

Abstract

In this paper, we introduce Z-Ring, a fast prefix

routing protocol for peer-to-peer overlay networks.
Z-Ring incorporates cost-efficient membership protocol
to achieve fast routing with small maintenance cost.
Z-Ring achieves routing in logGN steps, where N is the
network size and G is the size of a group that can be
maintained by a membership protocol with low cost.
With G=4096, it translates to one-hop routing for
intranet environments (N<4096), two-hop routing for
mid-scale internet applications (N<16 million), and
three-hop routing for ultra-large internet applications
(N<64 billion). Z-Ring maintains good routing success
rate under churn and low maintenance cost even at large
network size. Its modularized use of the membership
protocol also makes it adaptive to dynamic and
wide-range network size changes.

Index Terms—Peer-to-peer, DHT, routing, group membership

1. Introduction

Recent research has shown that structured
peer-to-peer overlay networks such as Pastry [13], Chord
[15], and Tapestry [17] provide scalable and resilient
abstractions to large-scale network applications. They
support routing to endpoints or nodes inside a network
requiring only logarithmic routing state at each node. In
a network of size N, they route a message to any desti-
nation within logN overlay hops, with each node storing
O(logN) outgoing links to neighbors.

While the logarithmic number of hops scales well
with network size, the latency they incur can be sub-
stantial in practice. For example, a message still goes
through several hops inside a corporate network, where
N<10000. On Internet-scale applications (N>1 million),
a message might take more than 10 hops. Each overlay
hop potentially increases the relay delay compared to IP

routing. In addition, each overlay hop requires that the
message traverse all the way up and then back down the
network stack. Queuing and processing delays can add
to end to end routing delay. Finally, overlay nodes are
generally edge nodes, with each overlay hop routing
across slower and more congested edge links.

Clearly, reducing the number of overlay hops for
peer-to-peer (P2P) protocols can dramatically improve
application performance. We can leverage the routing
state to routing hops tradeoff and increase the number of
neighbor links maintained per peer. The challenge is to
do so while keeping maintenance costs manageable.
Existing proposals ([7][8]) use extremely large mem-
bership tables to achieve one-hop routing for networks
with 1000’s of peers, and two-hop routing with millions
of peers. However, they employ a fixed hierarchical
network structure, reducing the protocol’s ability to
adapt to network changes and scale beyond initial size
estimates.

We achieve both goals of low routing hops and low
maintenance costs in an adaptive system by integrating
P2P routing with efficient membership maintenance al-
gorithms. We start with Pastry, an existing prefix routing
protocol, and expand its prefix routing base b from 16 to
4096. Using b=4096, we can achieve one-hop routing
with 4096 nodes and two-hop routing across 16 million
peers. While traditional protocols require a node to pe-
riodically probe its links to each of its neighbors and thus
make the maintenance of routing entries with b=4096
infeasible, we leverage cost-efficient membership pro-
tocols ([4][6]) to maintain routing entries and detect link
or node failures. Each node belongs to a few
self-contained routing groups, and forwards routing
messages through members of these groups. To maintain
the routing entries, we use an efficient membership
protocol in which each node only probes a small number
of other members, and status changes detected are
propagated quickly to all members in the same groups
using an efficient and scalable broadcast mechanism. For
a group of size G, this reduces maintenance cost per peer
from O(G) to O(1).

Qiao Lian† , Wei Chen† , Zheng Zhang† , Shaomei Wu§, and Ben Y. Zhao§, Member, IEEE
† Microsoft Research Asia, Beijing, China

§Computer Science Department, U. C. Santa Barbara, CA, U.S.
{qiaol, weic, zzhang}@microsoft.com, smwu@mails.tsinghua.edu.cn, ravenben@cs.ucsb.edu

Z-Ring: Fast Prefix Routing via a

Low Maintenance Membership Protocol

This paper makes three contributions. First, we in-
troduce the concept of using membership protocols to
minimize P2P route maintenance. Second, we introduce
Z-Ring, a protocol that utilizes discrete groups for fast
routing, adapts to network size changes gracefully and
scales to very large networks. Finally, we demonstrate
via analysis and simulation that Z-Ring significantly
reduces routing hops, maintains high routing success rate
while keeping maintenance costs low on large networks.

The rest of the paper is organized as follows. We
describe the basic Z-Ring protocol in Section 2 and its
adaptability and scalability features in Section 3. Next,
Section 4 describes our membership implementation.
Section 5 evaluates Z-Ring analytically while Section 6
evaluates the protocol with extensive simulations. Fi-
nally, we discuss related work in Section 7 and conclude
in Section 8.

2. The Z-Ring Protocol

In this section, we describe the basic operations of
the Z-Ring protocol. We first describe some basic ter-
minology and parameters, along with background in-
formation on group membership protocols and Pastry.

In our examples, we assume that peers use 160-bit
integer ids, with bits indexed from left to right as 0–159.
Logically, all peers are ordered in a ring based on their
ids in the id space, as in Chord [15] and Pastry [13].
Routing groups have size G=4K=212, a size too large for
Pastry to maintain as the base of digits, but small enough
for an efficient membership protocol to maintain with
low bandwidth costs. In this section, we assume the
network size N is 16 million = 224. We show Z-Ring’s
adaptation to general systems sizes in Section 3.

2.1. Cost-efficient membership protocol
On each peer Z-Ring uses a membership protocol to

maintain a large routing table, which is the set of active
peers belonging to the same group. While traditional
group membership protocols ([1]) provide strong con-
sistency in membership views, their heavier overheads
restrict them to cluster environments. In contrast, Z-Ring
does not require strong or eventual consistency (i.e.,
eventually all peers agree on the same membership view).
Z-Ring allows inconsistencies in membership views
throughout the lifetime of the system. It only requires
that the membership view is maintained with a certain
level of accuracy in order to keep the number of routing
hops low and the routing success rate high. This relaxed
consistency allows Z-Ring to significantly lower band-
width costs.

Cost-efficient membership protocols exist in litera-
ture. For example, the SWIM protocol [4] uses gossiping
for failure detection and dissemination. We build a pro-
tocol based on Pastry by using Pastry’s leafset to limit

detection of peer join and leave events, and using Pas-
try’s routing table to quickly disseminate events to all
peers in the group. We add an anti-entropy [5] protocol to
increase resilience to lost events in dissemination. The
combination means membership changes are quickly
disseminated to all nodes in the system, providing highly
accurate routing state for Z-Ring. We defer detailed de-
scriptions of our membership protocol implementation to
Section 4.

2.2. Pastry prefix routing
Z-Ring accelerates prefix routing in protocols such

as Pastry by using extremely large prefix bases. We give
a brief description of the Pastry protocol, and refer
readers to the full Pastry paper for additional details [13].

Pastry organizes the peers in a ring based on their
ids, and routes messages by key to the peer whose id is
numerically closest to the key. Pastry routing state con-
sists of a leafset and a routing table. The leafset on a peer
records its closest L/2 peers on each side of the ring while
the routing table on a peer has logbN levels, where b is a
small base (typically 2 to 16) and N is the number of
peers in the system. Each level j (from 0 to logbN) of
the routing table has b-1 entries, each referring to a peer
whose id shares the first j digits (base b) with the local id,
but whose (j+1)th digit differs. Each entry contains the IP
address of the referred peer.

Pastry routes messages by matching prefixes in each
routing step. At each hop, Pastry routes the message to a
node that matches at least one additional digit of the
destination id. When routing encounters an empty entry
in the routing table, messages are forwarded through
leafsets to the final destination node.

2.3. X-group routing in Z-Ring

Fig. 1. Full system view of the routing matrix with the

relationship to the view of Pastry peer ring.
We begin our introduction of the Z-Ring protocol

using a simplified routing scenario. With G=212 and
N=224, Z-Ring routing can be viewed as routing on a two
dimensional matrix (Fig. 1 and Fig. 2). We first describe
one-level Z-Ring routing (horizontal routing within a
row of the matrix) with membership, and then describe
the second level Z-Ring routing (vertical routing to lo-

cate a row). Together they provide two-hop routing
across 16 million peers in the system. This performance
is for the ideal case where each cell in the routing matrix
has exactly one peer id and its IP address. Randomized
ids can result in some empty cells, and we discuss how to
deal with the imperfect routing matrix in subsection 2.5.

As we described, the main idea in Z-Ring is to
classify peers into different closed groups at each routing
level. To demonstrate, we organize the 16 million peer
ids into a 4Kx4K matrix (Fig. 1). Each row in the matrix
contains peer ids with the same bits 0~11 and forms an
X-group. The bits 0~11 are the id of the X-group. In our
example, 16 million peers are organized into 4K
X-groups, where each X-group represents a continuous
range or arc in the Pastry id ring (Fig. 1).
2.3.1. Routing. For Z-Ring routing with X-groups,
each peer maintains its full X-group membership list in
its membership table. When routing a message with a key
k, assume for the moment we use basic Pastry to resolve
the first 12 bits of k , that is, it reaches a peer that is in the
same row with the destination id that owns the key k.
Then by looking up the X-group membership list, the
destination can be located in one more hop. The X-group
hop can be view as resolving 12 bits (bits 12~23) in one
step.

Using only the X-group routing, we can reduce the
number of hops from 6 for Pastry routing using hexa-
decimal base (b=16), to 4: three Pastry routing hops
followed by one X-group hop.
2.3.2. Maintenance. We now describe join and leave
processes for Z-Ring.

Join: X-groups are defined by their id prefix, and
each X-group represents continuous arcs on the id space
ring. When a new peer joins the system, it joins the Pas-
try ring and locates the group arc that it belongs to. The
new joining peer will find any nodes that exist inside the
arc, and will learn from them about all other peers in the
same group. The group maintenance protocol will notify
all other group members about the new arrival. If no peer
exists in the group, the new peer will initiate the group.

Leave: Peers leaving the system are handled by the
membership protocol. When a peer leaves, the mem-
bership protocol notifies other peers in the X-group, who
then update local routing state accordingly.

2.4. Y-group routing to resolve the first 12 bits
To accelerate the resolution of the first 12 bits, we

organize every row’s peers into columns according to its
id bits 12~23. Fig. 2 shows the matrix with Y-group ap-
plied. Similar to the X-group, every peer also uses its id’s
bits 12-23 to identify its Y-group. We call these bits the
Y-group id. In the ideal case, the routing matrix is per-

fectly balanced, and each column (Y-group) has 4k en-
tries sharing the same bits 12~23.
2.4.1. Routing. Each peer belongs to both an X-group
and a Y-group. With these groups, the peer can see the
entire row and column it resides in. Fig. 2 shows an in-
tuitive view of these groups. Using the Y-group, nodes
can route to a node matching the same first 12 bits as the
destination in 1 hop. Using both X- and Y-groups,
Z-Ring routes arbitrary messages in a network of 16
million peers using only 2 hops: Y-group routing re-
solves bits 0~11 in one hop and X-group routing resolves
bits 12~23 in one hop.

Fig. 2. Full system routing matrix, with the relation-
ship to the view of Pastry peer ring and to the view of

X- and Y-group peer ids.
2.4.2. Maintenance. The challenge in Y-group main-
tenance is how a new joining peer locates other members
in its Y-group. Because the Y-group is sparsely distrib-
uted throughout the Pastry ring (Fig. 2, the ring view),
locating Y-group members is not trivial. We solve this
problem by applying what we do for the X-group, but
with a new twist.

Fig. 3. Id transformation for Y-group bootstrap.

Locating X-group members utilizes the underlying
Pastry ring to route the joining request from the new peer

to the arc corresponding to its X-group members. To
apply the same idea to the Y-group, we transform
Y-group bits 12~23 to position 0~11 as shown in Fig. 3,
by rotating the bits 0~11 of every peer id to the tail and
building another Pastry ring. The Y-group members in
the original id space become clustered together on a
continuous arc in the newly-transformed id space, just
like the X-groups in the original space. Therefore, in the
transformed id space, the simple bootstrap protocol can
be reused for a new joining peer to locate its Y-group
members. To support Y-group bootstrap, Z-Ring thus
requires another set of Pastry routing state for the trans-
formed id space.

2.5. Routing with imperfect routing matrix
Our previous examples assume that the routing ma-

trix is perfect in that each cell in the routing matrix has
exactly one entry. In reality, randomized selection of
peer ids means a particular group may have no peers or
be crowded by many peers. In this section, we describe
how routing works with an imperfect routing matrix.

Fig. 4. Full system view and Z-Ring routing with

imperfect routing matrix (scale=16 million).
The issue with an imperfect matrix is that routing

through cells which can potentially be empty. Fig. 4
shows such an example. Cell (0x002, 0xFFF) is empty and
unreachable, while cell (0x001, 0xFFF) is filled by 4 peers.
Routing a message from 0xFFEFFF to 0x002001 is broken
at cell 0x002FFF because it has no reachable peers. Our
solution is straightforward. Since membership routing is
only to accelerate Pastry routing, when acceleration fails,
we fall back to normal Pastry routing. More specifically,
when the cell (0x002, 0xFFF) is empty, the routing mes-
sage will be sent to the nearest available cell (0x001,
0xFFF) in the Y-group. This incomplete group routing
hop resolves only 10 bits instead of 12 bits. The 2 unre-
solved bits depends on Pastry routing hops. Our example
takes 2 hops on 2-based Pastry routing table. If we use 4
or larger value based Pastry, it can be completed in one
Pastry routing hop. Results from our analysis (Section 5)

and simulation (Section 6) show that the average Pastry
routing hops is small (0.445 with N=16 million and
uniform id distribution).

It is important to see that Z-Ring routing and main-
tenance at each level are symmetric. This modular use of
membership protocols simplifies implementation and
makes the protocol adaptable to larger networks, as we
show in the next section.

3. Z-Ring adaptability and scalability

We have described the Z-Ring protocol for a net-
work of 16 million peers. We now show how the basic
Z-Ring protocol can adapt to arbitrarily large network
sizes. This flexibility is the main advantages of Z-Ring
over other static one-hop or two-hop protocols ([8][7]).
We show its adaptability in Section 3.1, and its scalabil-
ity in Section 3.2 through the example with N=64 billion
(N=G3).

3.1. Adaptability
 When the network size is a power of two (N=2t),

Z-Ring can always maintain group size at the level of 4K
by adjusting the length of the group id. If the network
size is not a power of two (2t<N<2t+1), the group size
needs to be adjusted but we keep the size at around 4K
level to minimize maintenance cost. We now discuss
these two cases separately.
3.1.1. Scale is power of two (N=2t). As an example, we
show how the protocol adapts to a network of size N=224
shrinking to size N = 220. For groups of size G, we can
resolve log2G bits in 1 group hop. Therefore we try to
keep the group size constant while reducing the number
of groups in all X-group and Y-group membership ta-
bles.

Fig. 5. Two levels of groups maintained at one peer,

for network size of one Million (220). There is an
overlap between the to-be-resolved bits of Y-group
(bits 0~11) and the to-be-resolved bits of X-group

(bits 8~19).

With N = 220 and G=212, we will have 256 X-groups,
which can be identified by the first 8 bits (bits 0~7) (Fig.
5). Comparing with the case in the previous section
where N=224 (Fig. 2), the X-group id shrinks 4 bits. This
means one X-group covers a longer arc in the Pastry ring.
The X-group bootstrap still uses the same protocol, but in
this case, it only needs to match the prefix of 8 bits in

order for a new joining peer to locate its X-group mem-
bers.

The case for the Y-groups is the same. Y-group id
bits shrink from bits 12~23 to bits 12~19 so that each
Y-group on average still has 4K members. Bits 12~19
becomes bits 0~7 in the transformed id space (Fig. 3), so
Y-group bootstrap is still the same --- it needs to match
8-bit prefix in the transformed space. In general, group
ids have t-12 bits with N=2t.

The routing procedure in this case does not change
from that of Fig. 2. The routing steps are still Y-group
routing followed by X-group routing, with Y-group
routing resolving bits 0~11 and X-group routing resolv-
ing bits 8~19. The difference is that the lowest 4 bits
resolved by Y-group routing overlap with the highest 4
bits to be resolved by X-group routing (Fig. 5). This
overlap reduces the need for the complementary Pastry
routing hops between Y-group routing and X-group
routing. The complementary Pastry routing hops are only
needed when Y-group routing fails to resolve the top 8
bits, the probability of which is negligible (Section 5.1).
Therefore, the routing hop number is reduced when N is
between G and G2 because the complementary Pastry
routing hops is reduced, and it is very close to two hops
in many cases (e. g. when N is about G2/8 or less).
3.1.2. Scale is between power of two (2t ~ 2t+1). When
the network size is not a power of two, the size of each X-
and Y-groups will change. We demonstrate system
adaptability with the case of scale growing from 220 to
221.

When the network sizes up from 220, the number of
groups is kept constant because it cannot continuously
change. Thus the size of each group grows proportionally
during this stage. For example, when the network size is
1.1·220, average group size will be 1.1G = 4505. When
group size keeps increasing beyond the critical point of
4/3G = 5461, group will split into two smaller groups
with size 2/3G = 2731. The choice of 4/3G as the
threshold is to keep the average group size to be around
G.

Group splitting is done by adding the 8th bit into the
group id: The X-group is split by expanding group id
from bits 0~7 to bits 0~8; the Y-group is split by ex-
panding group id from bits 12~19 to 12~20. Here we can
see that id transformation scheme (Fig. 3) does not
change while Y-group id expands during group split.
This means that Z-Ring consistently uses the same
background Pastry for the transformed id space, rather
than rebuild a Pastry every time group id changes.

Symmetrically, when the network size decreases, the
groups will be merged. Two groups are neighbors if they
are at the same level and their group id only differs at the
last id bit. When the total number of members in the two
neighboring groups is reduced to lower than 4/3G = 5461,
the two groups will be merged to one, and the merged

group removes the last bit in the ids of the two original
groups and thus has one less bit in its id.

To avoid frequent splits and merges when the group
size is around the threshold 4/3G, we can put some buffer
zones around. For example, the merge occurs when the
combined size of two neighboring groups is below
4/3G-1/10G, and the split occurs when the group size is
above 4/3G+1/10G.

In a real system, not all peers will split/merge their
group simultaneously by expanding/shrinking their
group ids. Some peers may have 8 bits group id while
others have 9 bits, especially when network size is close
to the critical point. Fortunately Z-Ring is only an ac-
celeration scheme and thus does not require highly con-
sistent group id. Based on the aggressive routing rule, we
guarantee that routing messages are always able to route
towards destination. Therefore, as long as Z-Ring pro-
vides some mechanism to allow convergence of group
ids, the transient inconsistency will not cause problems
in routing.

To support group merges, Z-Ring needs some extra
inter-group support beyond the normal intra-group
membership protocols. These supports include: (a) pe-
riodic communication between the two neighboring
groups to check if the merge threshold has been sur-
passed; (b) fast merging of two neighboring groups to-
gether; and (c) gossiping within the group and between
the neighboring groups to resolve potential inconsisten-
cies in group ids. In Section 4, we will show that our
implementation provides these inter-group membership
supports.

An important property of Z-Ring’s adaptability is
that it is based on local decisions. Whether to split a
group or merge two groups is based on the size of the
local group perceived by the peer and the size of its
neighboring group. Therefore, group splitting or merging
does not require any global knowledge, such as N, the
scale of the system.

3.2. Scalability (N=G3)

Fig. 6. Three levels of groups maintained at one peer,

for network size of 64 Billions (236). X-group spans
over the shortest arc with the highest density.

Y-group spans over moderate arc with the moderate
density. Z-group spans over the longest arc with the

lowest density.
In this section we discuss how to scale up our solu-

tion for larger systems up to size G3. The idea is to enable

the 3-d matrix by Z-groups on z-axis. We can imagine
the 3-d matrix as 4K layers of the 2-d matrix. The
Z-group index is the layer index. Peer ids includes
{layer-index, row-index, column-index}, where each
index component is 12 bits long. Bits 0~11 denote the
layer, bits 12~23 denote the row, and bits 24~35 denote
the column. With this scheme, X-group members share
bits 0~23, Y-group ids share bits 0~11 and 24~35, and
the Z-group shares bits 12~35 (see Fig. 6).

Routing consists of three steps: Z-group resolving
bits 0~11, Y-group resolving bits 12~23, and X-group
resolving bits 24~35. When bits in group hops cannot be
resolved, routing falls back on Pastry routing hops.

Maintaining three types of groups is also similar.
The X- and Y- groups are maintained as before. The
Z-group is maintained by the Pastry in id space trans-
formed from the original by rotating bits 0~11 to the tail
(Fig. 7). To further increase the namespace, we can con-
tinue to add more groups beyond the Z-group. Each ad-
ditional group level increases the namespace size by a
factor equal to the group size.

Fig. 7. Id transformation for Y- and Z-group main-

tenance.

4. Membership protocol implementation

4.1. Intra-group membership protocol
Our implementation of the intra-group membership

protocol is conceptually similar to SWIM [7]. It includes
leave/join detection and event dissemination. Detection
is performed between a small number of peers, who then
disseminate the event to the entire group using fast
broadcasts complimented by periodic anti-entropy. The
result is an efficient membership protocol that incurs
much less overhead than pair-wise periodic probing
between members of the group.

For each routing level (X, Y, Z), we use an inde-
pendent instance of Pastry (base 2) to connect all group
members using leafsets (ID transformation is needed for
Y- and Z-groups). Each peer sends periodic probes to its
leafset members. When a peer x joins or leaves the net-
work, the event is detected by x’s leafset. These peers
push the event out to their leafset members and their
routing table entries. Other peers repeat the process tp

push the event to all group members. This instance of
Pastry is internal to the group level, but utilizes the same
node ids as the global network. Since all peers in the
group share a prefix, routing inside the group is consis-
tent with normal prefix routing.

To ensure event notifications are ordered, events are
embedded with a timestamp generated by its source, ei-
ther x for a join event, or the first peer to detect x’s ab-
sence in a leave event. The timestamp uses the source’s
local physical clock, assuming that the clock does not go
backwards even after recovering from failures. For leave
events, a peer x is “dead” when its leafset peers fail to
receive 3 consecutive heartbeats. The peers then propa-
gate the leave event, where the timestamp is the last
heartbeat timestamp received from x plus a small ε,
which is any value smaller than the granularity of the
incarnation timestamp. The small value ε guarantees that
a leave event does not conflict with any join events in
incarnation timestamps, and it correctly override prior
join events and is overridden by latter join events.

To avoid redundant messages, we build a broadcast
tree out of Pastry’s routing tables. The initiator of the
broadcast sends the message to all peers in its routing
table (within the group range). When x receives a mes-
sage from y, it forwards it to every peer z in its routing
table where z and x shares a longer prefix in their ids then
the prefix shared by y and x. Also, an event is not for-
warded if the peer’s local membership list is already
updated by anti-entropy or leafset updates, no matter if it
is updated by the same event or an older event. This may
potentially cause event losses during broadcast, but it is
unlikely and we choose the tradeoff of saving cost.
Leafset updates guarantee that every node in the group
will be notified of the event.

Event broadcasts may not reach all members in a
group due to failures or node departures. To compensate,
we augment broadcasts with periodic anti-entropy
rounds to ensure consistency of membership lists. At
every heartbeat interval, a peer randomly chooses an-
other peer in the group to exchange routing state and
resolve differences in membership lists. We use check-
sums to minimize bandwidth of these exchanges.

Peers exchange a checksum of membership entries
by performing an XOR of all ids of all membership en-
tries. If checksums do not match, peers try to predict the
cause of the inconsistency by checking for an entry
matching the XOR of the two checksums, and using its
timestamp to determine validity. If the inconsistency is
not caused by a single entry, the full membership lists are
exchanged. The XOR checksum significantly reduce the
need to send the full membership list in anti-entropy.

4.2. Supporting group splits and merges
As pointed out in Section 3.1.2, we also need addi-

tional mechanisms to support group splits and merges in

a dynamic system. When a group splits, anti-entropy is
used to resolve inconsistencies. Pair-wise anti-entropy
between nodes will quickly propagate information about
group split across the group. Group merges are triggered
by border members that are in two neighboring groups
and form leafsets together. These border members ex-
change their local group size in their leafset heartbeats
and determine if their total size is below the threshold
(e.g., 4/3G) to trigger a group merge. If so, the merge
event is propagated by event broadcast and anti-entropy
to all members in the two groups. The merge event
message contains the full membership list of the other
group to be merged with.

5. Protocol analysis

We now analyze the number of routing hops, routing
success rate, and the maintenance cost of Z-Ring. The
variables used in the analysis are given in Table 1.

Table 1: Variables used in the analysis
Variable Comment sample value
N network size 16M
G membership group size 4K
B prefix routing table base 2~16
L leafset size 4
T average session time of a

peer
30 minute

D * probe interval on one en-
try in the membership ta-
ble

seconds

* Assuming probes and anti-entropy messages sent at the
same frequency.

5.1. Number of routing hops
Given group size G and system size N, Z-Ring needs

 logGN level membership tables, and thus it requires
 logGN group routing hops. After each group routing
hop, some bits may not be resolved and thus comple-
mentary routing hops on the background Pastry are
needed. We now calculate the average number of these
routing hops between any two group hops. We assume
that the peer ids are distributed uniformly at random for
this calculation, and we use 2-based Pastry. We do not
consider false negatives and false positives in the mem-
bership protocol for this analysis.

Let G=2g, and N=r⋅2t, with t>g and 2/3<r≤4/3. Thus
the length of group id is t-g, and each group contains r⋅G
members on average.

Each group routing hop is targeted to resolve g bits,
but due to the imbalance in peer ids, it may resolve less
than g bits. We now calculate the probability that one
group routing hop fails to resolve exactly j bits, with
0≤j≤g, when the group size is r⋅G.

We reduce the problem to a ball-and-box probability
problem. There are totally 2g values for the g bits to be
resolved. We assign one box to all values that share the
same g-j bit prefix. So there are totally 2g-j = G/2j boxes.
The routing target id is in one of the boxes. Each routing
entry in the group of size r⋅G corresponds to a ball to be
thrown randomly into the boxes. The probability that the
group routing hop resolves at least g-j bits is the same as
the probability that the box with the target id contains at
least one ball when throwing r⋅G balls into the G/2j boxes
at random. This probability is given as:

jr
Grj

e
G

21211 ⋅−
⋅

−≈





−− .

Therefore, the probability that the group routing hop
resolves exactly g-j bits, i.e., fails to resolve exactly j bits
is:

() () jjjj rrrr eeee 2222 11

11 ⋅−⋅−⋅−⋅− −=−−−
−− .

When the group routing hop fails to resolve j bits,
the complementary Pastry routing hops needs to resolve
these bits. With 2-based Pastry, it resolves one bit at a
time with a chance that the subsequent bits happen to be
resolved simultaneously. The first bit in the last j bits has
to be resolved by Pastry and it takes one hop. For each of
the rest (j-1) bits, when it is the time to resolve the bit,
with probability 0.5 the bit has already been resolved by
the previous Pastry routing hop. So each bit needs one
more hop with probability 0.5, and thus each of the (j-1)
bits costs 0.5 Pastry routing hops. Hence, on average the
total number of Pastry routing hops to resolve j bits is
(j+1)/2.

Therefore, the expected number of complementary
routing hops is:

()∑
=

⋅−⋅− +⋅−
−

g

j

rr jee
jj

1

22

2
11 . (1)

When r=1 the above value converges to about 0.445
with g≥4.

We now need to consider two special cases. First,
when the network size N is not exactly a power of G, the
to-be-resolved bits of Y-group and X-group overlap (see
Fig. 5), and this reduces the number of complementary
Pastry routing hops needed. Suppose k bits are over-
lapped, then k =g⋅ t/g -t. In this case, the complementary
Pastry routing hops are needed only when the Y-group
routing fails to resolve more than k bits and it only needs
to resolve j-k bits where j is the number bits failed to be
resolved by Y-group routing. Thus the expected number
of complementary Pastry routing hops for Y-group is
adjusted to:

()∑
+=

⋅−⋅− +−⋅−
−

g

kj

rr kjee
jj

1

22

2
11 . (2)

The second special case is when an entire group
routing level can be bypassed because the source and the

destination happen to belong to the same group at the
next level. For example, with two-level routing, if the
source and the destination are in the same X-group, then
Y-group routing is bypassed. For higher level routing
beyond Y-group, this is unlikely to occur since the
probability is at most 1/G, and thus we ignore this
probability. But for Y-group routing, the probability
cannot be ignored if there is some overlapping in the
to-be-resolved bits. Using the notation above, when there
are k bits overlapped, the probability that Y-group rout-
ing is bypassed is 2k/G=2k-g.

To summarize, let G=2g, N=r⋅2t, with t>g, 2/3<r≤4/3,
and k =g⋅ t/g -t. Overall, (a) we need t/g group routing
hops; (b) for group routing beyond Y-group, the average
complementary Pastry routing hop between each group
routing level is given by (1); (c) between Y-group and
X-group routing, the average complementary Pastry
routing hops is given by (2); and (d) with probability 2k-g,
Y-group routing can be bypassed. We combine all these
factors into the following formulas:

When t/g =2, we have

()∑
+=

⋅−⋅−−− +−⋅−⋅−+−
−

g

kj

rrgkgk kjee
jj

1

22

2
1)21(22

1 ,

And when t/g >2, we have

    ()
()∑

∑

+=

⋅−⋅−−

=

⋅−⋅−−

+−⋅−⋅−

++⋅−⋅−+−

−

−

g

kj

rrgk

g

j

rrgk

kjee

jeegtgt

jj

jj

1

22

1

22

2
1)21(

2
1)2/(2/

1

1

Based on the analysis, we plot the curve that shows
the number of routing hops under different network sizes
(Fig. 8). In the next section, we will see that this ana-
lytical result matches with the simulation result very well.
In this figure, the step function represented by the dashed
line takes the value at size Gn for all sizes between Gn-1 to
Gn. Its formula is:

  45.0log45.1 −NG
It can be seen that this formula gives a simple and

reasonable estimate of the actual number of routing hops.

Fig. 8. Routing hops based on the analytical result.

5.2. Routing success rate under churn
We consider routing by simple message forwarding

without retries. The routing success rate is thus the single
hop success rate powered by the number of routing hops.
A single hop fails if it routes to a failed peer that is still in
the membership table, so the single hop success rate is
determined by the false positive ratio of the membership
service, which is in turn affected by the system churn
rate.

We assume that a peer is declared failed and re-
moved from the membership after three consecutive
failed probes (as in our implementation). We also assume
that the propagation delay of a failure event is much
smaller than the probe interval. Thus, the false positive
ratio of the membership protocol is equal to the prob-
ability that a peer being probed has already failed, which
can be approximated by 3d/T, where d is the probing
interval and T is the average session time of the peer.
Therefore, the success rate of Z-Ring is approximated
by:

45.0log45.131
−






 −

NG

T
d

For example, if every peer only stays online for 30
minutes for each session, with G=4K and N=G2, the
routing success rate is roughly 0.92, with d=T/100. This
is a very good success rate under high system churn of
almost 10000 peers joining and leaving every second,
with probes every 18 seconds.

5.3. Maintenance cost
Z-Ring’s maintenance cost consists of local memory

cost and network bandwidth costs. Z-Ring’s local
memory cost is O(GlogGN) for maintaining logGN level
of membership list and O(((b-1)logbN+L)logGN) for
maintaining logGN background Pastry tables. This
amounts to only a few 10s of Kbytes for G=212 and N=236.
So local memory cost is not an issue, and we henceforth
focus on the network cost.

We measure the network cost by the number of
message per second sent by a peer in the system. There
are several types of maintenance messages in Z-Ring: (a)
probing messages for underlying Pastry’s leafset and
routing table entries; (b) repair messages to fix a failed
entry in Pastry; (c) membership broadcast messages for
peer join and leave events; (d) membership anti-entropy
messages; and (e) bootstrap messages for a new peer to
locate its group members. Type (e) messages are ignored
since there are only a few messages per online session of
a peer. Type (d) messages are ignored because there is
only one message per probe interval.

(a) With 2-based Pastry, the size of the routing table
and the leafset of each Pastry ring is (log2N+L), and each
entry is probed every d seconds. With logGN Pastry rings

in Z-Ring, the total probing cost at one peer is (log2N+L)
logGN/d.

(b) Each of the log2N Pastry routing table entry
needs repair every T seconds on average. In the worst
case, the repair operation needs log2N messages due to
the routing operation. So the repair message cost is
log2N·log2N ·logGN /T.

(c) For membership broadcast, every join or leave
event is broadcast through the Pastry routing table
broadcast tree to all members in the group. So every
event generates G messages. Each peer generates one
join event and one leave event for every one of its online
session, with a period of T. Therefore, on average every
peer’s broadcast cost is 2G/T for maintaining each group,
and there are logGN groups for every peer.

Therefore, the total network cost is:

N
T
GN

T
N

d
LN

GG log2log)(loglog 2
22 +





++

6. Simulation Results
We have fully implemented Z-Ring on top of the

WiDS platform [10]. This platform encapsulates the
network socket layer and system threads. The Z-Ring
implementation includes three types of operations:
message posting, message handler, and timer. This en-
ables us to also run the real implementation on top of
WiDS-Sim (simulation version of WiDS).

To validate Z-Ring performance, we need to simu-
late up to G2 peers. With the parallel simulation feature
of WiDS, we are able to run simulations on 6 PCs to
simulate 65536 peers with G=256. Future experiments
will simulate even larger scales. The parameters for the
experiment are:
• Leafset heartbeat interval: 10 seconds
• Leafset size: 4 neighbors
• Leafset failure threshold: after 3 failed heartbeats
• Pastry routing table entry probe interval: 10 seconds
• Anti-entropy interval: 10 seconds.
• Network latency: random values from 2ms to 100 ms.

We measure the numbers of routing hops, success
rates and maintenance costs while varying system sizes
and churn rates.

6.1. Routing hops over system size
Our first experiment measures the number of routing

hops over various system sizes. We choose 31 sample
points as system size grows from 2,048 to 65,536. For
each data point, we first stop join and leave events to
stabilize the system, and then initiate 2000 routing re-
quests across randomly chosen source and destination
pairs. Fig. 9 shows the results. As expected, messages
take 2 overlay hops on average, increasing logarithmi-
cally with network size. The figure shows that our

simulation result matches with our analytical result very
well.

Fig. 9. Routing hops with various network sizes. Each

point is based on 2000 individual random routings.

6.2. Routing hops and success rate over churn

Fig. 10. Routing hops under churn.

Our second experiment measures the number of
routing hops and success rates under churn. Note that by
success rate, we mean end-to-end delivery rate without
retransmissions. We fix the system size to 65,536, and
vary the churn rate from 15 join/leaves per second (av-
erage online session length of 140 minutes), to 500
join/leave per second (average online session of 4.4
minutes). The experiment includes 6 sample points. Each
point contains results from 1000 random route requests.

Fig. 11. Routing success rate under churn.

System churn generates two kinds of false entries in
membership tables: false positives and false negatives.
False negatives reduce the membership table size and

thus increase the number of routing hops. False positives
cause routing message loss when messages are for-
warded to dead peers, therefore reducing the routing
success rate. Fig. 10 shows the impact of system churn on
the number of routing hops. The result is a tiny rise of
average routing hops at high system churn rates, which
means that false negatives are very low, and that event
propagation effectively reaches most peers. However,
the impact of false positives to routing success rate is
significant, because it takes three probe intervals to de-
clare a peer dead. Fig. 11 shows the routing success rate
over various system churn rates.

The routing success rate drops significantly at high
churn rates. According to previous measurements [14],
the typical average session time for today’s P2P network
is about 30 minutes. In Fig. 11 the corresponding routing
success rate is about 96%. Recall that this is the prob-
ability that the message reaches the destination without
retransmissions. The expected delivery rate with re-
transmissions would be exponentially higher.

6.3. Maintenance cost of membership protocol
Our third experiment measures the maintenance cost

of Z-Ring over various system churn rates on a network
of size 65,536. Other parameters are identical to the
second experiment. We vary the same test over the same
variance in churn rates, and count the number of main-
tenance messages in probing and event dissemination
traffic on each peer. Fig. 12 presents these results. Every
message is only counted at its sender side, i.e., each peer
only counts its outgoing traffic.

Fig. 12. Z-Ring maintenance under churn

(membership and probe)
The maintenance cost of Z-Ring’s group member-

ship scales inversely to the average session length, i.e.,
proportional to the churn rate. Consider a typical case
when the average online session time is 30 minutes [14],
there are 1.7 messages per second for anti-entropy and
4.0 messages per second for broadcast. Since all these
messages are smaller than 256 bytes, and broadcast
messages are 48 bytes, these results mean that each peer
consumes up to 0.63KB/s of outgoing bandwidth for
membership maintenance. Total bandwidth used, in-
cluding incoming bandwidth, is less than 1.3KB/s. Note

that our experiment uses G=256. For G=4096, the cost
will likely scale 8-fold to 10KB/s, still reasonable for
broadband users.

6.4. Comparisons to Pastry
We implemented the Pastry protocol on WiDS plat-

form and run Pastry simulations with base 16 and com-
pare the results with our Z-Ring implementation. The
comparison includes maintenance cost, routing hop
number and success rate.

Fig. 13 compares the maintenance cost in number of
messages sent per second by a peer with different aver-
age peer session times. It shows that the cost of Pastry
does not vary with churn rate, because Pastry only
maintains leafsets and routing tables with probes at con-
stant rates. The cost of Z-Ring is affected by the churn
rate, because when the churn rate is high, the member-
ship protocol in Z-Ring needs to send out more broadcast
messages to disseminate join and leave events.

Fig. 13. Per peer maintenance cost comparison be-

tween Z-Ring and Pastry. The network size is 65536,
group size is 256.

Our results show that Z-Ring’s maintenance cost is
similar to Pastry’s when system churn rate is low. When
the churn rate is high, Z-Ring’s cost increases signifi-
cantly, but is still reasonable for home users. The benefit
is significantly lower number of routing hops per mes-
sage. The reduced hop count leads to lower bandwidth
cost incurred in data traffic. In addition, Z-Ring reduces
the need for message retransmissions by increasing
routing reliability.

Fig. 14 compares the number of routing hops be-
tween Z-Ring and Pastry for various network sizes.
Z-Ring saves close to two hops when network size is
65536. While our simulations are limited to these sizes,
the visible trends show that Z-Ring would show even an
even bigger reduction in hops from Pastry for larger
networks. Fig. 15 compares the routing success rate
between Z-Ring and Pastry, under various churn rates.
We see because Pastry routing requires more than double
the hops of Z-Ring, its expected failure rate is also dou-
bled. The reduction of overlay hops in Z-Ring leads to
higher expected routing success rate and significant
savings in network bandwidth.

Fig. 14. Routing hops comparison between Z-Ring

and Pastry with various network sizes and no system
churn.

Fig. 15. Routing success rate comparison between

Z-Ring and Pastry. The network size is 65536, group
size is 256.

Bamboo DHT [11] proposes three methods that
improves routing success rate. We already adopt peri-
odical probe recovery in our comparison. While the other
two methods (timeout calculation and proximity
neighbor selection) can also be adopted in Z-Ring to
further improve success rate.

6.5. Recovering from Network Partitions
Given the frequency of wide-area disconnections,

recovering from network partitioning can significantly
improve robustness for Internet applications. We run a
partition healing experiment by connecting two inde-
pendent partitions, each containing 32,768 nodes chosen
from the same id space. After waiting for each partition
to stabilize, one peer from partition A sends a heartbeat
to a peer in partition B and begins partition healing.
During the process, we measure the success rate of ran-
dom route messages and the number of control messages
generated. A message is successfully routed if it arrives
at the destination closest to its goal id, even if the route
would cross partition boundaries. Before healing, rout-
ing will be successful only if the source and destination
lie in the same partition. For control messages, we only
measure the amount of broadcast and anti-entropy mes-
sages exchanged, since the rate of normal heartbeats and
leafset probes will not change during healing.

We found that a basic implementation of Pastry
heals partitions slowly. Peers only forward information
on new neighbors to their leafset members. This healing
process converges in time of C1·N / leafset_size, where N
is the system size. In contrast, fast dissemination of
join/leave events in Z-Ring quickly notifies all members
of the X-group, significantly speeding up the process.
When a peer receives information on a new neighbor, it
probes the neighbor to confirm its validity.

We note that the healing will slowly spread between
X-groups, and can still take O (N/G) to converge. We
accelerate this by forwarding new nodes discovered
through X-group notification to the Y-group. Broadcast
through the Y-group potentially reaches all X-groups in
one broadcast step, and then each X-group notifies its
members. This implementation accelerates the partition
healing converge time from O (N) to O (logGN).

In this experiment, we initiate routing requests once
every 10 milliseconds, log all messages, and measure the
message counts and success rates of requests every
second. Fig. 16 shows how the success rate of route re-
quests significantly increases as the partitions heal. As
expected, the success rate starts fluctuating around 50%.
Healing is complete after 50 seconds.

Fig. 16. Routing correctness during partition healing

of 65536 nodes

Fig. 17. Number of broadcast and anti-entropy mes-

sages per peer during partition healing of 65536
nodes

In Fig. 17, we plot the number of broadcast and
anti-entropy messages during partition healing. The first
message connecting the partitions is initiated at time

1400. The figure shows that the partition healing is done
after only 5 heartbeat intervals (50s). The cost of
broadcast and anti-entropy messages grows up to 200
messages per second for each peer. The actual bandwidth
cost per peer is reasonable (20KB/s), since messages are
smaller than 256 bytes and broadcasts are 48 bytes. Over
the healing process, each peer sends 2900 messages on
average.

7. Related Work

There are numerous structured overlays in addition
to Chord [15], Pastry [13] and Tapestry [17]. In particu-
lar, Pastry and Tapestry utilize prefix routing to incre-
mentally route towards a destination key. Z-Ring is
similar in routing by incrementally matching digits to the
destination key. Each digit resolution chooses a member
of a group of nodes sharing all other digits. Recent work
has shown that Pastry maintenance traffic can be reduced
to a small number of messages per second per node [1].

SWIM [4] and XRing [16] are efficient membership
protocols that can be used by Z-Ring to maintain its
routing groups. The work in [7] estimates the group
membership maintenance cost and shows its feasibility
for real systems. [10] discusses the full membership
service, but focuses on finding a network size that allows
a full membership service. Its calculation can be used by
Z-Ring to determine the group size G in a particular sys-
tem.

 [7] and [8] study two-hop routing for large networks.
However, their data structures are fixed, and cannot eas-
ily extend to larger networks. Z-Ring provides similar
results when implemented with two-level membership
table, but its design allows it to easily extend to larger
networks adaptively.

8. Conclusion

Z-Ring uses efficient membership maintenance to
support one or two-hop key-based routing in large dy-
namic networks. Our analysis and simulations show that
Z-Ring provides efficient routing with very low main-
tenance overhead. We believe these membership main-
tenance techniques will allow us to deploy structured
P2P protocols across previously unsupportable envi-
ronments, including large scale networks,
low-bandwidth hosts and networks with high churn.

References
[1] Castro, M., Costa, M. and Rowstron, A., “Performance

and dependability of structured peer-to-peer overlays”, In
Proc. of DSN, Florence Italy, June 2004.

[2] Chockler, G. V., Keidar, I., and Vitenberg, R., “Group
communication specifications: A comprehensive study”,
ACM computing Surveys, 33:4, pp.427 – 469, 2001.

[3] Dabek, F., Zhao, B. Y., Druschel, P., Kubiatowicz, J. and
Stoica, I. “Towards a common API for structured P2P
overlays”, In Proc. of IPTPS, Berkeley, CA, USA, April
2003.

[4] Das, A., Gupta, I., Motivala, A., "SWIM: Scalable
Weakly-consistent Infection-style Process Group Mem-
bership Protocol", In Proc. of DSN, Washington
DC, June, 2002

[5] Demers, A., et al, “Epidemic algorithms for replicated
database maintenance”. Operating Systems Review,
22(1):8–32 (Jan. 1988).

[6] Golding, R., and Taylor, K., “Group membership in the
epidemic style”, Technical Report UCSC-CRL-92-13,
UCSC, May 1992.

[7] Gupta, A., Liskov, B., and Rodrigues, R., “Efficient
routing for peer-to-peer overlays”, In Proc. of NSDI, San
Francisco, CA, April, 2004.

[8] Gupta, I., Birman, K., Linga, P., Demers, A., van Re-
nesse, R., “Kelips: building an efficient and stable P2P
DHT through increased memory and background over-
head”, In Proc. of IPTPS, Berkeley, CA, Feb. 2003.

[9] Labovitz, C., Ahuja, A., and Jahanian, F., “Experimental
study of Internet stability and wide-area backbone fail-
ures”, University of Michigan Technical Report,
CSE-TR-382-98, 1998.

[10] Lin, S., Pan, A., Zhang, Z., Guo, R. and Guo, Z., “WiDS:
an Integrated Toolkit for Distributed System Develop-
ment”, In Proc of HotOS, Santa Fe, NM, June 2005.

[11] Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J.,
"Handling Churn in a DHT", In Proc. of the USENIX
Annual Technical Conference, June 2004.

[12] Rodrigues, R. and Blake, C., "When Multi-Hop
Peer-to-Peer Lookup Matters", In Proc. of IPTPS, San
Diego, CA, USA, February, 2004.

[13] Rowstron, A. and Druschel, P., “Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems”. In Proc. of ACM Middleware,
Heidelberg, Germany, November, 2001.

[14] Saroiu, S., Gummadi, P. K. and Gribble, S., “A meas-
urement study of Peer-to-Peer File Sharing Systems,” In
Proc. of Multimedia Computing and Networking, 2002.

[15] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and
Balakrishnan, H., “Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications”, In Proc. of
SIGCOMM, San Diego, CA, August 2001.

[16] Zhang, Z., Lian, Q., and Chen, Y., “XRing: a Robust and
High-Performance P2P DHT”, Microsoft Research
Technical Report MSR-TR-2004-93, 2004.

[17] Zhao, B. Y. et al, “Tapestry: A Resilient Global-scale
Overlay for Service Deployment”, IEEE Journal on Se-
lected Areas in Communications, January 2004, Vol. 22,
No. 1.

