
Caching of XML Web Services for Disconnected Operation

Venugopalan Ramasubramanian and Douglas B. Terry

Microsoft Research
1065 La Avenida

Mountain View, CA 94043

Abstract
Caching can permit mobile applications to utilize XML Web services in the face of intermittent connectivity.
However, Web services present a number of challenges to cache managers since they have generally been designed
without regard to caching and hence provide little support. The WSDL description of a Web service, for instance,
specifies the SOAP message formats needed to invoke service operations but does not indicate which operations
modify the service’s persistent state or will likely produce different results on different invocations. We developed
tools for generating custom cache managers that tailor their behavior based on annotations added to a Web service’s
WSDL specification. An experiment to transparently interject a cache between existing XML Web services and
their clients running on mobile devices demonstrated that disconnected operation could be achieved without
modifying services or their applications.

1 Introduction
Web services are emerging as the dominant application
on the Internet. The Web is no longer just a repository
of information but has evolved into an active medium
for the providers and consumers of services. Services
on the Web are provided and consumed by a wide
variety of entities: individuals provide peer-peer
services to access personal contact information or
photo albums for other individuals; individuals provide
services to businesses for accessing personal
preferences or tax information; a plethora of Web
based businesses provide consumer services such as
travel arrangement (Orbitz), shopping (eBay), and
electronic mail (Hotmail) and, in addition, several
business-to-business (B2B) services such as supply
chain management form important applications of the
Internet. While these services are currently being
provided through static or active Web pages, they are
evolving into XML Web services designed for
programmatic rather than human access. For example,
MapPoint.Net, provides maps and location services for
incorporation into other Web sites and applications.
Thus, XML Web services are the building blocks for
constructing a new generation of Web applications that
leverage existing investments in Web technology.

One of the key requirements for the success of Web
services is universal availability. Web services tend to
be accessed at all times and at all places. Clients
employ a wide range of devices including desktops,
laptops, palm or hand held devices, and smart phones
that are connected to the Internet using very different

kinds of networks such as wireless LAN (802.11b), cell
phone network (WAP), broadband network (cable
modem), telephone network (28.8 kbps modem), or
local area network (Ethernet). Frequent disconnections
and unreliable bandwidth characterize some of these
networks. The availability of Web services is thus a
significant concern to consumers using mobile devices
and working in different kinds of mobile networks.

A good solution to improve availability of Web
services should be transparently deployable and
generally applicable. Transparent deployment means
that the solution must not require changes to the
implementation of the Web services, either to the
server and client side modules or to the communication
protocol between them. The growth in the number of
Web services has been phenomenal and hence applying
changes to existing Web services is an improbable
proposition. For the same reason, the solution should
also be scalable and general enough to apply to all the
Web services. Thus building specialized components
to handle disconnections for each Web service would
be extravagant. A good solution would be applicable
to all Web services and would involve interposing
storage and computation transparently in the
communication path of the client and the server
without modifications to Web service implementations
on the client or the server.

This paper presents an architecture that supports
continued access to Web services from mobile devices
during disconnections. This architecture provides a

 2

client side cache that mimics the behavior of Web
services to a limited extent. Caching satisfies both the
required characteristics of transparent deployment and
general applicability. This cache architecture strictly
conforms to the XML based standards for Web
services developed by the W3C (World Wide Web
Consortium). The cache is transparent to both the
client and server components of the Web services.
Hence no changes are required to the implementation
and the communication protocol of the Web service,
and the architecture can be applied to already existing
Web services that conform to W3C standards. We
have built a prototype of this architecture and applied it
to improve the availability of Microsoft’s .NET My
Services set of Web services. The implementation of
this prototype and a case study application are detailed
in this paper.

This paper is organized into the following components.
Previous work relevant to this problem is discussed in
Section 2. Section 3 presents a brief description of the
XML based standards for Web services. Section 4
details the issues associated with building a cache for
Web services. Sections 5 and 6 contain a detailed
description of the Web services cache architecture that
we developed. In Section 7, we discuss an application
of our architecture to improve the availability of the
MyContacts Web service that forms a part of the .NET
My Services. We conclude in Section 8.

2 Related Work
 A variety of systems have employed caching on
mobile devices in support of disconnected access to
files [16][23], databases [1][5][22], objects [19][26],
and Web pages [6][7][8][13]. This paper presents the
first significant exploration of caching of XML Web
services. The basic architecture of all of these systems,
including ours, is fairly similar, consisting of a cache to
store read/query results and a write-back queue for
updates [18]; caching web clients invariably use a
proxy-based architecture [20]. The differences lie in
what is being cached, how the cache is managed, and
the degree of cooperation between clients and servers.
XML Web services present new challenges due to the
diverse set of operations exported by such services as
well as their lack of involvement in the caching
process.

Most modern commercial Web browsers allow users to
access cached pages while offline but pay little
attention to cache consistency. More advanced
techniques for caching Web pages, on both fixed and
mobile devices, have focused primarily on maximizing
cache hit rates while preserving some degree of cache
consistency. Web caches map URLs to HTML pages
and need worry about only one operation, namely the

HTTP GET operation. Cache managers rely on
directives provided by Web servers that indicates
whether a page is cacheable and for how long. XML
Web services are active entities and hence, passive
caching as defined by HTTP [12] is unsuitable. The
default HTTP cache directive for Web service
responses is no-cache.

Caching to improve availability of file systems and
database systems is a well-explored and widely used
technique. However, Web services differ considerably
from these traditional distributed systems. Both file
systems and database systems have well-defined client
interfaces. For example, a file server exports standard
operations like read, write, open and close to clients.
A cache manager need only implement this interface
whose semantics are well understood. In contrast,
each Web service exposes its own distinct interface to
clients.

Replication of data onto mobile devices, like caching,
can be done to provide high availability in the face of
intermittent connectivity [16][17][23][32]. While
XML Web services almost always manage persistent
databases internally, simply replicating that data is not
useful. Web services encapsulate their data in critical
business logic. The attraction of Web services is in
allowing client applications to leverage this high-level
logic. Thus, the large body of previous work on
replicated file systems and databases is not directly
applicable to Web services.

Distributed object systems have also supported caching
or replication to permit disconnected operation and
improve performance [10][19][24][26][28]. Web
services can be viewed as objects in that they both
export a variety of operations through published
interfaces. Replicated object systems, however, have
assumed that objects, including code and data, can be
cached in their entirety. Such an assumption may not
apply to mobile devices with limited resources. More
importantly, a Web service’s code, i.e. business logic,
is often treated as proprietary and is generally owned
by different parties than those accessing the services.
Replicating such code onto mobile clients is therefore
infeasible.

This is what caused us to pursue a different path for
accessing Web services from intermittently connected
devices, namely request/response caching. Others have
suggested this same approach and identified some of
the issues [28][30][31], but we know of no other
attempts to attack the challenging practical problems in
caching Web services for disconnected operation and
to produce a working implementation.

 3

3 XML Web Services
Web services consist of a service provider and multiple
consumers based on the client-server architecture.
Each Web service uses a custom communication
protocol for the clients to access the servers. The most
common access pattern for a Web service consists of
requests and responses. The client sends a request
message that specifies the operation to be performed
and all relevant information to perform the operation,
to the server. The server performs the specified
operation and replies with a response message. The
actions carried out by the server might result in
permanent changes to the sate of the server.

Essentially, Web services provide RPC like interfaces
to the client. For example, MyContacts, one of the
.NET My Services [27], is a Web service that allows
users to maintain access information such as names,
addresses and phone numbers of their contacts. The
MyContacts Web service exports operations to insert,
delete, replace and query portions of this contact
information. Each of these operations takes input
parameters (the query string) and produce output
(query response or success status) while making
permanent state changes at the server. Each Web
service provides its own custom interface that could be
vastly different than those provided by other Web
services. For example, a travel Web service would
provide operations to search for airfares, reserve and
buy tickets and look-up itinerary.

The World Wide Web Consortium (W3C) has
recommended a set of standards for Web services
based on the Extensible Markup Language (XML) [3]

with the support of several leading corporations
including IBM and Microsoft. These XML based
standards provide globally recognizable protocols for
discovering, describing and accessing the custom
interfaces of Web services [4][10]. This standard
consists of two important components: SOAP (Simple
Object Access Protocol) and WSDL (Web Services
Description Language).

The Simple Object Access Protocol (SOAP) [14][15]
specifies a standard for sending messages between
different entities of a Web service. SOAP messages
are XML documents that are transported from one
SOAP-node to another. For Web services, the SOAP-
nodes could be either the client or the server. Each
SOAP message consists of an outer-most element
called the envelope. The envelope consists of two
elements: a mandatory body element, and an optional
header element. The body element carries the main
content of the message. For the case of a request
message, it would carry the name and parameters of the
operation to be performed. The header element
consists of multiple header blocks, each containing
meta-information for the receiver or intermediary
nodes. The header blocks are used to specify
additional useful information such as password for
authentication. The SOAP message in Figure 1 shows
an example request message from the client to the
server for the MyContacts Web service.

The Web Services Description Language (WSDL) [9]
is a standard used to provide descriptions of Web
services. The WSDL document for each Web service
completely describes the custom interfaces provided by
that Web service to clients. This document can be used

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" xmlns:m=http://schemas.microsoft.com/hs/2001/10/myContacts
xmlns:c=http://schemas.microsoft.com/hs/2001/10/core xmlns:mp="http://schemas.microsoft.com/hs/2001/10/myProfile" >
 <s:Header>
 <licenses xmlns="http://schemas.xmlsoap.org/soap/security/2000-12">
 <c:identity> <c:kerberos>3240</c:kerberos> </c:identity>
 </licenses>
 <path xmlns="http://schemas.xmlsoap.org/rp/">
 <action>http://schemas.microsoft.com/hs/2001/10/core#request</action>
 <to>http://microsoft-m3we4f.microsoft.com</to>
 <fwd><via /></fwd><rev><via /></rev>
 <id>b55528a4-5d63-49f1-87a2-5fab8d76f658</id>
 </path>
 <c:request service="myContacts" document="content" method="insert" genResponse="always" >
 <key puid="3240" instance="1" cluster="1" />
 </c:request>
 </s:Header>
 <s:Body>
 <c:insertRequest select="/m:myContacts/m:contact[mp:name/mp:givenName = 'Joe']/mp:emailAddress" >
 <mp:email>joe@idontknow.com</mp:email>
 </c:insertRequest>
 </s:Body>
</s:Envelope>

Figure 1: Example SOAP message carrying insert request for MyContacts Web service.

 4

by program development tools, such as Microsoft’s
Visual Studio .NET, to automatically generate proxy
stubs that encapsulate the remote Web service as a
local object on the client. The WSDL document lists
the names of the operations provided by the Web
service as well as the format of SOAP messages used
to communicate between the client and the server. A
complete description of the data types of the
parameters to be passed to each operation or received
as responses is also provided in the WSDL document
of a Web service. Thus WSDL is used to provide
adequate description of the varied interfaces provided
by the Web service.

The caching architecture presented in this paper
supports all Web services that conform to the W3C
standards, provide WSDL descriptions of their
interfaces and use SOAP messages for communication
with clients. The implementation of this architecture
assumes that the SOAP messages are transported using
HTTP (Hyper Text Transfer Protocol) as the
application layer protocol since the SOAP-RPC
recommendations are currently complete only for
HTTP. Accordingly, the request for an operation from
a client is carried by a HTTP request message and the
response from the server is carried by the
corresponding HTTP response message.

4 Issues in Caching Web Services
To study the suitability of caching to support
disconnected operation on Web services, we conducted
an experiment in which a caching proxy was placed
between Microsoft’s .NET My Services and the sample
clients that ship with these services. The .NET My
Services were chosen for this experiment because they
are the only example we could find of publicly
available, non-trivial XML Web services that support
both query and update operations.

We built a HTTP proxy server as defined in the HTTP
protocol standard [12] and deployed it on the client
device. In this case, the client device was a laptop
running Windows XP. All HTTP messages originating
at the client, including those generated by Web clients
and Internet browsers were made to pass through the
proxy server. The proxy server acts as a simple tunnel
for all HTTP packets that are not SOAP messages.

A cache for storing SOAP messages was added to the
proxy server. This cache stores SOAP messages
received in response to SOAP requests. All cache
policies for expiration and replacement were
implemented as recommended in the HTTP standard
[12]. During the experiments, this cache was used only
to store HTTP packets with SOAP messages as their
entities. Whenever the network is connected, the

SOAP request received would be sent to the server.
The received SOAP response is stored in the cache
associated with the request, replacing the old response
if it had existed. In the case where the cache contained
a previous response for the same request, the new
SOAP response is compared to the previous response
and the result of the comparison is recorded in a log
file. These comparisons provided valuable insight into
what kind of operations could be cached and what
other operations affect the validity of the cached
responses.

If the network is disconnected, the SOAP response
stored in the cache (if present) is returned to the client
and the SOAP request is stored in a write back queue.
If a request has no cached response, the client times out
waiting for the response, as in the normal case when a
server is unreachable. All requests are stored in the
write back queue for later replay since the cache
manager cannot determine which requests modify the
service state and which are simply queries. Whenever
the connection to the Web service is restored, the
queued up SOAP requests are played back to the server
and the SOAP responses are stored in the cache.

We carried out this study using the .NET My Services
published by Microsoft [27]. The .NET My Services
Software Development Kit (SDK) contains a number
of Web services such as MyContacts that allows users
to store and retrieve address and phone information,
MyProfile that allows users to store their personal
information, and MyFavoriteWebSites that allows
clients to manage favorite Web sites. The SDK also
comes with several sample applications that call on
these services. By running the sample applications, we
performed various operations on these services having
the network connected as well as deliberately
disconnecting the network. Figure 2 illustrates the set-
up of our experiments.

Figure 2: Experimental set-up to study the benefit of caching
for Web services

These studies clearly highlighted the benefits of
employing a Web service cache to support
disconnected operation. In particular, the applications
ran just fine while disconnected as long as the cache
was preloaded. However, the experiment also exposed
a number of issues that need to be handled in order
achieve a significant improvement in the consistency

MyCalendar

MyProfile

MyContacts

Cache

 5

and availability of offline access to Web services. The
rest of this section elaborates on various problems
associated with designing a client cache for Web
services.

Playback and Cacheability
The diverse nature of Web services poses a major
problem in identifying the semantics of the operations
exposed by the Web service. In the case of file
systems, the semantics of standard operations such as
read and write are clearly understood. Results of the
read operation can be stored in the cache while the
write operations need to be played back to the server
upon restoration of connectivity. On the other hand,
Web services have very diverse interfaces that make it
extremely difficult for the cache to understand whether
a certain operation needs to be played back to the
server and whether an old response from the cache is
acceptable to the client.

At least two properties of an operation need to be
recognized by the Web service cache in order to
function effectively. An operation is said to be an
update if execution of the operation makes permanent
changes to the state of the server. An operation is said
to be cacheable if subsequent execution of the
operation with the same parameters produces the same
response, provided that no update operation intervenes.
Operations of a Web service could be both cacheable
and updating while others could be neither or have one
property without the other. For example, a request to
query data is cacheable but generally is not an update.
However, a query could also update the server state if
the server needs to maintain a log of all requests. A
request to get the current time is neither cacheable nor
an update.

Consistency
A fundamental challenge faced by caching schemes in
general and compounded by the diverse nature of Web
services is providing basic consistency guarantees.
When operating in disconnected mode, a cache
manager cannot provide strong consistency guarantees
since it does not have access to updates performed by
other users. However, it can at least strive to provide
cache results that are consistent with a user’s own
actions. In particular, an operation that is performed by
the local user could change some of the results of the
earlier requests that are stored in the cache. For
example, in the MyContacts Web service, a request to
change the telephone number of a friend would
invalidate an earlier response querying the contact
information of that friend. In order to maintain
correctness, the earlier response in the cache would
have to be either correctly modified or deleted from the
cache. Otherwise, the cache may return an incorrect

response if the query is again repeated during a
network outage. For pre-existing Web services,
understanding the correct consistency requirements,
that is, the interdependencies between operations, is an
extremely challenging issue.

User Experience
An important criterion for the assessment of a good
technique to support disconnections is its effect on the
user’s experience. Ideally, a user should obtain the
same experience when disconnected as when
connected. However, achieving the ideal goal is not
practically feasible, especially if the Web client is
unaware of the existence of the cache.

There is a direct trade-off between the consistency
guarantees assured by the Web service cache and the
quality of the user experience during disconnections.
By providing only weak consistency guarantees, the
Web service cache can greatly improve the availability
of Web services. For example, when the cache handles
a request for an update operation, in addition to storing
that request for future playback to the server, it could
send a fake response to the Web client reporting the
success of this operation. However, when the request
is actually played back to the server upon reconnection,
the server may decide to abort that operation for
various reasons. On the other hand, guaranteeing
strong consistency would not affect a user’s experience
but would prohibit the cache from employing certain
techniques to enhance the service’s availability.

Making the Web client application cache-aware can aid
users during off-line access to Web services. In
particular, the Web service client could appraise the
user about disconnections and uncertainties in the
execution of certain operations. However, modifying
Web clients to add this reporting functionality may not
be an easy task. Our study suggested the need to
discover a standard mechanism for reporting important
events to users that did not require substantial
alteration of the Web client implementation.

Communication Protocol
Understanding the format of the messages exchanged
between a Web service client and server can be another
problem for a caching proxy. Despite using standard
protocols, such as SOAP, Web services deviate
considerably in the structure of their request and
response messages. Even mechanisms for identifying
the name of the operation being performed vary from
service to service. For example, in Figure 1 showing
an example SOAP request for the MyContacts Web
service, the operation name, “insert”, is one of the
attribute fields of the request header. The operation

 6

name may have to be identified in a completely
different way for a different Web service.

Correct comprehension of the message structure is also
required for other fundamental reasons such as
comparing requests and sending default responses. For
example, each SOAP request message of the
MyContacts Web service has a unique identifier in one
of the header fields (see Figure 1). The cache manager
must ignore this field during comparisons in order to
correctly recognize similar requests. Otherwise, every
request would be different and the cache would be
rendered ineffective. When a cache receives a request
for an update operation during disconnection, it is
expected to return a meaningful response to the client
in order to pretend that the service is available. If this
operation is also cacheable, the cache can return a
response stored earlier; if not, it needs to generate a
response that conforms to the message format of that
service.

Other Issues
The effectiveness of a cache depends on the similarity
of future requests to the past requests. The cache can
return stored responses only for those requests seen
earlier by the cache. Hoarding techniques that preload
the cache with responses of requests that are
anticipated in the future can significantly improve
availability [24]. However, selecting the right requests
for hoarding requires the involvement of the user.
Developing a standard mechanism for users to specify
hoard requests that can be used by the Web service
cache is an interesting challenge.

Security is another important issue that needs to be
considered while building a cache for Web services.
Web services often check the authentication of the
messages and the authority of the users before
performing operations. For example, the expiry of a
Kerberos ticket might prohibit a user from accessing
certain information. The cache manager may need to
include mechanisms to perform these authorization
checks before responding from the cache during
disconnections. Unfortunately, Web services use
several disparate methods for ensuring security,
thereby making it difficult to incorporate security in a
cache implementation.

The remainder of this paper addresses the important
issues of playback, cacheability, consistency, and user
feedback, but ignores hoarding and security. Hoarding
and security in the context of Web services are both
areas for future work. For the Web services and
applications that we have studied thus far, the lack of
explicit hoarding techniques has not been a problem
since the set of operations is small and client access

patterns have been naturally repetitious. Security has
also not been a concern since we assume that the
mobile devices on which the cache resides are under
the control of a single user.

5 WSDL Annotations
Several of the issues faced by a Web service cache are
caused by the inherent diversity of Web services. The
study outlined in the previous section suggested that
the Web service cache could be more effective if it had
a reasonable understanding of the structure of the Web
services. This section presents a generic technique to
express the required semantics of a Web service.
Specifically, we add annotations that describe the
properties and semantics of the interface and
communication protocol exposed by the Web service to
the WSDL description of the Web service. The
annotations extend the description of the Web service’s
interface and message formats. The annotations do not
affect tools that automatically generate Web service
clients from WSDL specifications, but are simply used
to adjust the behavior of custom cache managers (as
described in Section 6). Further, these annotations are
optional, and a default cache behavior is defined for
Web services whose WSDL documents are not
annotated.

Annotating the WSDL document satisfies both our
design goals of transparency and general applicability.
Annotations can be added to the WSDL description
without requiring any modifications to the
implementation of the Web service. These annotations
could either be published by the service provider or by
a third party provider reasonably aware of the
semantics of the Web service. The annotations use
standards like XPath and XSLT and can be applied to
any Web service.

Properties of Operations
A Web service’s WSDL document contains an
operation element used to specify the message format
for each operation exported by the service. Our cache
managers understand the following attributes that can
be added to an operation element in the WSDL
document.

cacheable: A boolean attribute that specifies whether
the operation is cacheable. The default value is
false.

lifetime: An integral attribute that specifies the
duration for which a response for his operation
should be cached. The default value is 0.

playback: A boolean attribute that specifies whether
the operation is an update and needs to be played

 7

back to the server upon connection restoration.
The default value is false.

defaultResponse: A boolean attribute that specifies
whether the cache generates a default response
during disconnections. The default value is false.
A default response needs to be sent by the cache in
order to make the Web client believe that the Web
service is available during disconnections when no
stored response is found in the cache.

cacheHeader: A boolean attribute that specifies
whether a cache header is appended to the
response message to provide feedback to the user
about operations that are serviced from the cache.
The default value is false.

The cache manager uses the default values of these
attributes when the attributes are not specified in the
annotated WSDL document. The default values were
chosen to provide the fewest surprises to users and
applications that are not aware of the underlying cache.
By default, operations are considered to be non-
cacheable and are not placed in the playback queue;
thus, operations whose specifications have not been
annotated are simply ignored by the cache. Such
operations cause the client to receive a “service
unreachable” exception if performed while
disconnected.

Properties of SOAP Messages
Two annotations help the cache manager understand
the basic format of the SOAP messages used by a Web
service. These annotations are added as attributes to
the WSDL document’s binding element, which
describes the components of the SOAP messages for
various operations. These attributes are expressed as
strings in the XML Path Language (XPath) [2]. XPath
is used to describe queries on XML documents. XPath
strings can identify specific portions of the XML
document as well as perform basic boolean, floating
point and string operations. Thus, the XPath language
is adequate to express complicated query strings. The
two binding element annotations recognized by our
cache manager are as follows.

operationName: An XPath attribute that is used to
extract the name of the operation embedded in a
SOAP message. The cache manager applies this
XPath query to each request (XML) message to
obtain the name of the operation being requested,
and then uses the operation name to identify the
properties of the operation from the annotated

WSDL document. If this attribute is not set, then
default operation properties as described earlier are
assumed.

identifier: An XPath attribute that is used to extract
the components of the request message that can be
used for comparisons. Applying this query to a
request message selects the set of elements of the
message that are used as the key for cache
lookups. In other words, these elements of two
request messages can be compared to decide
whether they are the same operations If this
attribute is not set, the entire request message is
used for comparison.

Cache Header
In order to inform the user of responses drawn from the
cache during disconnected operation, a cache manager
may add an optional cache header to the SOAP
responses. The cache header is defined in the WSDL
document like any other SOAP header and does not
affect the working of existing Web clients. Further, the
cache header is optional and hence can be completely
ignored by unmodified Web service clients. Cache-
aware Web clients can use the information provided by
the cache header to apprise users of the events in the
network. For example, a Web service application can
read the cache header and pop-up a window to inform
the user that the response was returned from the cache
or that the request was stored in the playback queue to
be communicated later.

The cache header, which is appended to the response
message before the cache replies to the client, contains
the following attributes that provide useful information
about the cache and the status of network connection.

fromCache: A boolean attribute that indicates whether
the response was retrieved form the cache.

age: An integral attribute that gives the age of a
cached response, i.e., the duration for which the
response was stored in the cache.

toPlayback: A boolean attribute that indicates whether
the request was temporarily stored for future
playback to the server.

defaultResponse: A boolean attribute that indicates
whether the response is a default response
generated by the cache manager. In that case, a
cache-aware Web client may choose to ignore the
response.

 8

Figure 3: An example for inconsistent requests from
MyContacts Web service

Consistency Semantics
The ultimate effectiveness of the Web service cache
architecture depends on how well it can support the
consistency semantics of diverse Web services.
Consistency requirements may demand that responses
for certain requests stored in the cache be invalidated
due to the execution of later requests. For example,
consider the two requests of MyContacts Web service
shown in Figure 3. The first request specifies a query
operation asking for the retrieval of Joe’s contact
information. The second request is a delete operation
removing Joe’s cell phone number. If the response of
the query request were stored in the cache, then the
execution of the delete request should invalidate the
cached response causing it to be removed from the
cache. Expressing such consistency requirements as
annotations to the WSDL document is a non-trivial
task since the consistency semantics of one Web
service could drastically differ from that of another
service.

Consider two operations performed in succession by a
Web service application: request1 and request2. Let the
response for request1 be currently stored in the cache.
Suppose that request2 is being currently processed.
Whether request2 invalidates request1 depends both on
the operations being performed by the two requests as
well as the parameters being passed to the two
operations. The condition for the invalidation of
request1 by request2 can be expressed as a boolean
function of the operation names and the parameters
passed to the operations of the two requests. Thus, the
consistency semantics of a Web service can be
expressed in its WSDL document by defining this
invalidation function.

In our current implementation, XSL transformations
are used to define the invalidation function. Extensible
Stylesheet Language Transformation (XSLT) [21] is an
XML based standard used to convert XML documents
into documents of other formats such as HTML or text.
For our purposes, XSLT is a powerful procedural
language with interesting features such as iterations,
conditional statements, variables and function calls that
can be used to express the invalidation function.

Further, XSLT also accepts scripts written in other
languages such as JScript, Visual Basic and C#.

The power of XSLT is used to perform smarter
transformations than just specifying a boolean
invalidation function. An XSLT transformation, called
the cacheTransform, may be added as an element of
the binding element of the WSDL document. Instead
of specifying whether request2 invalidates request1, the
XSLT transformation can actually modify the cached
response for request1 to conform to the changes
requested by request2. For example, when the delete
request shown in Figure 3 is handled, a smart
cacheTransform would actually modify the response of
the earlier query request by deleting Joe’s cell phone
number from the cached response.

Whenever a Web service application requests a new
operation, the cache manager applies the
cacheTransform to each previously cached response of
this service. The cacheTransform takes four
parameters as input: some request1 whose response is
stored in the cache, response1 stored in the cache,
request2 that is being currently processed and response2
of request2 if the Web service is currently available.
The cacheTransform transforms the response1
according to the semantics of the Web service if
possible. If request2 does not invalidate request1, then
the transform produces the original response1 as its
output. If request2 invalidates request1 but response1

cannot be suitably modified, the transform outputs an
empty string signifying that response1 must be
removed from the cache. When no cacheTransform is
specified in the WSDL document, a default XSL
transform that always outputs response1 (does not
invalidate) is applied.

The cacheTransform provides enormous flexibility to
the users for choosing the level of consistency they
want. The level of consistency is defined by the
cacheTransform and not stipulated by the Web service
cache. For example, a cacheTransform guaranteeing
stronger consistency would perform more invalidation
while a cacheTransform guaranteeing weaker
consistency might modify the original response.
Multiple WSDL annotations for the same Web service
can be made available each specifying different levels
of consistency. The users have the freedom to
determine what kind of inconsistency they are willing
to tolerate.

Other XSL Transforms
We define two other XSL transforms namely,
defaultResponseTransform and responseTrasform to
complete the basic functionality of a Web service
cache. The defaultResponseTransform is used to

<queryRequest select = “contact[name=‘joe’]” />
request 1: query request

request 2: delete request
<deleteRequest select =
 “contact[name=‘joe’]/phone[@cat=’cell’]” />

 9

generate the default response for an update operation
during disconnections. This transform takes the
currently handled request as the input and produces a
default response that can be sent to the Web client. If
this transform is not specified in the WSDL document,
a default transform that always produces an empty
string is used instead.

The responseTransform is applied on a response
retrieved from the cache to modify it suitably to be
returned to the client. For example, the response
message may need to contain a field stating the time of
processing the request. The responseTransform is used
to impart such modifications to the response message
retrieved from the cache. The responseTransform
takes as input a response message and outputs the
modified version of the message. If this transform is
not defined in the annotated WSDL document, a
default transform that outputs the unmodified response
is applied.

These WSDL annotations permit the Web service
cache manager to provide acceptable consistency
during disconnections and improve the availability of
Web services. Section 7 discusses the actual
annotations used for the MyContacts Web service.
Before getting into that level of detail, however, the
next section explains the architecture and role of
custom cache managers.

6 Web Service Cache Architecture
An adaptive Web services cache architecture has been
developed that adjusts its behavior for different Web
services based on the WSDL annotations to improve
availability of Web services. A graphical illustration of
our architecture is shown in Figure 4.

Figure 4: Web Service Cache Architecture

The Web service cache resides in a HTTP proxy server
on the client device. All HTTP request messages from
and to Web clients pass through this proxy server.
Deploying the Web service cache in this manner
provides transparency. The proxy server delegates all
the Web service requests (SOAP messages) to the Web
service cache and acts merely as a tunnel for all other

HTTP messages. The proxy server recognizes a SOAP
request by the presence of the soap-action header in the
HTTP request message. The Web service cache
consists of three components, which are described
below.

Cache Store
The cache store is responsible for storing and retrieving
Web service requests and responses. A numeric key
that is generated by the custom cache manager
identifies each cache entry. A pre-specified amount of
space is allocated on the file system and the Web
requests and responses are stored as files in disk
storage. Each cache entry is associated with a finite
lifetime as dictated by the cache manager. Entries
from the cache are deleted permanently upon expiry.
The cache store also implements the LRU (Least
Recently Used) strategy for cache replacement when
the cache is full.

Write Back Queue
The write back queue is responsible for periodically
checking the network for connectivity and playing back
queued up requests to the Web service provider. Web
service requests that could not be handled due to
network outage at the time of reception are stored in
the write back queue. Queued Web requests are stored
as files in the machine’s local disk. Periodically, the
write back queue checks for network connectivity by
issuing the first request in the queue. If the network is
still disconnected, the write back queue waits for a
certain duration and repeats the same process again. If
network connectivity is perceived, the queued Web
service requests are issued in first-in-first-out order.
The responses to these requests are cached, as in
normal operation, possibly replacing outdated cache
entries.

Custom Cache Manager
A custom cache manager is generated automatically for
each Web service that has an annotated WSDL
specification. The custom cache manager controls the
behavior of the cache according to the annotations
described in the WSDL document. The Web service
cache detects the name of the Web service from the
request URI (Uniform Resource Identifier) and
delegates the request message from the Web client to
the appropriate custom cache manager. The custom
cache manager handles the Web service request
according to the properties described in the annotated
WSDL document of that Web service.

The custom cache manager applies the XPath query
defined by the operationName attribute in the WSDL
document to the request message in order to obtain the
name of the operation being invoked. Next, it applies

Web
S erv ic e 2

Web
S erv ic e 3

I
N
T
E
R
N
E
T

P ro xy
S erver

C
C
M
1

C
C
M
3

C
C
M
2

Web
C lie nt 1

Web
C lie nt 2

Web
S erv ic e 1

CC M : Cu s to m
Cach e M an ag e r

 10

the XPath query defined by the identifier attribute in
the WSDL document to extract portions of the request
message useful for identification. The extracted parts
of the request message are hashed to obtain a numeric
key that identifies this request in the cache store.

The custom cache manager probes the network for
connectivity. A network disconnection is assumed if
either the write back queue is not empty or if the Web
server does not reply within a time out period. If the
network is connected, the service request is issued to
the server and the response obtained. If the operation
is cacheable (detected by reading the WSDL
annotations), the new response is stored in the cache
replacing any old response for this request.

The custom cache manager performs the following
activities when the network is disconnected. If the
operation is an update the request is stored in the write
back queue for future replay. If the operation is
cacheable and the cache store has a valid entry for this
request, the response is obtained from the cache and
the responseTransform specified in the WSDL
document (or the default version if none is specified) is
applied to it. The transformed response is then sent to
the Web client after adding the appropriate cache
header if stipulated in the WSDL document.
Otherwise, a default response is generated by applying
the defaultResponseTransform specified in the WSDL
document to the request message. This default
response is appended with an appropriate cache header
if required and sent to the Web client. If the
defaultResponseTransform is not provided, no response
is sent to the Web client.

The custom cache manager also applies the
cacheTransform specified in the WSDL document (or
the default version). This transform is applied to each
entry in the cache store that belongs to this Web
service. The Web request and its cached response
along with the new request are passed as parameters to
the XSL transform. The new response obtained from
the server is also passed to the cacheTransform if the
client is not disconnected. The transformed response
output by the cacheTransform is then stored in the
cache. If the cacheTransform produces an empty string
as output, the cache entry is deleted from the cache

store. Applying the cacheTransform to each entry in
the cache is expensive. Nevertheless, consistency
checks are obligatory for every operation.
Performance degradation due to consistency
enforcement could be limited by lazy (delayed)
application of the cacheTransform after sending the
response to the Web client. However, care must be
taken to ensure that all pending transforms are applied
before servicing other requests.

Default Cache Manager
If the proxy server receives a request destined for a
Web service for which no annotated WSDL document
is available, then the default cache manager handles the
request. In general, no single default caching behavior
works best for all Web services, applications, and
users. For regularly used Web services, annotating the
services’ WSDL documents is recommended so that
custom cache managers can be used. The default cache
manager, however, can be useful in those cases where
annotations are not available. Users can configure the
defaults used by the cache manager.

For users wishing to maximize cache-hit rates, that is,
maximize the availability of data while disconnected,
having the default cache manager treat all requests as
cacheable is desired. This is essentially what was done
for the study reported in Section 4. Caching everything
works well for the large class of Web services that only
provide query operations on fairly static data, such as
map services, currency conversion services, yellow
page services, and so on.

Setting playback as the default option for operations
ensures that update operations are eventually
performed when connectivity is restored. However,
this incurs the cost of also queuing and issuing non-
update operations. Moreover, it requires that a default
response be generated for each request that results in a
cache miss. The default cache manager can generate a
properly formatted response since the structure is
specified in the service’s WSDL document, but the
default values supplied for each field may be
meaningless to the application.

The conservative approach is to configure the default
cache manager so that operations are non-cacheable

<binding name="myContactsBinding" type="tns:myContactsPort"
 operationName = "substring-before(localname(/e:Envelope/e:Body/*[1]), 'Request')"
 identifier = "/e:Envelope/e:Header/s0:licenses | /e:Envelope/e:Header/s1:request | /e:Envelope/e:Body">

 <s:binding transport="http://schemas.xmls.org/s/http" style="document" />

 <operation name="insert" cacheable="false" playback="true" defaultResponse="true" cacheHeader="true">

Figure 5: Sample WSDL annotations for MyContacts Web service.

 11

and are not placed in the playback queue. These are
the same defaults used when an annotated WSDL
document is available but does not contain annotations
for some operations. In this case, the default cache
manager does nothing but act as a tunnel for requests
and responses. These operations are thus unavailable
when the client is disconnected.

Implementation
We have implemented a prototype of this architecture
in Microsoft’s .NET framework using the C#
programming language. We built a proxy server that
complies with the HTTP 1.1 protocol standard [12].
The Web service cache as described in this section has
been built and incorporated with the proxy server. The
proxy server delegates all SOAP messages to the Web
service cache and serves as a tunnel for all other HTTP
requests. The write back queue probes for network
connectivity once every 2 minutes.

We have tested this prototype against the .NET My
Services by artificially invoking network
disconnections. The results of this deployment have
been encouraging. Specifically, we were able to
demonstrate that the .NET My Services set of Web
services such as MyContacts can be used during
disconnections with little awareness of the
disconnection. In the next section, we describe the
annotations made to the WSDL document of the
MyContacts Web service used to test our prototype.
We plan to repeat this study with additional Web
services as they become publicly available in order to
further validate the viability of our cache architecture.

7 Case Study: MyContacts Web
Service

The MyContacts Web service belongs to the .NET My
Services. This Web service allows users to store
contact information of friends and acquaintances. This

Web service exports four significant operations,
namely query, insert, delete and replace. The query
operation lets users select portions of the contact
information. This operation takes an XPath string as
the query expression. The insert operation takes
contact data to be inserted in the database as well as an
XPath string specifying the location for the insertion.
The delete operation takes an XPath query string and
deletes the specified entries in the database. The
replace operation performs an atomic delete and insert
in the database. For a detailed description of the .NET
My Services Web services see the .NET My Services
Specification [27].

Figure 5 shows parts of the annotated WSDL document
for the MyContacts Web service. The annotations
added to the WSDL document are shown in bold.
There are two attributes added to the binding element.
The operationName attribute specifies an XPath
expression that extracts the name of the operation from
the request message. In this case, XPath expression
extracts the name of the first element contained in the
body of the soap envelope and gets the operation name
from it. Looking back at Figure 1, which shows a
sample request message for the insert operation of
MyContacts Web service, note that the name of the
first element in the body of the SOAP envelope is
insertRequest and the operation name can be obtained
by removing the word Request from it.

The identifier attribute in the binding element specifies
an XPath expression that selects the licenses header,
the request header and the Body elements from the
request message. The sample insert request in Figure 1
contains the path header in addition to these headers.
The path header contains the id element that specifies a
unique identifier for this message. The identifier
attribute in the annotated document extracts all portions
of the message except the path header for
identification.

<?xml version="1.0" encoding="utf-16"?>
<s:Envelope xmlns:s=http://schemas.xmlsoap.org/soap/envelope/ xmlns:hs="http://schemas.microsoft.com/hs/2001/10/core">
 <s:Header>
 <path xmlns="http://schemas.xmlsoap.org/rp/">
 <action>http://schemas.microsoft.com/hs/2001/10/core#response</action>
 <rev></rev>
 <from>http://microsoft-m3we4f.microsoft.com</from>
 <relatesTo > d978b559-aceb-4e9e-9747-b8a306234bc8 <relatesTo>
 </path>
 < response xmlns ="http://schemas.microsoft.com/hs/2001/10/core" />
 <cacheHeader defaultResponse="true" toPlayback="true" xmlns="http://localhost/wsdlannotation" />
 </s:Header>
 <s:Body>
 <hs:insertResponse status="success" selectedNodeCount="1" newChangeNumber="0" />
 </s:Body>
</s:Envelope>

Figure 6: Sample default response message for MyContacts Web service.

 12

Figure 5 also shows the properties of the insert
operation that have been added to the operation
element of the WSDL document. The insert operation
is defined as an update but not cacheable. These
attributes also specify that a default response should be
generated when the network is disconnected and that a
cache header should be appended to the messages sent
by the Web service cache. The response messages of
this Web service typically have a status code indicating
success or failure. The defaultResponseTransform for
this Web service would just generate a skeleton
response indicating success of the specified operation.
Figure 6 shows a sample default response for the insert
operation. The figure also shows the cache header
appended to the default response. Attributes in the
cache header inform the Web client that the request
was stored for future play back and that the current
response is a default response generated by the Web
service cache. A cache aware Web client would
interpret the cache header and report this information
to the user.

Every response message of the MyContacts Web
service has a field called relatesTo (see Figure 6) in the
path header. The value of this field refers to the unique
identifier of the request message that generated this

response. The responseTransform for this Web service
copies the value of the unique identifier from the
request message to the relatesTo field of the path
header.

An insert, delete or replace operation could invalidate
a query operation. Whether the current operation
invalidates a past operation whose response is stored in
the cache depends on whether the two XPath select
strings intersect. By intersection of two XPath
expressions we mean overlap in the location specified
by the two strings. For example in Figure 3, both the
query strings point to the information of the same
contact (Joe) and so the select strings intersect. Figure
7 shows a cacheTransform that specifies invalidations
based on this principle of intersection. This transform
ignores the predicates (sub-expressions in the square
brackets) in the select expressions and compares the
location path specified in the two select strings to
determine intersection. Two location paths intersect if
they are the same or if one is a prefix of the other. This
transform provides a strong form of consistency for a
user’s own operations.

The cacheTransform shown in Figure 7 only specifies
invalidations but does not modify the response in the

Figure 7: Sample invalidation cacheTransform for MyContacts Web service.

<xsl:template match="/">
 <xsl:variable name="service1" select="$req1/s:Header/c:request/@service"/>
 <xsl:variable name="service2" select="$req2/s:Header/c:request/@service"/>
 <xsl:variable name="opName1" select="substring-before(local-name($req1/s:Body/*[1]), 'Request')"/>
 <xsl:variable name="opName2" select="substring-before(local-name($req2/s:Body/*[1]), 'Request')"/>
 <xsl:choose>
 <xsl:when test="$service1 = $service2">
 <xsl:choose>
 <xsl:when test="$opName2 = 'query' and ($opName1 = 'insert' or $opName1 = 'delete' or $opName1 = 'replace')">
 <xsl:variable name="cleanQuery1">
 <xsl:call-template name="StripSegment">
 <xsl:with-param name="xpQuery" select="substring-after($req1/s:Body/c:*/@select, '/')"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:variable name="cleanQuery2">
 <xsl:call-template name="StripSegment">
 <xsl:with-param name="xpQuery" select="substring-after($req2/s:Body/c:queryRequest/c:xpQuery/@select, '/')"/>
 </xsl:call-template>
 </xsl:variable>
 <xsl:call-template name="CheckIntersection">
 <xsl:with-param name="xpQuery1" select="$cleanQuery1"/>
 <xsl:with-param name="xpQuery2" select="$cleanQuery2"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$rep2"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$rep2"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

 13

cache. In our trial deployment, we employed a smarter
cacheTransform that suitably modifies the responses in
the cache. The smarter transform locates the path
specified by the insert, delete and replace request in the
query response stored in the cache, performs the
respective operation and modifies the query response.
If the operation could not be performed on the query
response (due to uncertainties in the location path), it
resorts to specifying invalidations as described before.
The smart cacheTransform and cache header made a
significant difference to the user experience and
satisfaction during our trial deployment. Users were
able to invoke a number of operations during
disconnections and yet observe the operations being
effected on the cached responses while being warned
by the cache aware Web client.

8 Conclusions and Future Work
In this paper, we have described an XML Web service
cache architecture. While cache managers could be
used to improve performance, our focus has been on
improving the availability of Web services during
network disconnections. Our cache managers can be
deployed transparently between client applications and
servers without alterations to the Web service
implementations and communication protocols. We
have annotated WSDL descriptions of Web services in
order to be able to efficiently support diverse XML
Web services. We built a prototype implementation
and tested it for .NET My Services such as MyProfile,
MyContacts, and MyFavoriteWebSites by invoking
artificial disconnections.

The main contributions of our work thus far are (1)
identifying the practical issues that arise in caching
non-trivial Web services and (2) demonstrating through
an experiment that request/response caching can
provide satisfactory support and experience to mobile
users for one class of existing Web services. However,
the overall utility of our caching architecture for
disconnected operation remains to be fully evaluated.
As new mission-critical Web services emerge over the
next few years, we plan to explore the range of services
for which a caching scheme of this sort can be
effective.

Areas for future work include further improving the
availability of the Web services cache by hoarding.
Providing user controlled means to specify hoard
requests, smart cache transforms operating on cached
responses of hoard requests and the ability to respond
to requests with the help of cached responses are
important steps to pursue. Also we have currently
ignored a number of issues related to security in this
architecture. Adding support for handling security in
the Web service cache would be another important

goal. Finally, an interesting challenge exists in
developing tools that automatically deduce the
properties of operations exported by Web services for
which annotated WSDL specifications are not
available. The open issue is whether a cache manager
can reasonably figure out the characteristics of a Web
service from passively observing requests and
responses thereby improving the default caching
behavior.

Bibliography
[1] Daniel Barbará and Tomasz Imielinski. Sleepers and

Workaholics: Caching Strategies in Mobile
Environments. Proceedings of the 1994 ACM
SIGMOD International Conference on Management of
Data, Minneapolis, Minnesota, May 24-27, 1994,
pages 1-12.

[2] Anders Berglund, Scott Boag, Don Chamberlin, Mary
F. Fernandez, Michael Kay, Jonathan Robie, Jérôme
Siméon. W3C Working Draft "XML Path Language
(XPath) 2.0", 16 August 2002. (See
http://www.w3.org/TR/xpath20/.)

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler. W3C Recommendation "Extensible Markup
Language (XML) 1.0 (Second Edition)", 6 October
2000. (See http://www.w3.org/ TR/2000/REC-xml-
20001006.)

[4] P. Cauldwell, et. al. Professional XML Web Services.
Wrox Press Ltd. Birmingham, U. K. 2001.

[5] Boris Y. L. Chan, Antonio Si, Hong Va Leong: Cache
Management for Mobile Databases: Design and
Evaluation. Proceedings of the Fourteenth
International Conference on Data Engineering,
February 23-27, 1998, Orlando, Florida: pages 54-63.

[6] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asim Razzaq, and Anil Sewani.
Resource management for scalable disconnected access
to Web services. Proceedings of the Tenth
International Conference on World Wide Web, 2001,
Hong Kong, Pages: 245 – 256.

[7] Henry Chang, Carl Tait, Norman Cohen, Moshe
Shapiro, Steve Mastrianni, Rick Floyd, Barron Housel,
and David Lindquist. Web Browsing in a Wireless
Environment: Disconnected and Aynschronous
Operation in ARTour Web Express. Proceedings
MobiCom, 1997, Budapest, Hungary, pages 260-269.

[8] Ing-Ray Chen, Ngoc Anh Phan, and I-Ling Yen.
Algorithms for Supporting Disconnected Write
Operations for Wireless Web Access in Mobile Client-
Server Environments. IEEE Transactions on Mobile
Computing, Vol. 1, No. 1, January-March 2002, pages
46-58.

[9] Roberto Chinnici, Martin Gudgin, Jean-Jacques
Moreau, Sanjiva Weerawarana. W3C Working Draft
"Web Services Description Language (WSDL) Version
1.2", 9 July 2002 (See http://www.w3.org/TR/wsdl12/.)

 14

[10] Gregory V. Chockler, Danny Dolev, Roy Friedman,
and Roman Vitenberg. Implementing a Caching
Service for Distributed CORBA Objects. Proceedings
International Conference on Distributed Systems
Platforms (Middleware), New York, New York, 2000,
pages 1-23.

[11] Curbera, F. Duftler, M. Khalaf, R. Nagy, W. Mukhi,
N., and Weerawarana, S. Unraveling the Web services
Web: an introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, March-April 2002, Volume:
6 Issue: 2, pages 86 – 93.

[12] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk Nielsen,
T. Berners-Lee. IETF "RFC 2616: Hypertext Transfer
Protocol - HTTP/1.1", January 1997. (See
http://www.ietf.org/ rfc/rfc2616.txt.)

[13] Rick Floyd, Barron Housel, and Carl Tait. Mobile Web
Access using eNetwork Web Express. IEEE Personal
Communications, Vol. 5, No. 5, October 1998, pages
47-52.

[14] Martin Gudgin, Marc Hadley, Jean-Jacques Moreau,
Henrik Frystyk Nielsen. W3C Working Draft "SOAP
1.2 Part 1: Messaging Framework", 2 October 2001
(See http://www.w3.org/ TR/soap12-part1.)

[15] Martin Gudgin, Marc Hadley, Jean-Jacques Moreau,
Henrik Frystyk Nielsen. W3C Working Draft "SOAP
1.2 Part 2: Adjuncts", 2 October 2001 (See
http://www.w3.org/TR/soap12-part2.)

[16] R.G. Guy, J.S. Heidemann, W. Mak, T.W. Page, Jr.,
G.J. Popek, and D. Rothmeier. Implementation of the
Ficus replicated file system. Proceedings Summer
USENIX Conference, June 1990, pages 63-71.

[17] Joanne Holliday, Divyakant Agrawal, and Amr El
Abbadi. Disconnection Modes for Mobile Databases.
Wireless Networks, Issue 8, 2002, pages 391-402.

[18] Jin Jing, Abdelsalam Sumi Helal, and Ahmed
Elmagarmid. Client-server computing in mobile
environments. ACM Computing Surveys Volume 31 ,
Issue 2 (June 1999), Pages: 117 – 157.

[19] Anthony D. Joseph, M. Frans Kaashoek, Building
reliable mobile-aware applications using the Rover
toolkit, Wireless Networks, v.3 n.5, p.405-419, Oct.
1997.

[20] Anupam Joshi. On proxy agents, mobility, and Web
access. Mobile Networks and Applications, Volume
5, Issue 4 (December 2000), Pages: 233 – 241.

[21] Michael Kay. W3C Working Draft "XSL
Transformations (XSLT) Version 2.0", 16 August
2002. (See http://www.w3.org/TR/xslt20/.)

[22] Kahol, S. Khurana, S.K.S. Gupta and P.K. Srimani. A
strategy to manage cache consistency in a disconnected
distributed environment. IEEE Trans. on Parallel and
Distributed Systems, Vol. 12. No. 7, July 2001, pp.
686-700.

[23] James J. Kistler, M. Satyanarayanan, Disconnected
operation in the Coda File System, ACM Transactions

on Computer Systems (TOCS), v.10 n.1, p.3-25, Feb.
1992.

[24] R. Kordale, M. Ahamad, and M. Devarakonda. Object
Caching in a CORBA Compliant System. Proceedings
USENIX Conference on Object-Oriented Technologies
(COOTS), Toronto, Canada, June 1996.

[25] Geoffrey H. Kuenning and Gerald J. Popek.
Automated hoarding for mobile computers.
Proceedings of the sixteenth ACM symposium on
Operating systems principles, Saint Malo, France,
1997, pages 264 – 275.

[26] Barbara Liskov, A. Adya, M. Castro, S. Ghemawat, R.
Gruber, U. Maheshwari, A. C. Myers, M. Day, and L.
Shira. Safe and Efficient Sharing of Persistent Objects
in Thor. Proceedings International Conference on
Management of Data (SIGMOD), 1996, Montreal,
Quebec, Canada, pages 318-329.

[27] Microsoft .NET My Services Specification. Microsoft
Press. Redmond, Washington. 2001.

[28] Michael N. Nelson and Yousef A. Khalidi. Generic
Support for Caching and Disconnected Operation.
Proceedings Fourth Workshop on Workstation
Operating Systems, Napa, CA, October 1993, pages 61-
65.

[29] Mark Nottingham. SOAP Optimization Modules:
Response Caching. W3C Draft, August 2001.
http://lists.w3.org/Archives/Public/www-ws/2001Aug/
att-0000/01-ResponseCache.html.

[30] Mark Nottingham. Optimizing Web Services with
Intermediaries. Proceedings of the Sixth International
Workshop on Web Caching and Content Distribution,
Boston University, Boston, Massachusetts, USA, June
20-22, 2001.

[31] Matt Powell. XML Web Service Caching Strategies.
Microsoft Corporation, MSDN Library, April 17, 2002.
http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnservice/html/service04172002.asp.

[32] D. B. Terry, M. M. Theimer , Karin Petersen , A. J.
Demers , M. J. Spreitzer , C. H. Hauser, Managing
update conflicts in Bayou, a weakly connected
replicated storage system, Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles,
Copper Mountain, Colorado, December 1995, p.172-
182.

