
Failure Detection and Consensus
in the Crash-Recovery Model?

Marcos Kawazoe Aguilera Wei Chen Sam Toueg

Cornell University, Computer Science Department, Ithaca NY 14853-7501, USA
aguilera,weichen,sam@cs.cornell.edu

Abstract. We study the problems of failure detection and consensus in asyn-
chronous systems in which processes may crash and recover, and links may lose
messages. We first propose new failure detectors that are particularly suitable to
the crash-recovery model. We next determine under what conditions stable stor-
age is necessary to solve consensus in this model. Using the new failure detectors,
we give two consensus algorithms that match these conditions: one requires sta-
ble storage and the other does not. Both algorithms tolerate link failures and are
particularly efficient in the runs that are most likely in practice — those with no
failures or failure detector mistakes. In such runs, consensus is achieved within
3δ time and with4n messages, whereδ is the maximum message delay andn is
the number of processes in the system.

1 Introduction

The problem of solving consensus in asynchronous systems with unreliable failure de-
tectors (i.e., failure detectors that make mistakes) was first investigated in [4, 3]. But
these works only considered systems where process crashes arepermanentand links
are reliable (i.e., they do not lose messages). In real systems, however, processes may
recoverafter crashing and links may lose messages. In this paper, we focus on solving
consensus with failure detectors in such systems, a problem that was first considered in
[5, 9, 7] (a brief comparison with these works is in Section 1.3).

Solving consensus in a system where process may recover after crashing raises two
new problems; one regards the need for stable storage and the other is about the failure
detection requirements:

– Stable Storage:When a process crashes, it loses all its local state. One way to deal
with this problem is to assume that parts of the local state are recorded into stable
storage, and can be restored after each recovery. However, stable storage operations
are slow and expensive, and must be avoided as much as possible. Is stable storage
always necessary when solving consensus? If not, under which condition(s) can it
be completely avoided?

– Failure Detection:In the crash-recovery model, a process may keep on crashing
and recovering indefinitely (such a process is calledunstable). How should a failure
detector view unstable processes? Note that an unstable process may be as useless
to an application as one that permanently crashes (and in fact it could be even
more disruptive). For example, an unstable process can be up just long enough to
be considered operational by the failure detector, and then crash before “helping”

? Research partially supported by NSF grant CCR-9402896 and CCR-9711403, by ARPA/ONR
grant N00014-96-1-1014, and by an Olin Fellowship.

S. Kutten (Ed.): DISC’98, LNCS 1499, pp. 231-245, 1998.
 Springer-Verlag Berlin Heidelberg 1998

the application, and this could go on repeatedly. Thus, it is natural to require that
a failure detector satisfies the followingcompletenessproperty: Eventually every
unstable process is permanently suspected.1

But implementing such a failure detector is inherently problematiceven in a per-
fectly synchronous system. Intuitively, this is because, at any given point in time, no
implementation can predict the future behavior of a processp that has crashed in
the past but is currently “up”. Willp continue to repeatedly crash and recover? Or
will it stop crashing?

In summary, our goal here is to solve consensus in the crash-recovery model (with
lossy links). As a crucial part of this problem, we first need to find reasonable failure
detectors that can be used for this task. We also need to determine if and when stable-
storage is necessary.

1.1 Failure Detectors for the Crash-Recovery Model

We first focus on the problem of failure detection in the crash-recovery model. Previ-
ous solutions require unstable processes to be eventually suspected forever [9, 7].2 We
first prove that this requirement has a serious drawback: it forces failure detector imple-
mentations to have undesirable behaviors even in perfectly synchronous systems. More
precisely, consider a synchronous round-based system with no message losses,3 where
up tonu processes may be unstable. In this system,everyimplementation of a failure
detector with the above requirement has runs with the following undesirable behavior:
there is round after which (a)all processes are permanently up, but (b) the failure detec-
tor incorrectly suspectsnu of them forever (see Theorem 1). Note that these permanent
mistakes arenot due to the usual causes, namely, slow processes or message delays.
Instead, they are entirely due to the requirement on unstable processes (which involves
predicting the future).

To avoid the above problem, we proposea new type of failure detectorthat is well-
suited to the crash-recovery model. This failure detector does not output lists of pro-
cesses suspected to be crashed or unstable. Instead, it outputs a list of processes deemed
to be currently up, with an associatedepoch numberfor each such process. If a process
is on this list we say it istrusted.

The epoch number of a process is a rough estimate of the number of times it crashed
and recovered in the past. We distinguish two types of processes:bad ones are those
that are unstable or crash permanently, andgood ones are those that never crash or
eventually remain up. We first propose a simple failure detector, denoted3Se, with the
following two properties. Roughly speaking (precise definitions are in Section 3):

– Completeness:For every bad processb, at every good process there is a time after
which eitherb is never trusted or the epoch number ofb keeps on increasing.

– Accuracy:Some good process is eventually trusted forever by all good processes,
and its epoch number stops changing.

1 In fact, this property is assumed in [9, 7].
2 In [5], crash-recovery is regarded as a special case of omission failures, and the algorithm is

not designed to handle unstable processes that can send and receive messages to and from good
processes.

3 In such a system, processes execute in synchronized rounds, and all messages are received in
the round they are sent.

232 M.K. Aguilera, W. Chen, and S. Toueg

Note that the completeness property of3Se does not require predicting the future
(to determine if a process is unstable), and so it does not force implementations to have
anomalous behaviors. To illustrate this, in [2] we give an implementation of3Se for
some models of partial synchrony: this implementation ensures that if all processes are
eventually up forever they will be eventually trusted forever.

Failure detector3Se, however, does not putany restriction on how the bad pro-
cesses view the system. In particular, the accuracy property allows unstable processes
to repeatedly “suspect”all processes.4 This is problematic because, in contrast to pro-
cesses that permanently crash, unstable processes may continue to take steps, and so
their incorrect suspicions may prevent the progress of some algorithms. For example,
in the rotating coordinator consensus algorithms of [4, 5, 7] if a process kept suspecting
all processes then consensus would never be reached.

From the above it is clear that sometimes it is better to have a failure detector with:

– Strong Accuracy:Some good process is eventually trusted forever by all goodand
unstableprocesses, and its epoch number stops changing.

Such a failure detector is denoted3Su. In [2], we show how to transform any3Se

to3Su in an asynchronous system provided that a majority of processes are good.

1.2 On the Necessity of Stable Storage in the Crash-Recovery Model

Can consensus be solved in the crash-recovery modelwithout stable storage, and if
so, how? Suppose that during each execution of consensus, at leastna processes are
guaranteed to remain up. Clearly, ifna < 1 then consensus cannot be solved: it is
possible thatall processes crash and recover during execution, and the entire state of
the system (including previous proposals and possible decisions) can be lost forever.

On the other hand, ifna > n/2, i.e., a majority of processes are guaranteed to
remain up, then solving consensus is easy: If a process crashes we exclude it from
participating in the algorithm even if it recovers (except that we allow it to receive the
decision value). This essentially reduces the problem to the case where process crashes
are permanent and a majority of processes do not crash (and then an algorithm such as
the one in [4] can be used).

Is it possible to solve consensus without stable storage if1 ≤ na ≤ n/2? To answer
this question, assume that in every execution of consensus at mostnb processes are bad.
We show that:

– If na ≤ nb then consensuscannot be solved without stable storageeven using3P
(theeventually perfect failure detectordefined in Section 5).

– If na > nb then consensuscan be solved without stable storageusing3Se (which
is weaker than3P).

This last result is somewhat surprising because withna > nb, a majority of processes
may crash and completely lose their state(including the consensus values they may
have previously proposed and/or decided). To illustrate this with a concrete example,
supposen = 10, na = 3 andnb = 2. In this case, up to 7 processes — more than half
of the processes — may crash and lose their state, and yet consensus is solvable with a
failure detector that is weaker than3P . Prima facie, this seems to contradict the fact
that if a majority of processes may crash then consensus cannot be solved even with3P
[4]. There is no contradiction, however, since [4] assumes that all process crashes are

4 An unstable process may fail to receive “I am alive” messages sent by other processes since all
messages that “arrive” at a process while it is down are lost.

233Failure Detection and Consensus in the Crash-Recovery Model

permanent, while in our case some of the processes that crash do recover: even though
they completely lost their state, they can still provide some help.

What if stable storageis available? In this case, we show that consensus can be
solved with3Su, provided that a majority of processes are good (this requirement is
weaker thanna > nb).5

In addition to crashes and recoveries, the two consensus algorithms that we give
(with and without stable storage) also toleratemessage losses, provided that links are
fair lossy, i.e., ifp sends messages to a good processq infinitely often, thenq receives
messages fromp infinitely often.

1.3 Related Work

The problem of solving consensus with failure detectors in systems where processes
may recover from crashes was first addressed in [5] (with crash-recovery as a form of
omission failures) and more recently studied in [9, 7].

In [5, 7, 9], the question of whether stable storage is always necessary is not ad-
dressed, and all the algorithms use stable storage: in [5, 9], the entire state of the algo-
rithm is recorded into stable storage at every state transition; in [7], only a small part of
the state is recorded, and writing to stable storage is done at most once per round. In this
paper, we determine when stable storage is necessary, and give two matching consensus
algorithms — with and without stable storage. In the one that uses stable storage, only
a small part of the state is recorded and this occurs twice per round.

The algorithms in [9, 7] use failure detectors that require that unstable processes be
eventually suspected forever. The algorithm in [5] is not designed to deal with unstable
processes which may intermittently communicate with good ones.

1.4 Summary of Results

We study the problems of failure detection and consensus in asynchronous systems with
process crashes and recoveries, and lossy links.

1. We show that the failure detectors that have been previously proposed for the crash-
recovery model with unstable processes have inherent drawbacks: Their complete-
ness requirement force implementations to have anomalous behaviors even in syn-
chronous systems.

2. We propose new failure detectors that avoid the above drawbacks.
3. We determine under what conditions stable storage is necessary to solve consensus

in the crash-recovery model.
4. We give two consensus algorithms that match these conditions, one uses stable

storage and the other does not. Both algorithms tolerate message losses, and are
particularly efficient in the runs that are most likely in practice — those with no
failures or failure detector mistakes, and message delays are bounded. In such runs,
consensus is achieved within3δ time and with4n messages, whereδ is the maxi-
mum message delay andn is the number of processes in the system.

5 If the good processes are not a majority, a simple partitioning argument as the one in [4] shows
that consensus cannot be solved even with3P .

234 M.K. Aguilera, W. Chen, and S. Toueg

1.5 Roadmap
The paper is organized as follows. Our model is given in Section 2. In Section 3 we show
that existing failure detectors for the crash-recovery model have limitations, and then
introduce our new failure detectors, namely3Se and3Su. We define the Consensus
problem in Section 4. In Section 5, we determine under what conditions consensus
requires stable storage. We then give two matching consensus algorithms: one does
not require stable storage (Section 6), and the other uses stable storage (Section 7). In
Section 8, we briefly consider the performance of these algorithms.

Due to space limitations, all proofs are ommitted here (they are given in [2]).

2 Model
We consider asynchronous message-passing distributed systems. We assume that every
process is connected with every other process through a communication link. Links can
fail by intermittently dropping messages. A process can fail by crashing and it may
subsequently recover. When a process crashes it loses all of its state. However, it may
use local stable storage to save (and later retrieve) parts of its state.

We assume the existence of a discrete global clock — this is merely a fictional
device to simplify the presentation and processes do not have access to it. We take the
rangeT of the clock’s ticks to be the set of natural numbers.

2.1 Processes and Process Failures
The system consists of a set ofn processes,Π = {1, 2, . . . , n}. Processes can crash and
may subsequently recover. Afailure patternF is a function fromT to 2Π . Intuitively,
F (t) denotes the set of processes that are not functioning at timet. We say processp
is up at timet (in F) if p 6∈ F (t) andp is down at timet (in F) if p ∈ F (t). We say
thatp crashes at timet if p is up at timet − 1 andp is down at timet.6 We say thatp
recoversat timet ≥ 1 if p is down at timet−1 andp is up at timet. A processp can be
classified (according toF) asalways-up, eventually-up, eventually-downandunstable
as follows:
Always-up: Processp never crashes.
Eventually-up: Processp crashes at least once, but there is a time after whichp is

permanently up.
Eventually-down: There is a time after which processp is permanently down.
Unstable: Processp crashes and recovers infinitely many times.

A process isgood (inF) if it is either always-up or eventually-up. A process isbad
(in F) if it is not good (it is either eventually-down or unstable). We denote bygood(F),
bad(F) andunstable(F) the set of good, bad and unstable processes inF , respectively.
Henceforth, we consider only failure patterns with at least one good process.

2.2 Failure Detectors
Each process has access to a local failure detector module that provides (possibly in-
correct) information about the failure pattern that occurs in an execution. A process can
query its local failure detector module at any time. Afailure detector historyH with
rangeR is a function fromΠ × T to R. H(p, t) is the output value of the failure de-
tector module of processp at timet. A failure detectorD is a function that maps each
failure patternF to a set of failure detector histories with rangeRD (whereRD denotes
the range of the failure detector output ofD). D(F) denotes the set of possible failure
detector histories permitted byD for the failure patternF .
6 We say thatp crashes at timet = 0 if p is down at time0.

235Failure Detection and Consensus in the Crash-Recovery Model

2.3 Stable Storage
When a process crashes, it loses all its volatile state, but we assume that when it recov-
ers, it knows that it is recovering from a crash. Moreover, a process may use a stable
storage device to store and retrieve a set of variables. These two stable storage opera-
tions cannot be executed atomically with certain other actions. For example, a process
cannot store a variable in stable storage and then send a message or issue an external
output, in a single atomic step.

2.4 Link Properties
We consider links that do not create messages, or duplicate messages infinitely often.
More precisely, we assume that for all processesp andq:

– No Creation: If q receives a messagem from p at timet, thenp sentm to q before
time t.

– Finite Duplication: If p sends a messagem to q only a finite number of times, then
q receivesm from p only a finite number of times.

Links may intermittently drop messages, but they must satisfy the following fairness
property:

– Fair Loss: If p sends messages to a good processq an infinite number of times, then
q receives messages fromp an infinite number of times.

3 Failure Detectors for the Crash-Recovery Model

In this section, we first consider the failure detectors that were previously proposed for
solving consensus in the crash-recovery model, and then propose a new type of failure
detector for this model.

3.1 Limitations of Existing Failure Detectors
To solve consensus in the crash-recovery model, Hurfinet al. [7] and Oliveiraet al. [9]
assume that processes have failure detectors that output lists of processes suspected to
be bad, and that these failure detectors satisfy the following property:

– Strong Completeness: Eventually every bad process is permanently suspected by
all good processes.
Since bad processes include unstable ones, enforcing this requirement is problem-

atic even insynchronoussystems, as we now explain. Consider a systemS in which
processes take steps at perfectly synchronized rounds. In each round, a process is either
up, in which case it sends a message to every process, or down, in which case it does
nothing in the round. InS at mostnu process are unstable, i.e., alternate between being
up and down infinitely often. Links do not lose messages, and all messages sent in a
round are received at the end of that round. In systemS, it is trivial to implement a fail-
ure detector that is almost perfect: by suspecting every process from which no message
was received in the current round, each process suspects exactly every process that was
down in this round.

Now suppose we want to implement inS a failure detector that satisfies Strong
Completeness (and possiblyonly this property). In the following theorem, we show
that any such implementation has undesirable behaviors: in some executions whereall
processes are good, some of them will eventually be suspected forever. Note that these
mistakes are entirely due to the above requirement onunstableprocesses, not to the
lack of synchrony.

236 M.K. Aguilera, W. Chen, and S. Toueg

Theorem 1. Let I be any implementation of a failure detector that satisfies Strong
Completeness inS. For every set of processesG of size at mostnu, there is a run of
I in S such that (a) all processes are good, but (b) eventually all processes inG are
permanently suspected by all processes inΠ \ G.

3.2 Failure Detectors with Epoch Numbers
Theorem 1 shows that if we require Strong Completeness then incorrect suspicions
are inevitable even in synchronous systems. Although many algorithms are designed to
tolerate such failure detector mistakes, the erroneous suspicions of some good processes
may hurt the performance of these algorithms. For example, the erroneous suspicions
of good coordinators can delay the termination of the consensus algorithms in [4, 5, 7,
9]. Thus, requiring Strong Completeness should be avoided if possible.

In this section, we propose a new type of failure detectors that are well-suited to the
crash-recovery model: Although they do not require unstable processes to be eventually
suspected forever, they do provide enough information to cope with unstable processes.

At each processp, the output of such a failure detector consists of two items,
〈trustlist , epoch〉, wheretrustlist is a set of processes andepochis a vector of inte-
gers indexed by the elements oftrustlist. Intuitively, q ∈ trustlist if p believes thatq
is currently up, andepoch [q] is p’s rough estimate of how many timesq crashed and
recovered so far (it is called theepoch number ofq at p). Let H(p, t) denote the output
of p’s failure detector module at timet. If q ∈ H(p, t).trustlist , we say thatp trustsq
at timet, otherwise we say thatp suspectsq at timet.

We first define3Se to be the class of failure detectorsD that satisfy the following
properties (the formal definitions of these properties are given in [2]):

– Monotonicity: At every good process, eventually the epoch numbers are nonde-
creasing7.

– Completeness: For every bad processb and for every good processg, either even-
tually g permanently suspectsb or b’s epoch number atg is unbounded.

– Accuracy: For some good processK and for every good processg, eventuallyg
permanently trustsK andK ’s epoch number atg stops changing.

Note that3Se imposes requirements only on the failure detector modules of good
processes. In particular, the accuracy property of3Se allows unstableprocesses to
suspect all good processes. This is problematic because unstable processes can continue
to take steps, and their incorrect suspicions may hinder the progress of some algorithms.
Thus, we extend the accuracy property so that it also applies to unstable processes, as
follows:

– Strong Accuracy: For some good processK: (a) for every good processg, eventu-
ally g permanently trustsK andK ’s epoch number atg stops changing; and (b) for
every unstable processu, eventually wheneveru is up,u trustsK andK ’s epoch
number atu stops changing.
The class of failure detectors that satisfy Monotonicity, Completeness, and Strong

Accuracy is denoted3Su. For convenience, we sometimes use3Se or3Su to refer to
an arbitrary member of the corresponding class.
3Se and3Su are closely related: In [2] we show that one can transform3Se into

3Su provided that a majority of processes are good (this transformation does not re-
quire stable storage).

7 We require the monotonicity of epoch numbers to hold onlyeventuallyand only atgoodpro-
cesses so that the failure detector can be implementedwithoutstable storage.

237Failure Detection and Consensus in the Crash-Recovery Model

4 Consensus with Crash-Recovery
With consensus, each process proposes a value and processes must reach a unanimous
decision on one of the proposed values. The following properties must be satisfied:

– Uniform Validity: If a process decidesv then some process previously proposedv.
– Agreement: Good processes do not decide different values.
– Termination: If all good processes propose a value, then they all eventually decide.

A stronger version of consensus, calleduniform consensus[8], requires:
– Uniform Agreement: Processes do not decide different values.

The above specification allows a process to decide more than once. However, with
Agreement, a good process cannot decide two different values. Similarly, with Uniform
Agreement, no process (whether good or bad) can decide two different values.

The algorithms that we provide solve uniform consensus, and the lower bounds that
we prove hold even for consensus.

When processes have access to stable storage, a process proposesv, or decidesv, by
writing v into corresponding local stable storage locations. By checking these locations,
a process that recovers from a crash can determine whether it previously proposed (or
decided) a value.

When processes do not have access to stable storage, proposing and decidingv
occur via an external input and output containingv, and so when a process recovers
it cannot determine whether it has previously proposed or decided a value. Thus it is
clear that if stable storage is not available andall processes may crash and recover,
consensus cannot be solved. In many systems, however, it is reasonable to assume that
in each execution of consensus there is a minimum number of processes that do not
crash. In such systems, consensusis solvable without stable storage provided certain
conditions are met, as we will see next.

5 On the Necessity of Stable Storage for Consensus
In this section, we determine some necessary conditions for solving consensus without
stable storage. Consider a system in which at leastna processes are always-up and at
mostnb are bad. Our first result is that ifna ≤ nb then it is impossible to solve con-
sensus without stable storage, even in systems where there are no unstable processes,
links are reliable, and processes can use aneventually perfect failure detector3P . In-
formally, for the crash-recovery model,3P outputs a tag∈ {AU, EU, UN, ED} for
each process such that:

– There is a time after which at each process the tag of every processp is AU, EU,
UN, or ED iff p is always-up, eventually-up, unstable, or eventually-down, respec-
tively.

Note that3P is stronger than the other failure detectors in this paper and in [9, 7].
Theorem 2. If na ≤ nb consensus cannot be solved without stable storage even in sys-
tems where there are no unstable processes, links do not lose messages, and processes
can use3P .
This result is tight in the sense that ifna > nb then wecansolve consensus without
stable storage using a failure detector that is weaker than3P (see Section 6).

The impossibility result of Theorem 2 assumes that processes do not use any stable
storage at all. Thus, if a process crashes it cannot “remember” its previous proposal
and/or decision value. Suppose stable storage is available, but to minimize the cost of
accessing it, we want to use itonlyfor storing (and retrieving) the proposed and decision
values. Isna > nb still necessary to solve consensus? It turns out that ifnb > 2, the
answer is yes:

238 M.K. Aguilera, W. Chen, and S. Toueg

Theorem 3. Suppose that each process can use stable storage only for storing and
retrieving its proposed and decision values. Ifna ≤ nb and nb > 2 then consensus
cannot be solved even in systems where there are no unstable processes, links do not
lose messages, and processes can use3P .

6 Solving Consensus without Stable Storage

It turns out that ifna > nb, consensus can be solved without stable storage using3Se.
This is somewhat surprising sincena > nb allows a majority of processes to crash
(and thus lose all their states). Note that the requirement ofna > nb is “tight”: in the
previous section, we proved that ifna ≤ nb consensus cannot be solved without stable
storage even with3P , a failure detector that is stronger than3Se.

The consensus algorithm that uses3Se is given in [2]. In this paper, we present
a more efficient algorithm that uses a minor variant of3Se, denoted3S′e. The only
difference between3Se and3S′e is that while the accuracy property of3Se requires
thatK be agoodprocess (see Section 3.2), the accuracy property of3S′e additionally
requires thatK be analways-upprocess if such a process exists. It is worth noting that
the implementation of3Se in [2] also implements3S′e.

The consensus algorithm that we give here always satisfies the Uniform Agreement
and Validity properties of uniform consensus for any choice ofna andnb, and ifna >
nb then it also satisfies the Termination property.

This algorithm, shown in Fig. 1, is based on the rotating coordinator paradigm [4]
and uses3S′e. It must deal with unstable processes and link failures. More importantly,
since more than half of the processes may crash and completely lose their states, and
then recover, it must use new mechanisms to ensure the “locking” of the decision value
(so that successive coordinators do not decide differently).8 We first explain how the al-
gorithm deals with unstable processes and link failures, and then describe the algorithm
and the new mechanisms for locking the decision value.

How does a rotating coordinator algorithm cope with an unstable coordinator? In
[7, 9] the burden is entirely on the failure detector: it is postulated that every unstable
process is eventually suspected forever. In our algorithm, the failure detector is not
required to suspect unstable processes: they can be trusted as long as their epoch number
increases from time to time — a requirement that is easy to enforce. If the epoch number
of the current coordinator increases at a process, this process simply abandons this
coordinator and goes to another one.

To deal with the message loss problem, each processp has a taskretransmitthat
periodically retransmits the last message sent to each process (only the last message
really matters, just as in [5–7]). This task is terminated oncep decides.

We now describe the algorithm in more detail. When a process recovers from a
crash, it stops participating in the algorithm, except that it periodically broadcasts a
RECOVEREDmessage until it receives the decision value. When a processp receives a
RECOVEREDmessage fromq, it addsq to a setRp of processes known to have recov-
ered.

Processes proceed in asynchronous rounds, each one consisting of two stages. In
the first stage, processes send aWAKEUP message to the coordinatorc so thatc can start

8 The standard technique for locking a value is to ensure that a majority of processes “adopt”
that value. This will not work here: a majority of processes may crash and recover, and soall
the processes that adopted a value may later forget the value they adopted.

239Failure Detection and Consensus in the Crash-Recovery Model

For processp:

1 Initialization :
2 Rp ← ∅; decisionvaluep ← ⊥; for all q ∈ Π \ {p} do xmitmsg[q]← ⊥
3 To s-send m to q:
4 if q 6= p then xmitmsg[q]← m; sendm to q elsesimulatereceivem from p

5 Task retransmit:
6 repeat forever
7 for all q ∈ Π \ {p} do if xmitmsg[q] 6= ⊥ then sendxmitmsg[q] to q

8 upon receivem from q do
9 if m = RECOVERED then Rp ← Rp ∪ {q}
10 if m = (decisionvalue, DECIDE) and decisionvaluep = ⊥ then
11 decisionvaluep ← decisionvalue; decide(decisionvaluep)
12 terminate task {skip round, 4phases, participant, coordinator, retransmit}
13 if m 6= (−, DECIDE) and decisionvaluep 6= ⊥ then send(decisionvaluep, DECIDE) to q

14 upon propose(vp): {p proposesvp via an external input containingvp}
15 (rp, estimatep, tsp)← (1, vp, 0); fork task {4phases, retransmit}
16 Task 4phases:
17 cp ← (rp mod n) + 1; fork task {skip round, participant}
18 if p = cp then fork task coordinator

19 Task coordinator:
20 {Stage 1: PhaseNEWROUND}
21 c seqp ← 0
22 repeat
23 PrevRp ← Rp; c seqp ← c seqp + 1
24 s-send (rp, c seqp, NEWROUND) to all
25 wait until [received(rp, c seqp, estimateq,
26 tsq, ESTIMATE) from
27 max(nb + 1, n− nb − |Rp|) processes]
28 until Rp = PrevRp

29 t← largesttsq such thatp received
30 (rp, c seqp, estimateq, tsq, ESTIMATE)
31 estimatep ← select oneestimateq such that
32 p received(rp, c seqp, estimateq, t, ESTIMATE)
33 tsp ← rp

44 Task participant:
45 {Stage 1: PhaseESTIMATE}
46 s-send (rp, WAKEUP) to cp

47 max seqp ← 0
48 repeat
49 if received(rp, seq, NEWROUND) from cp

50 for someseq > max seqp then
51 s-send (rp, seq, estimatep, tsp,
52 ESTIMATE) to cp

53 max seqp ← seq
54 until [received(rp, seq, estimatecp ,
55 NEWESTIMATE) from cp for someseq]
56 if p 6= cp then
57 (estimatep, tsp)← (estimatecp , rp)

34 {Stage 2: PhaseNEWESTIMATE}
35 c seqp ← 0
36 repeat
37 PrevRp ← Rp; c seqp ← c seqp + 1
38 s-send (rp, c seqp, estimatep,
39 NEWESTIMATE) to all
40 wait until [received(rp, c seqp, ACK) from
41 max(nb + 1, n− nb − |Rp|) processes]
42 until Rp = PrevRp

43 s-send (estimatep, DECIDE) to all

58 {Stage 2: PhaseACK}
59 max seqp ← 0
60 repeat forever
61 if received(rp, seq, estimatecp ,
62 NEWESTIMATE) from cp for some
63 seq > max seqp then
64 s-send (rp, seq, ACK) to cp

65 max seqp ← seq

66 Task skip round:
67 d← Dp {query3S′

e}
68 if cp ∈ d.trustlist \Rp then
69 repeatd′ ← Dp {query3S′

e}
70 until [cp 6∈ d′.trustlist \Rp or d.epoch[cp] < d′.epoch[cp]
71 or received some message(r, . . .) such thatr > rp)]
72 terminate task {4phases, participant, coordinator} {abort current round}
73 repeatd← Dp until d.trustlist \Rp 6= ∅ {query3S′

e}
74 rp ← the smallestr > rp such that[(r mod n) + 1] ∈ d.trustlist \Rp and
75 r ≥ max{r′| p received(r′, . . .)}
76 fork task 4phases {go to a higher round}
77 upon recovery:
78 decisionvaluep ← ⊥; for all q ∈ Π \ {p} do xmitmsg[q]← ⊥; fork task retransmit
79 s-send RECOVEREDto all

Fig. 1.Solving Consensus without Stable Storage using3S′
e

240 M.K. Aguilera, W. Chen, and S. Toueg

the current round (if it has not done so yet). The coordinatorc broadcasts aNEWROUND
message to announce a new round, and each process sends its current estimate of the
decision value — together with a timestamp indicating in which round it was obtained
— to c. Thenc waits for estimates frommax(nb +1, n−nb−|Rc|) processes — this is
the maximum number of estimates thatc can wait for without fear of blocking forever,
because more thannb processes are always-up and respond, and at mostnb + |Rc|
processes have crashed and do not respond. Thenc checks whether during the collection
of estimates it detected the recovery of a process that never recovered before (Rc 6=
PrevRc). If so,c restarts the first stage from scratch.9 Otherwise,c chooses the estimate
with the largest timestamp as its new estimate and proceeds to the second stage.

In the second stage,c broadcasts its new estimate; when a process receives this
estimate, it changes its own estimate and sends anACK to c. Processc waits for ACK
messages frommax(nb + 1, n − nb − |Rc|) processes. As before,c restarts this stage
from scratch if during the collection ofACKs it detected the recovery of a process that
never recovered before (Rc 6= PrevRc). Finallyc broadcasts its estimate as the decision
value and decides accordingly. Once a process decides, it enters a passive state in which,
upon receipt of a message, the process responds with the decision value.

A roundr can be interrupted by taskskip round (which runs in parallel with tasks
coordinatorandparticipant): a processp aborts its execution of roundr if (1) it suspects
the coordinatorc of roundr, or (2) it trustsc but detects an increase in the epoch number
of c, or (3) it detects a recovery ofc, or (4) it receives a message from a roundr′ > r.
Whenp aborts roundr, it jumps to the lowest roundr′ > r such that (1)p trusts the
coordinatorc′ of roundr′, (2) p has not detected a recovery ofc′ (c′ 6∈ Rp) and (3)p
has not (yet) received any message with a round number higher thanr′.

The code in lines 31–33 is executed atomically, i.e., it cannot be interrupted, except
by a crash. As an obvious optimization, the coordinator of round1 can skip phaseNEW-
ROUND and simply set its estimate to its own proposed value. We omit this optimization
from the code.

The correctness of the algorithm relies on the following crucial property: if the
coordinator sends a decision forv in some round, then valuev has previously been
“locked”, i.e., in any later round, a coordinator can only choosev as its new estimate.
This property is ensured by two mechanisms: (1) the coordinator usesmax(nb +1, n−
nb − |Rp|) as a threshold to collect estimates andACKs, and (2) the coordinator restarts
the collection of estimates andACKs from scratch if it detects a new recovery (Rc 6=
PrevRc).

The importance of mechanism (2) is illustrated in Fig. 2: it shows a bad scenario (a
violation of the crucial property above) that could occur if this mechanism is omitted.
The system consists of four processes{c, p, p′, c′}. Assume thatnb = 1 and there are at
leastna = 2 processes that are always up. At pointA, the coordinatorc of roundr sends
its estimate0 to all, and atB, it receivesACKs from itself andp. At F , p′ recovers from
a crash and sends aRECOVEREDmessage to all. AtG, c has received oneRECOVERED
message fromp′ (so|Rc| = 1) and twoACKs. Sincemax(nb +1, n−nb−|Rc|) = 2, c
completes its collection ofACKs (this is the maximum number ofACKs thatc can wait
for without fear of blocking), andc sends a decision for0 to all in roundr. Meanwhile,
at C, p recovers from a crash and sends aRECOVEREDmessage to all, andc′ receives
this message beforeD. At D, c′ becomes the coordinator of roundr′ > r and sends
a NEWROUND message to all. AtE, c′ has received two estimates for1, one from

9 An obvious optimization is forc to checkduring the collection of estimateswhetherRc 6=
PrevRc. If so it can restart the first stage right away.

241Failure Detection and Consensus in the Crash-Recovery Model

A B G
c

p

p′

c′

F

C

D E

Legend:

message sent and received message sent but delayed for a long time process is down

Remarks:
- c is the coordinator in roundr; c′ is the coordinator in roundr′ > r

- C: p sendsRECOVEREDto all
- B: c received(r, ACK) from c andp

- D: c′ sends(r′, NEWROUND) to all

- E: c′ received(r′, 1, ts , ESTIMATE) from c′ andp′,

- F : p′ sendsRECOVEREDto all
andc′ selects1 as the new estimate

- G: c sends(0, DECIDE) to all

- A: c sends(r, 0, NEWESTIMATE) to all

Fig. 2. A bad scenario that can occur if mechanism (2) is not used.

itself and one fromp′. Since it has also received oneRECOVEREDmessage fromp, c′
completes its collection of estimates, and chooses1 as its new estimate for roundr′ —
even thoughc sends a decision for0 in an earlier round.

The proof of the algorithm shows that mechanism (2) prevents this and other similar
bad scenarios. In this example, ifc had used mechanism (2), then atG it would have
restarted the collection ofACKs from scratch becausePrevRc = ∅ 6= {p′} = Rc.10

Theorem 4. The algorithm of Fig. 1 satisfies the Uniform Validity and Uniform Agree-
ment properties of uniform consensus. If at mostnb processes are bad, and more than
nb processes are always up, then it also satisfies the Termination property.

7 Solving Consensus with Stable Storage

We now present a consensus algorithm that uses stable storage and3Su. It requires a
majority of good processes and works in systems with lossy links.

The basic structure of the algorithm (given in Fig. 3) is as in [4, 5] and consists
of rounds of 4 phases each (task4phases). In each roundr, initially the coordinatorc

10 It is not sufficient to use the restarting mechanism only for collectingACKs: a symmetric ex-
ample shows that this mechanism must also be used for collecting estimates.

242 M.K. Aguilera, W. Chen, and S. Toueg

For every processp:

1 Initialization :
2 for all q ∈ Π \ {p} do xmitmsg[q]← ⊥
3 To s-send m to q:
4 if q 6= p then xmitmsg[q]← m; sendm to q elsesimulatereceivem from p

5 Task retransmit:
6 repeat forever
7 for all q ∈ Π \ {p} do if xmitmsg[q] 6= ⊥ then sendxmitmsg[q] to q

8 upon propose(vp): {p proposesvp by writing it into stable storage}
9 (rp, estimatep, tsp)← (1, vp, 0)
10 fork task {4phases, retransmit}
11 Task 4phases:
12 store{rp}; cp ← (rp mod n) + 1; fork task {skip round, participant}
13 if p = cp then fork task coordinator

14 Task coordinator:
15 {PhaseNEWROUND}
16 if tsp 6= rp then
17 s-send (rp, NEWROUND) to all
18 wait until [received(rp, estimateq, tsq,
19 ESTIMATE) from d(n + 1)/2e processes]
20 t← largesttsq such thatp received
21 (rp, estimateq, tsq, ESTIMATE)
22 estimatep ← select oneestimateq such that
23 p received(rp, estimateq, t, ESTIMATE)
24 tsp ← rp

25 store{estimatep, tsp}

31 Task participant:
32 {PhaseESTIMATE}
33 if tsp 6= rp then
34 s-send (rp, estimatep, tsp, ESTIMATE) to cp

35 wait until [received(rp, estimatecp ,
36 NEWESTIMATE) from cp]
37 if p 6= cp then
38 (estimatep, tsp)← (estimatecp , rp)
39 store{estimatep, tsp}

26 {PhaseNEWESTIMATE}
27 s-send (rp, estimatep, NEWESTIMATE) to all
28 wait until [received(rp, ACK) from
29 d(n + 1)/2e processes]
30 s-send (estimatep, DECIDE) to all

40 {PhaseACK}
41 s-send (rp, ACK) to cp

42 Task skip round:
43 d← Dp {query3Su}
44 if cp ∈ d.trustlist then
45 repeatd′ ← Dp {query3Su}
46 until [cp 6∈ d′.trustlist or d.epoch[cp] < d′.epoch[cp]
47 or received some message(r, . . .) such thatr > rp]
48 terminate task {4phases, participant, coordinator} {abort current round}
49 repeatd← Dp until d.trustlist 6= ∅ {query3Su to go to a higher round}
50 rp ← the smallestr > rp such that[(r mod n) + 1] ∈ d.trustlist andr ≥ max{r′| p received(r′, . . .)}
51 fork task 4phases

52 upon receivem from q do
53 if m = (estimate, DECIDE) and decide(−) has not occurredthen {check stable storage aboutdecide}
54 decide(estimate) {decide is logged into stable storage}
55 terminate task {skip round, 4phases, participant, coordinator, retransmit}
56 if m 6= (−, DECIDE) and decide(estimate) has occurredthen {check stable storage aboutdecide}
57 send(estimate, DECIDE) to q

58 upon recovery:
59 for all q ∈ Π \ {p} do xmitmsg[q]← ⊥
60 if propose(vp) has occurredand {check stable storage aboutpropose}
61 decide(−) has not occurredthen {check stable storage aboutdecide}
62 retrieve {rp, estimatep, tsp}
63 if rp = ⊥ then rp ← 1; if estimatep = ⊥ then (estimatep, tsp)← (vp, 0)
64 fork task {4phases, retransmit}

Fig. 3.Solving Consensus with Stable Storage using3Su

243Failure Detection and Consensus in the Crash-Recovery Model

broadcasts aNEWROUND message to announce a new round, and each process sends
its current estimate of the decision value — together with a timestamp indicating in
which round it was obtained — toc; c waits until it obtains estimates from a majority of
processes; it selects one with the largest timestamp and sends it to all processes; every
process that receives this new estimate updates its estimate and timestamp accordingly,
and sends an acknowledgement toc; when c receives this acknowledgement from a
majority of processes, it sends its estimate as the decision to all processes and then
it decides. Once a process decides, it stops tasks4phasesandretransmit, and enters a
passive state in which, upon receipt of a message, the process responds with the decision
value.

A roundr can be interrupted by taskskip round (which runs in parallel with tasks
coordinatorandparticipant): a processp aborts its execution of roundr if (1) it suspects
the coordinatorc of roundr, or (2) it trustsc but detects an increase in the epoch number
of c, or (3) it receives a message from a roundr′ > r. Whenp aborts roundr, it jumps
to the lowest roundr′ > r such thatp trusts the coordinator of roundr′ andp has not
(yet) received any message with a round number higher thanr′.

In each round, a processp accesses the stable storage twice: first to store the current
round number, and later to store the new estimate and its corresponding timestamp.
Upon recovery,p reads the stable storage to restore its round number, estimate, and
timestamp, and then restarts task4phaseswith these values.

Note that in round 1, the coordinatorc can simply set its estimate to itsownproposed
value and skip the phase used to select a new estimate (PhaseNEWROUND). It is also
easy to see that the coordinator does not have to store its round number in stable storage
in this case. We omit these obvious optimizations from the code.

The following regions of code are executed atomically: lines 22–25 and 38–39.

Theorem 5. The algorithm of Fig. 3 satisfies the Uniform Validity and Uniform Agree-
ment properties of uniform consensus. If a majority of processes are good then it also
satisfies the Termination property.

8 Performance of the Consensus Algorithms

8.1 Time and Message Complexity in Nice Runs

In most executions of consensus in practice, no process crashes or recovers, no message
is lost, the failure detector does not make mistakes, and message delay is bounded by
some knownδ (including the message processing times). In such “nice” executions, our
two algorithms (with and without stable storage) achieve consensus within3δ:11 it takes
oneδ for the coordinator to broadcastNEWESTIMATE messages, oneδ for processes to
respond withACKs, and anotherδ for the coordinator to broadcastDECIDE messages.
By adding appropriate delays in theretransmittask, so that a message is retransmit-
ted only2δ time units after it is sent, processes send a total of4(n − 1) messages: in
the first algorithm, there aren − 1 messages for each of the typesESTIMATE, NEW-
ESTIMATE, ACK, andDECIDE; in the second algorithm, there aren − 1 messages for
each ofWAKEUP, NEWESTIMATE, ACK, andDECIDE. In contrast, in nice executions the
consensus algorithms of [7, 9] reach decision within2δ and withO(n2) messages.
11 This is with the round 1 optimization in which the coordinator chooses its own estimate and

sends it without waiting for estimates from other processes.

244 M.K. Aguilera, W. Chen, and S. Toueg

8.2 Quiescence

An algorithm isquiescentif eventually all processes stop sending messages [1]. It is
clear that no consensus algorithm can be quiescent in the presence of unstable processes
(each time such a process recovers, it must be sent the decision value, at which point it
may crash again and lose this message; this scenario can be repeated infinitely often). If
no process is unstable, our consensus algorithms are quiescent despite process crashes
and message losses (provided all good processes propose a value).

Remark The full version of this paper [2] contains the following additional material:
a consensus algorithm that does not require stable storage and uses3Se (rather than
3S′e), an implementation of3Se and3S′e in some models of partial synchrony, an
algorithm that transforms3Se into3Su, a discussion on how to do repeated consensus,
the formal definition of the failure detector properties, and all the proofs.

Acknowlegments We would like to thank Rachid Guerraoui, Michel Raynal and
André Schiper for introducing us to the problem of consensus in the crash-recovery
model, and for explaining their own work on this problem. We would also like to thank
Borislav Deianov for his helpful comments on an earlier draft.

References

1. M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: a timeout-free failure detector for qui-
escent reliable communication. InProceedings of the 11th International Workshop on Dis-
tributed Algorithms, Lecture Notes on Computer Science. Springer-Verlag, Sept. 1997. A full
version is also available as Technical Report 97-1631, Computer Science Department, Cornell
University, Ithaca, New York, May 1997.

2. M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery
model. Technical Report 98-1676, Department of Computer Science, Cornell University, April
1998.

3. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consen-
sus.Journal of the ACM, 43(4):685–722, July 1996.

4. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, March 1996.

5. D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omission failure envi-
ronments. Technical Report 96-1608, Department of Computer Science, Cornell University,
Ithaca, New York, Sept. 1996.

6. R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communication channels. Technical
report, Département d’Informatique, Ecole Polytechnique F´edérale, Lausanne, Switzerland,
Dec. 1996.

7. M. Hurfin, A. Mostefaoui, and M. Raynal. Consensus in asynchronous systems where pro-
cesses can crash and recover. Technical Report 1144, Institut de Recherche en Informatique
et Systèmes Aléatoires, Universit´e de Rennes, Nov. 1997.

8. G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of distributed algo-
rithms. Journal of Algorithms, 11(3):374–419, 1990.

9. R. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash-recover model. Tech-
nical Report 97-239, D´epartement d’Informatique, Ecole Polytechnique F´edérale, Lausanne,
Switzerland, Aug. 1997.

245Failure Detection and Consensus in the Crash-Recovery Model

	Introduction
	Model
	Failure Detectors for the Crash-Recovery Model
	Consensus with Crash-Recovery
	On the Necessity of Stable Storage for Consensus
	Solving Consensus without Stable Storage
	Solving Consensus with Stable Storage
	Performance of the Consensus Algorithms
	References

