symbian operating system. Taking
control of the phone’s Bluetooth interface, Cabir continually scans
for other Bluetooth-enabled devices and tries to infect any such de-
vice which enters the scanning range. The Mabir [7] and Sym-
bosComwar [15] worms use similar scanning techniques and also
propagate via MMS messages.

Brador only spreads through traditional application-level vec-
tors like email attachments and downloadable web objects. But
via Bluetooth scanning, Cabir, Mabir, and SymbosComwar can
launchproximity attacksupon vulnerable machines that are phys-
ically nearby. This means that epidemiological models for mobile
networks must treat the movement of devices as a first-class con-
cern. These models must also consider that, as shown in Figure 1,
some geographic locations may be more heavily visited than others.
These “hot spots” generate skewed connectivity distributions, since
a node in a hot spot will have many more neighbors in communi-
cation range than a node in an unpopular location. Hot spots there-
fore represent more fertile breeding grounds for malicious code that
uses proximity attacks. Viral propagation is also influenced by bor-
der effects. Since walls and physical obstacles can exclude nodes
from large geographical areas, devices near these objects often have
low connectivity and thus are poor vectors for viral infection. Epi-
demiological models for mobile networks must capture such wall
phenomenon as well.

In this work, we investigate the behavior of malicious code like
Cabir which spreads via proximity-based, point-to-point wireless
links; we focus on this method of infection because it is unique
to mobile environments and has received little research attention
from the security community. This paper makes three primary con-
tributions. First, it shows that naive application of standard epi-
demiological models to mobile environments leads to erroneous
predictions. These mispredictions are often as severe as forecast-
ing an endemic network-wide infection when the virus will actu-
ally die out quickly. Second, this paper explains why the stan-
dard models fail, namely, because they ignore node velocity and
the non-homogeneous connectivity distributions that often arise in
mobile environments. Third, this work proposes a new framework
for understanding epidemics in mobile environments. This new
model, calledprobabilistic queuing, explicitly incorporates notions
of node mobility and connectivity skew. It provides an accurate
threshold condition which relates the virulence of malicious code
to the likelihood that it will cause an endemic network-wide infec-
tion. It also provides accurate estimates of these persistent infection
levels.
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(a) In the random waypoint model, large pause times
result in an effectively flat spatial distribution of nodes.
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(b) As pause times shrink, the spatial distribution de-
velops a pronounced peak; such peaks result in non-
homogeneous connectivity distributions. In environ-
ments that are not governed by the random waypoint
model, spatial peaks can arise because of obstacles or
“popular content” regions that are frequently visited.

Figure 1: Spatial Distributions for a Square Arena Using the Random Waypoint Model

2. WHY THE KEPHART-WHITE MODEL
FAILS

Before introducing our new framework, we describe the Kephart-
White epidemiological model [13]. We then provide several exam-
ples that demonstrate the failure of the Kephart-White model in
mobile environments. Our analysis of these failures will guide the
design of probabilistic queuing.

2.1 The Kephart-White Model
The classic Kephart-White model [13] uses a differential equa-

tion to describe computer virus propagation. The model assumes
a susceptible-infected-susceptible environment—a machine enters
the system in a healthy state, and it can catch and subsequently be
cured of the infection an infinite number of times. The Kephart-
White (KW) model also assumes a homogeneous network topol-
ogy in which all nodes have similar levels of connectivity or “out-
degree.” Thus, the network can be succinctly described by a single
parameter〈k〉 which represents the average connectivity of a node.

Defining I as the fraction of nodes infected at a particular mo-
ment, the KW model uses the following equation to describe viral
propagation:

dI

dt
= β〈k〉I(1− I)− δI (1)

wheret is time,β is the viral birth rate along every edge from an
infected node, andδ is the cure rate at each infected node.β, δ,
and〈k〉 are assumed to be constant. The KW equation has a steady
state solution of:

I = 1− δ

β〈k〉 (2)

However, such an endemic infection occurs only if:

β〈k〉 > δ (3)

In other words, an epidemic arises only when the expected viral
output of an infected node is greater than the probability that an
infected node will be cured.

In the mobile setting,〈k〉 represents the average number of de-
vices within wireless communication range of an arbitrary node.
β represents the probability that a diseased node transmits the in-
fection to a healthy neighbor during some small time period∆t.
δ represents the probability that an infected node is cured during
∆t. When we graph the global percentage of infected nodes versus
time, the time axis will be in units of the viral time scale∆t. In this
paper, we always use a∆t of 100 milliseconds.

2.2 The Kephart-White Model in Mobile
Environments

Suppose that each mobile device has a communication range of
100 meters and travels in a square arena with 1000 meter sides.
Further suppose that node movement is guided by the random way-
point model [5], pause time is 0, and that through simulation or
mathematical analysis, we can derive〈k〉 for the network. Fig-
ures 2 and 3 demonstrate several ways in which the KW model will
be inaccurate for this mobile environment. Note that each simula-
tion result represents the average of five runs, and all simulations
began with node speeds and locations drawn from the appropriate
steady-state distributions [16].

First consider Figure 2, which shows results for a 30 node and 60
node mobile network. In both networks, node speeds were drawn
from the range[5m/s, 20m/s]. After 200,000 simulated seconds,
we find that〈k〉N=30 is 1.22 and〈k〉N=60 is 2.37. Given these
connectivities, a virus withβ=0.7 andδ=0.25, and 10% of nodes
initially infected, the KW model predicts high endemic infection
rates in both networks. However, the simulation results disagree. In
the 30 node network the KW model predicts an endemic infection
of 70.7%, but the infection actually dies out completely. In the 60
node network a persistent infection emerges, but it has a level of
roughly 64%, not 84.9% as predicted by the KW model.

In this example, the failure of the KW model is largely due to
its strict reliance on the average connectivity statistic. Only con-
sidering mean connectivity discards useful information when the
underlying distribution has significant variance. Figure 4 shows
the connectivity distributions for the 30 node and 60 node sce-
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(a) In many cases, the KW model predicts a high
endemic infection level when the virus will actu-
ally die out rapidly.
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(b) In other situations, the KW model correctly
forecasts a persistent infection but overpredicts
its magnitude.

Figure 2: The failure of KW predictions — over-reliance on
connectivity averages

narios; these distributions were generated analytically using tech-
niques from Bettstetter [1] that we summarize in Section 3.1. We
see that in the 30 node network, a device spends 42.1% of its time
with no neighbors. In contrast, a device in the 60 node scenario
is neighborless for only 26.6% of the time. These differences in
disconnected time lead to differences in epidemic behavior. As the
disconnected fraction grows, sick nodes have more opportunities to
be cured without threat of concurrent reinfection. Similarly, there
are fewer opportunities for sick nodes to infect healthy ones.

The KW model cannot detect this difference in disconnected
fraction—it only sees a reduced〈k〉 in the 30 node network relative
to the 60 node network. However, the homogeneity assumption of
the KW model is broken by the distributions shown in Figure 4.
Sometimes a node will have more neighbors than〈k〉, but other
times it will have fewer or, importantly, none at all. Due to this lat-
ter occurrence, the predicted endemic infection rates from the KW
model are depressed or even reduced to zero in real life.

In Figure 3, we show another problem with applying the KW
model to mobile environments. We study two networksnetslow

The KW model does not have a parameter for node speed. Thus, it
cannot distinguish between two networks with the same connectiv-
ity distribution but different node velocities. Higher node velocities
lead to greater node mixing and more virulent epidemics.

Figure 3: The failure of KW predictions — no conception of
node speed
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These are the connectivity probabilities for random waypoint mo-
bile networks with 30 and 60 nodes; each node has a 100 meter
communication range, and the arena is 1000 meters by 1000 meters.
Each probability represents the likelihood that a node has the given
connectivity at an arbitrary moment; alternatively, it represents the
amount of time that a node spends with the given connectivity.

Figure 4: Connectivity Distributions for N=30 and N=60

andnetfast in which the arena size and virus profile are the same
as in the previous examples. Each network has 60 nodes, but in
netslow node speeds are drawn from[1, 2], while innetfast speeds
are taken from the range[350, 400]. The KW model has no param-
eter for node velocity and predicts a steady state infection level of
84.9% for both networks. However,netslow actually has an en-
demic infection level of about 56%, whereasnetfast has an en-
demic infection level of about 74%. This is despite the fact that
the two networks have the same connectivity distribution, and de-
spite the fact that they are being attacked by malicious code with
the sameβ andδ.

How can we explain such velocity-dependent differences in ef-
fective virulence? Intuitively speaking, nodes innetfast are “bet-
ter mixed” than nodes innetslow — during a given stretch of time,
they communicate with a wider variety of neighbors than the de-
vices in netslow. Higher mixing rates boost viral propagation,
since diseased nodes will have more opportunities to communicate
with healthy ones. Also note that while nodes in the two networks
spend the same percentage of time with zero neighbors, devices in



netslow have longeruninterruptedperiods of disconnection. When
velocities are low, a node that wanders into an empty part of the
arena will stay there for a while. This gives the node many con-
secutive opportunities to be cured without the threat of concurrent
infection. Innetfast, such windows are much smaller in terms of
raw temporal duration.

In summary, the examples from Figures 2 and 3 demonstrate the
two problems with applying the KW model to mobile networks.
First, since the KW model relies on mean connectivity as its sole
topological metric, it cannot capture the non-trivial connectivity
variances found in mobile environments. Second, the KW model is
insensitive to node speed, which is an essential parameter in mobile
networks.

3. A NEW MODEL FOR EPIDEMICS IN
MOBILE NETWORKS

To remedy the problems with applying the KW model to mobile
environments, we propose a new analytic framework. Ourprob-
abilistic queuingmodel explicitly accounts for both node veloc-
ities and the non-homogeneous connectivity patterns induced by
this mobility.

3.1 Mathematical Background
To create a probabilistic queuing system, we first must charac-

terize the mobility parameters of the underlying network. As a
concrete example, we summarize Bettstetter’s framework for de-
scribing mobility in random waypoint networks [1, 2, 5]. However,
we emphasize that probabilistic queuing is agnostic to the choice
of mobility model, and we show in Section 4.3 that it still outper-
forms the KW model for networks that are not governed by random
waypoint movement.

In the random waypoint model, nodes travel within a large arena,
typically either a rectangle or a circle. Each node iteratively picks a
random destination, travels there, pauses for a constant timetpause,
and then picks another random destination. Each waypoint is inde-
pendently chosen, and before leaving for a new waypoint, a node
chooses a random speed from the uniform distribution[vmin, vmax].

Given a square arena having sides of lengtha, the average trip
length is:

E{L} = 0.5214a (4)

and the average time needed to complete such a trip is:

E{T} =
ln(vmax/vmin)

vmax − vmin
E{L}+ tpause (5)

Allowing pp =
tpause

E{T} , the spatial distribution function over−a/2 ≤
x, y ≤ a/2 is:

sdf(x, y) ≈ pp

a2
+ (1− pp)

36

a6
(x2 − a2

4
)(y2 − a2

4
) (6)

Examples of this function are depicted in Figure 1. Given that a
node is at some location(xi, yi), the probability that it is within
communication range of another random node is:

c(xi, yi) =

Z yi+r

yi−r

Z xi+
√

r2−(y−yi)2

xi−
√

r2−(y−yi)2
sdf(x, y) dx dy (7)

wherer is the communication radius of a wireless radio and is
the same for all nodes. The average probability over the entire

arena that two randomly placed nodes will be within communica-
tion range is:

c̄ =

R a/2

−a/2

R a/2

−a/2
c(x, y) dx dy

a2
(8)

The probability that a node at location(x, y) haski neighbors is
given by:

Pr(x, y, k = ki) =

Ã
N − 1

k

!
c(x, y)k(1− c(x, y))N−k−1 (9)

whereN is the total number of mobile nodes. The average proba-
bility over the entire arena that a node hask neighbors is:

Pr(k = ki) =

R a/2

−a/2

R a/2

−a/2
Pr(x, y, k = ki) dx dy

a2
(10)

We can interpretPr(k = ki) for ki ∈ [0, N − 1] as the percentage
of time that a node haski neighbors.

3.2 A New Epidemic Threshold
Given a set of mobility parameters which describe an ad hoc

communication topology, our most basic question involves the epi-
demic threshold: how virulent must malicious code be to create an
endemic infection amongst the mobile devices? More specifically,
given values fora, N , vmin, vmax, andr, what values ofβ andδ
lead to persistent global infections?

The standard Kephart-White model predicts endemic infection
whenβ〈k〉 > δ; in other words, epidemics occur when the infec-
tion pressure overwhelms the cure pressure. As shown in Figure 2,
this epidemic threshold is not always accurate in mobile networks.
The key problem is that the KW threshold ignores mobility and
thus misses the impact of node speed on infection dynamics.

To remedy this problem, we must explicitly consider the connec-
tivity fluctuations induced by mobility. Consider a particular node
traveling in an arena containing many other nodes.E{T} repre-
sents the expected time that it takes the node to travel between two
waypoints. The line segment between consecutive waypoints can
be conceptualized as a queue or pipe which takesE{T} seconds to
traverse. Using Equation 10, we can determine the expected per-
centage of queue time that is spent with a given number of neigh-
bors. More specifically, forE{T} ∗ Pr(k = 0) time units, the
node has no neighbors and is only subject to curing attempts1. For
E{T} ∗ Pr(k = (ki > 0)) time units, the node is subjected to in-
fection pressure proportional toβki and cure pressure proportional
to δ. If the cumulative infection pressure in a queue is greater than
the cumulative cure pressure, the node will likely be sick for the
majority of its queue time, and it will be capable of infecting its
neighbors for the majority of its queue time. Conversely, if the
cumulative infection pressure is less than the cumulative cure pres-
sure, we expect the node to spend the majority of its queue time in
a healthy state.

These observations suggest that for an epidemic to occur in a
mobile network, the following condition must be true:

N−1X

ki=0

βkiPr(k = ki)E{T} > cδE{T} (11)

1Note thatE{T}must be expressed in terms of the viral time scale.
For example, if the infection and cure probabilities are defined over
100 millisecond intervals, thenE{T}must be expressed in units of
100 milliseconds.



where the left-hand side represents the infection pressure over a
travel segment and the right-hand side represents the cure pressure.
The small constantc accounts for stochastic fluctuations in global
connectivity. Since node movement is random and uncoordinated,
there will be punctuated periods of time during which most nodes
have very few neighbors or none at all. For an epidemic to persist,
the virus must be strong enough to ensure that a critical mass of
diseased nodes will emerge from such periods with their infections
intact. In Section 4.1, we empirically observe thatc ≈ 3.5 for
random waypoint networks.

Reconsider our examples ofnetslow andnetfast. Although both
networks have the same connectivity distribution,netslow has a
largerE{T} thannetfast and thus longer travel queues. Now we
can capture the fact that, for a given connectivity level, nodes in
netslow have this level for a longer absolute time period per seg-
ment traversal.

3.3 Making Steady-State Predictions
Having established an epidemic threshold condition for mobile

networks, our next task is to predict what the endemic infection
level will be. More specifically, given a virus profile (β, δ) and
mobility parametersa, N , vmin, vmax, andr, what is the global
steady-state infection level?

To answer this question, we extend the concept of travel queues.
In the previous section, we investigated the behavior of an indi-
vidual node. To travel between two waypoints, the node entered
a queue at some timet and exited the queue at timet + E{T}.
Using the connectivity distribution generated by Equation 10, we
considered the fraction ofE{T} that was devoted to a particular
connectivity level. However, we can interpret the connectivity dis-
tribution in an alternate way, using it to tell us the global percent-
age of nodes having a given connectivity level at an arbitrary mo-
ment. From this perspective, there areN ∗Pr(k = ki) nodes with
connectivityki at any given time. If we make the simplifying as-
sumption that the uninterrupted stretches of time that a node has a
particular connectivity level are large relative to the viral∆t, we
can model the mobile network as a set ofN queues. Each queue
Qki containsN ∗ Pr(k = ki) nodes. Upon enteringQki , a node
spendsE{T} ∗ Pr(k = ki) time units in it before exiting.

Epidemiologically, we treat each queue as a separate Kephart-
White population described by the global (β, δ) and a local〈k〉
equal toki. Such assumptions of local connectivity homogeneity
are intuitively justifiable—if a mobile node haski neighbors, many
of these neighbors are likely to be in communication range with
each other and have roughlyki neighbors as well. The connec-
tivity distribution from Equation 10 tells us both the size of these
“neighborhoods” and the length of time that a node stays in each
neighborhood.

To initialize the queuing model, we set the integer system time
to 0 and insertN ∗ Pr(k = ki) nodes into eachQki . We stamp
each queue’s initial node set with an exit time ofE{T} ∗ Pr(k =
ki). Each queue’s infection level is then set to someIinitial ∈
[0.0, 1.0]. After this initialization, we iteratively update the system
clock in increments of the viral∆t, performing two tasks after each
update. First, we simulate Kephart-White dynamics in each queue,
such thatdIQki

/dt = βkiIQki
(1 − IQki

) − δIQki
. Second, we

check whether any node sets have exit times less than or equal to the
current time. If so, we remove the node set from its queue, divide
it into N equally sized pieces, and enqueue one of these pieces into
eachQki . Finally, each queue updates its infected percentageIQki

to reflect its newly enlarged population and the infection percent-
age of the just-enqueued nodes. At any moment, the global number

This is the steady state of a probabilistic queuing system forN=60,
a=1000,r=100,v ∈ [5, 20], β=0.7, andδ=0.25. The number of
squares in a queue corresponds to the number of nodes it contains.
The proportion of dark squares to light squares represents the ratio
of infected nodes to healthy nodes in the queue. For example,Qk=0
stores 15.86 nodes, of which 0.39 are infected;Qk=7 only stores
1.59 nodes, but 1.41 of them are infected. The global number of
infected nodes is the sum of the infected count in each queue. In
this example, 37.57 out of 60 nodes are infected.

Figure 5: Modeling epidemics using probabilistic queues

of infected nodes is equal to
PN−1

ki=0[[IQki
] ∗ [Qki .length]]. To

predict the steady state infection percentage, we simply iterate the
queue maintenance algorithm until the global number of infected
nodes has stabilized. Figure 5 provides a visual depiction of a prob-
abilistic queuing system.

Although we partition dequeued node sets into equally sized
pieces, each piece will spend a different time waiting in its next
queue. Since the time spent inQki is proportional toPr(k =
ki), our partitioning scheme simulates the effects of mobility and
non-homogeneous connectivity distributions. For very largeki,
E{T} ∗ Pr(k = ki) may be shorter than the viral timescale, i.e.,
nodes pushed into such queues should stay in the queues for less
than the viral∆t. Since the maintenance algorithm steps in incre-
ments of∆t, it cannot accurately model such queues. Thus, we
collapse the queues for such largekhigh1, khigh2..., kN−1 into a
single queue whose connectivity is the average of these values and
whose traversal time is[E{T} ∗ Pr(k ≥ khigh1)] > ∆t.

4. EVALUATION
To evaluate probabilistic queuing and the KW model in mobile

environments, we wrote a custom simulator which gave us fine-
grained control over mobility parameters and viral profiles. Each
simulation took place in a square arena with 1000 meter sides. Un-
less otherwise noted, node movement was guided by the random
waypoint model. To emphasize the impact of mobility on viral
propagation, we typically used pause times of zero. Each mobile
device had a 100 meter communication radius, which corresponds
to the range of a Class 1 Bluetooth radio. The simulator did not
model path effects or transmission interference. For each (β, δ)
pair, the viral∆t was 100 milliseconds. In the figures presented
in this section, each simulation result represents the average of five
trials. Each trial ran for a maximum of 200,000 virtual seconds, ter-



minating early if the virus was completely extinguished before this
time period elapsed. Simulations were initialized with asymptotic
node positions and velocities [16]. For evaluation metrics, standard
deviations are often given in parentheses.

4.1 The Epidemic Threshold
Given a virus profile, a particular set of mobility parameters, and

an epidemiological model, we define two evaluation metrics for the
threshold condition: theraw accuracyand thethreshold mispredic-
tion penalty. Raw accuracy refers to the percentage of predictions
that were correct, i.e., an epidemic was predicted and one emerged,
or an epidemic was not predicted and one did not emerge. We de-
fine the threshold misprediction penalty as follows. If the threshold
condition correctly predicts whether an epidemic arises, the predic-
tion has a penalty of 0.0%. Otherwise, the penalty is the actual en-
demic infection level if no epidemic was predicted, or the predicted
endemic infection level if an epidemic was predicted. When com-
paring two epidemiological models, the one with the higher raw
accuracy is best at predicting whether a virus will die out. Large
misprediction penalties indicate that when a model mispredicts the
emergence of an epidemic, it forecasts big epidemics that never
materialize, or no epidemics when big ones actually arise. An epi-
demiological model could have both high raw accuracy and large
misprediction penalties.

In Figure 6, we compare the threshold predictions of the KW
model and the probabilistic queuing model for several viral pro-
files. Node speeds were drawn fromv ∈ [5, 20], and we display
results forN values of 30, 40, 50, and 60. TheseN values are the
most useful ones for evaluating epidemic thresholds because with a
1000 meter by 1000 meter arena and communication ranges of 100
meters, the critical mass of nodes needed to sustain an infection is
typically between 30 and 60. In Figure 6, the probabilistic queuing
threshold is more accurate by (13/16)=81% versus (4/16)=25%.

We evaluated the two threshold conditions with all permutations
of N ∈ [30, 40, 50, 60, 80, 100], v ∈ [[1, 2], [5, 20], [350, 400]],
and β, δ ∈[(0.7,0.25), (0.5,0.25), (0.25,0.25), (0.04,0.01), (0.02,
0.01), (0.01,0.01)]. The KW threshold had an accuracy of 58.9%
and an average misprediction penalty of 59.7%(±19.5%), whereas
the probabilistic queue threshold had an accuracy of 80.9% and an
average misprediction penalty of 55.0%(±6.6%). Relative to its
performance in Figure 6, the KW threshold improved due to two
reasons. First, the KW threshold was usually correct in theN = 80
andN = 100 cases, which were much easier to predict than the
others. Second, KW threshold performance sometimes approaches
or surpasses that of probabilistic queuing forv ∈ [350, 400]. This
is because the time scale assumption from Section 3.3 is no longer
true. At such fast velocities, there is very high node mixing, so
the uninterrupted stretches of time that a node spends at a particu-
lar connectivity level are no longer large compared to the viral∆t.
This degrades the fidelity of the queuing abstraction as a realistic
approximation of connectivity fluctuation. We discuss this phe-
nomenon in more detail in Section 4.2 and describe how to restore
the time scale property.

In general, the probabilistic queuing threshold does much better
than the KW threshold for realistic node speeds, i.e.,v ∈ ([1, 2],
[5, 20]). It particularly excels when the KW model predicts a weak
endemic infection. Such scenarios arise when the viral birth force
across a single link is on par with the cure force. For example,
with β=0.01,δ=0.01, andv ∈ [5, 20], the queue threshold is 88.9%
accurate whereas the KW threshold is only 27.8% accurate.

To investigate the impact of pause time, we simulated a mo-
bile network withv ∈ [5, 20], β=0.5, δ=0.25, and pause times
of 100, 1000, or 5000 seconds; we used the sameN values given
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Figure 6: Comparative Accuracies of Epidemic Threshold
Conditions

above. In networks with pause time, the queuing threshold had a
raw accuracy of 70.0% whereas the KW threshold had an accu-
racy of 25.9%. The queueing threshold had an average mispredic-
tion penalty of 58.1%(±4.0%), and the penalty for the KW model
was 67.7%(±10.1%). Thus, non-zero pause times slightly reduce
the accuracy of the queuing threshold but greatly reduce the ac-
curacy of the KW threshold. The reason is that as pause time in-
creases, node mixing diminishes, meaning that cliques of nodes
spend longer amounts of time together. The KW model cannot
capture this effect but our queuing model can, since pause times in-
creaseE{T} and thus the raw time that nodes spend in each queue.

Recall that our threshold condition uses the constantc to repre-
sent worst-case stochastic fluctuation in network-wide connectivity.
In the results reported above, we use ac value of 3.5. This value
was empirically derived. However, we would like forc to be ana-
lytically derived from the variance of the connectivity distribution
and the other mobility parameters. Generating such a formula is an
important area for future work.



Note that our threshold condition can predict “no epidemic” even
though our probabilistic queuing system stabilizes to a non-zero in-
fected percentage. The reason is that the threshold condition explic-
itly (if clumsily) accounts for punctuated drops in global connec-
tivity via the parameterc. The maintenance algorithm for the prob-
abilistic queues does not mimic these rare yet important deviations.
Interestingly, this means that the queues settle to the steady state
infection level that “would have resulted” if no drastic connectivity
fluctuations had occurred. In these scenarios, manual inspection of
the simulation traces often reveals the infection level stochastically
fluctuating around the queuing steady state before rapidly falling to
zero at a random moment. If the mobile network has few nodes,
the drop-off usually happens quickly and the steady state infection
level in the queues is of little utility. However, as the number of
mobile devices grows, bursts of extremely low global connectivity
become less frequent. Even though the infection may still eventu-
ally die off, the queuing steady state often provides a good estimate
of the global infection percentage before this extinction occurs. In-
corporating such punctuated fluctuations in the queue maintenance
algorithm is another important area for future research.

4.2 Steady State Predictions
Using a threshold condition, we can predict whether an endemic

infection will occur. If we forecast that an epidemic will arise, we
would like to estimate its magnitude as a function of the mobility
parameters and the virus profile. In Figure 7, we give several ex-
amples of such predictions from the KW model and probabilistic
queuing. For reasonable network parameters, probabilistic queuing
is much more accurate than the KW model.

Suppose that an endemic infection actually occurs for a set of
mobility parameters and a viral profile. We define an epidemiolog-
ical model’ssteady state prediction erroras the absolute difference
between the predicted and observed infection percentage. For the
KW model, this statistic is only defined when the KW threshold
condition is satisfied, since only then is a non-zero steady state pre-
diction made. For a probabilistic queuing system, we define the
error whenever an infection actually arises, regardless of whether
the queuing threshold condition is satisfied. This is because the
queuing system can stabilize to a non-zero infection level despite
the threshold condition failing, and the steady state error should be
independent of threshold condition accuracy.

For pause times of zero and the mobility parameters investigated
in the previous section, the KW model had an average steady state
error of 12.5% (±7.4%). The queuing model only had an error of
4.0% (±3.6%). When considering the positive pause time scenar-
ios described in Section 4.1, the KW model had an average steady
state error of 27.0% (±7.6%), as compared to 9.6% (±7.3%) for
the queueing model.

The specific example ofN=60,β=0.5, andδ=0.25 in Figure 7(a)
offers an instructive insight into viral dynamics in mobile networks.
For these particular parameter values,unstable epidemicsensue. In
five simulation runs of 200,000 virtual seconds, one epidemic died
immediately, one lasted the entire 200,000 seconds, and the others
lasted between one-fourth and three-fourths of the maximum pos-
sible time. In the graph, the simulated epidemic level is the average
of the infection levels while the virus was still alive in each trial.
Probabilistic queuing accurately predicts this average, but such an
average hides an interesting temporal instability. Ideally, we would
like to describe endemic infections using Markov model probabil-
ity distribution functions, which have previously been applied to
epidemics atop homogeneous topologies [3]. Given the mobility
parameters, the virus profile, and an initial set of infected nodes,
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(a) The probabilistic queue predictions are
much more accurate than the KW predic-
tions.
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(b) The KW model continues to predict
steady state infection levels which are too
high.

Figure 7: Endemic infection for common network parameters

such a model would describe the probability of each possible epi-
demic level at a particular point in the future. However, it is unclear
how to incorporate notions of mobility into these kinds of frame-
works.

As described in Section 3.3, the probabilistic queuing model as-
sumes that the uninterrupted length of time that a node spends at
a particular connectivity level is large compared to the viral∆t.
This time scale property ensures that a node’s uninterrupted journey
through a connectivity queue accurately reflects its real-life fluctu-
ations in connectivity. Unfortunately, the time scale assumption is
violated when nodes move extremely quickly or the network con-
tains a very large number of nodes. For example, nodes moving at
400 m/s might have the same connectivity distribution as nodes in
a different network moving at 5 m/s. However, nodes in the slow
network keep the same neighbors (and thus the same connectiv-
ity levels) for longer stretches of time; thus, the fast nodes switch
between different connectivity levels much quicker. Similarly, a
network with very many nodes offers more opportunities for con-
nectivity flux than a sparsely populated network.

In common mobile environments, the time scale assumption will
hold. For example, if the network of interest represents people us-
ing PDAs to query an interactive museum, or laptop users com-
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(b) The time scale property is also violated
in this example, which features reasonable
node velocities but a very large number of
nodes. To restore the time scale property, we
must simulate the increased node mixing.

Figure 8: Epidemics when the time scale property is violated

municating with a wireless access point, node velocities and spa-
tial densities will satisfy the time scale assumption. However, one
could imagine scenarios which violate the property, such as net-
works deployed across automobiles. The key insight is that even
though the time scale assumption is violated, the fundamental in-
tuition behind probabilistic queuing remains valid. In these sce-
narios, queues still simulate skewed connectivity distributions and
node mobility in these scenarios, although they do not capture the
proper level of node mixing. In Figure 8, we see that for a rea-
sonable number of nodes moving at a very high speed, the queuing
model begins to consistently underpredict the steady state infection
level. The problem worsens as the number of nodes increases. It
also worsens asβ grows larger relative toδ, since the infection
rate (but not the cure rate) is sensitive to the number of neighbors
encountered per unit time.

How can we modify probabilistic queuing to simulate increased
mixing rates? The simplest solution is to divide the time spent
in each queue by somemixing constant, denotedm. This divi-
sion does not alter the underlying connectivity distribution of the
network, since the proportion of queue sizes to each other is un-
changed. The division merely increases the rate at which queues
exchange nodes, which is the precise analogue of the increased
mixing found in very dense or very fast networks. Figure 8(b) pro-
vides an example. In a network with 200 nodes andv ∈ [5, 20],
the KW model overpredicts the endemic infection and probabilistic
queuing underpredicts. However, using anm of 3, the probabilistic
queue predictions are very close to the actual results.

As with the threshold constantc, we currently lack an analytic
formula which derivesm from a given set of mobility parame-
ters. We derivedm = 3 for Figure 8(b) empirically. However,
the introduction ofm is not merely a “hack” to get the model to
work for this particular example. Using anm of 3 for N=200
andv ∈ [5, 20], the accuracy of the probabilistic queuing model
increased for all permutations ofβ andδ. This suggests that the
notion of node mixing is a fundamental and important property of
mobile networks. Furthermore, mixing is a useful concept beyond
the study of viral propagation. For example, consider a set of mo-
bile sensor nodes. One might want to guarantee that each zone of
the arena is always covered by at least one node, but one might
also want to guarantee that each node directly communicates with
each other node within some bounded amount of time. The former
characteristic is governed by the spatial distribution function, but
the latter is governed by the degree of node mixing. Generating an
analytic form form is an important area for future research.

4.3 Strongly Non-homogeneous Spatial
Distributions

Up to this point, we have studied viral dynamics in random way-
point networks. As shown in Figure 1, when pause time is large,
the spatial distribution is relatively flat and thus the connectivity
distribution is fairly homogeneous. As pause times approach zero,
connectivity becomes skewed, but the skew is still smooth and sym-
metric about the center of the arena. In real-life mobile networks,
some locations may be much more popular than others. A natu-
ral question is “how do viruses spread when spatial distributions
are very strongly skewed and asymmetric?” In Figure 9, we show
an example of such a strongly non-homogeneous topology. In this
network, nodes are highly attracted to one of three hotspots located
at (-3a/8,-3a/8), (-3a/8, 3a/8), and (a/4,a/4). When a node picks a
new waypoint, it chooses one of these locations with probability
15% per hotspot and a random location with probability 55%. As
depicted in Figure 9, there are three spatial density spikes at the
hotspot locations. The paths between these hotspots are also well-
traveled.

Using simulations, we determined the connectivity distribution
for this network for various values ofN ; examples of these dis-
tributions are given in Figure 10. Via simulation, we also deter-
mined thatE{L} was 544 meters andE{T} was 50.2 seconds or
502 time units with respect to the viral∆t. Armed with these pa-
rameters, we constructed the corresponding probabilistic queuing
system and compared its performance to that of the KW model.

Figure 11 depicts epidemic behavior forβ=0.7,δ=0.25, andv ∈
[5, 20]. For each value ofN , the KW threshold and the queuing
threshold predict an endemic infection; however, no epidemic actu-
ally arises forN=40, and unstable epidemics arise forN=60. In all



Figure 9: Spatial distribution function of a strongly non-
homogeneous topology with three attractors
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Figure 10: Sample connectivity distributions for spatial attrac-
tor example

cases, our queuing model produces more accurate steady state pre-
dictions than the KW model. However, the relative improvement is
not as large as it is for random waypoint networks with similar mo-
bility parameters. The reason is that the connectivity distribution
alone can only hint at the “spikiness” in the underlying spatial dis-
tribution function. One potential method to capture these peaks is
to divide the arena into zones and associate a separate connectivity
queue with each zone. A queue could only exchange nodes with
queues in adjacent zones, and these exchanges would be in propor-
tion to each zone’s spatial density. This would mimic the preferred
movement pathways induced by strong attractors. We are currently
investigating the properties of this grid model.

4.4 Epidemics in Class 2 Bluetooth Networks
Our study of mobile network epidemics has focused on devices

with 100 meter communication ranges. This range corresponds to
the transmission capability of a Class 1 Bluetooth radio. Class 2 ra-
dios with ranges of 10 meters are also popular. However, networks
composed of Class 2 devices will have extremely low connectivities
unless node density is very high. For example, in a Class 2 random
waypoint network containing 100 nodes in a 1000 meter square
arena, 96.2% of the devices will have zero neighbors at an arbi-
trary moment. Even for a 1000 device network, 69.4% of a node’s
time will be spent with no neighbors. These Class 2 networks will
be impervious to all but the most virulent malicious code. Such
code would have to be extremely aggressive in scanning for vul-
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Figure 11: Steady state infection levels, spatial attractor net-
work

nerable neighbors and exceptionally difficult to purge. For these
reasons, effective viruses in Class 2 networks will likely eschew
point-to-point contact as the primary infection vector. For exam-
ple, they might rely on spreading via email attachments, leaping
onto a user’s mobile device when he synchronizes it with his PC.

5. RELATED WORK
The Kephart-White model [13] is the standard framework for

studying computer viruses in homogeneous topologies. As we have
shown in Section 2, it is inappropriate for modeling epidemics
in non-homogeneous mobile networks. Researchers have found
that some non-homogeneous computer networks have connectiv-
ities guided by power laws [8], wherePr(k = ki) = k−γ for
someγ ∈ [2, 3]. There are several epidemiological models for such
power-law topologies [17, 18]. However, such research is not appli-
cable to mobile networks for several reasons. First, mobile network
connectivity does not typically follow a power law. For example, in
a 1000 meter square arena containing 80 nodes doing random way-
point travel,Pr(k = 1) = 0.174 andPr(k = 4) = 0.108; con-
nectivity is non-homogeneous, but not to an exponential degree. If
the arena has spatial attractors which pack a few nodes into a small
region, connectivities may resemble those of a power-law network.
However, epidemic frameworks for power-law networks do not in-
corporate notions of node mobility, and we have shown that ignor-
ing mobility results in erroneous predictions.

Given the adjacency matrixA of an arbitrary communication
topology, the epidemic threshold can be expressed as1/λ1, where
λ1 is the largest eigenvalue ofA [20]. However, in mobile environ-
ments, the adjacency matrix and its associated eigenvalues change
over time. It is unclear how to construct a “probabilistic” adjacency
matrix that could capture this flux and still have eigenvalues with
useful properties.

Equation 8 gives the probability that two random waypoint nodes
are within communication range at an arbitrary moment. Using
this probability, we could treat the mobile topology as a random
graph [11] and try to use component analysis [6] to reason about its
topological properties. This approach fails for two reasons. First,
results from random graph theory are only useful for dense net-
works, and mobile topologies often lack the requisite number of
nodes [19]. Second, epidemics depend not just on the variety of
cluster types, but on their membership churn; once again, the tem-
poral dimension is not captured by random graph theories.



Spatially coupled epidemiological models are the closest math-
ematical analogues to probabilistic queuing. For example, Keeling
and Rohani consider disease spreading amongst two distinct popu-
lations that can exchange members [12]. Each population has a sep-
arate differential equation representing its infection rate, but each
equation has a coupling term which describes the infection spill-
over due to cross-population mixing. The Keeling-Rohani model
makes several key assumptions which are invalid in the mobile set-
ting, e.g., it assumes perfectly homogeneous mixing, and a distinc-
tion is made between a node’s “home” and “foreign” domain. Nev-
ertheless, the notion of coupled populations resembles in spirit our
notion of coupled queues. The major difference between our model
and their model is the representation of time. Keeling and Rohani’s
coupling constant is a dimensionless ratio relating the time a node
spends in a foreign domain to the time spent in its home domain. In
a mobile environment, the relative time spent at each connectivity
level is important, but theraw amount of time is also important.
This is the lesson of Figure 3 — two networks with the same con-
nectivity distribution but different node speeds will have different
epidemics.

Using a modified KW model, Khelilet al investigated flooding-
based information dissemination in mobile networks [14]. They
assumed a perfectly homogeneous mixing rate based on the ratio
of the number of nodes to the size of the arena. As we have shown,
assumptions of homogeneity are typically unwarranted and often
lead to severe mispredictions in epidemic simulation.

6. CONCLUSION
Traditional epidemiological models fail to capture the unique

topological properties of mobile networks. Node mobility intro-
duces non-homogeneous connectivity distributions that cannot be
represented using a simple average. Mobility also creates contin-
ual churn in each node’s neighbor set. Our new epidemiological
framework uses a queue abstraction to model these important phe-
nomenon. By representing different connectivity levels as distinct
queues, we capture the skewed connectivity distributions inherent
to mobile networks. As nodes travel between different queues, they
simulate the neighbor churn experienced by real nodes. By tying
the travel time through a queue to both the connectivity level it rep-
resents and to node velocity, we capture a temporal factor that other
viral models cannot. Simulations show that for realistic mobility
parameters, probabilistic queuing offers more accurate predictions
than the Kephart-White model. There are several important areas
for future work, such as finding analytical derivations for the mix-
ing rate and the connectivity fluctuation parameter. However, we
believe that probabilistic queuing already offers useful and inter-
esting insights into mobile epidemiology, a topic whose importance
will grow as mobile networks become more popular and thus more
alluring to attackers.
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