Failure Detection and Consensus
in the Crash-Recovery Modet

Marcos Kawazoe Aguilera Wei Chen Sam Toueg

Cornell University, Computer Science Department, Ilthaca NY 14853-7501, USA
aguilera,weichen,sam@cs.cornell.edu

Abstract. We study the problems of failure detection and consensus in asyn-
chronous systems in which processes may crash and recover, and links may lose
messages. We first propose new failure detectors that are particularly suitable to
the crash-recovery model. We next determine under what conditions stable stor-
age is necessary to solve consensus in this model. Using the new failure detectors,
we give two consensus algorithms that match these conditions: one requires sta-
ble storage and the other does not. Both algorithms tolerate link failures and are
particularly efficient in the runs that are most likely in practice — those with no
failures or failure detector mistakes. In such runs, consensus is achieved within
34 time and withdn messages, whereis the maximum message delay anés

the number of processes in the system.

1 Introduction

The problem of solving consensus in asynchronous systems with unreliable failure de-
tectors (i.e., failure detectors that make mistakes) was first investigated in [4, 3]. But
these works only considered systems where process crashpsraranentnd links
are reliable (i.e., they do not lose messages). In real systems, however, processes may
recoverafter crashing and links may lose messages. In this paper, we focus on solving
consensus with failure detectors in such systems, a problem that was first considered in
[5,9, 7] (a brief comparison with these works is in Section 1.3).

Solving consensus in a system where process may recover after crashing raises two
new problems; one regards the need for stable storage and the other is about the failure
detection requirements:

— Stable StorageiWhen a process crashes, it loses all its local state. One way to deal
with this problem is to assume that parts of the local state are recorded into stable
storage, and can be restored after each recovery. However, stable storage operations
are slow and expensive, and must be avoided as much as possible. Is stable storage
always necessary when solving consensus? If not, under which condition(s) can it
be completely avoided?

— Failure Detection:In the crash-recovery model, a process may keep on crashing
and recovering indefinitely (such a process is callestablg¢. How should a failure
detector view unstable processes? Note that an unstable process may be as useless
to an application as one that permanently crashes (and in fact it could be even
more disruptive). For example, an unstable process can be up just long enough to
be considered operational by the failure detector, and then crash before “helping”

* Research partially supported by NSF grant CCR-9402896 and CCR-9711403, by ARPA/ONR
grant N00014-96-1-1014, and by an Olin Fellowship.

S. Kutten (Ed.): DISC’98, LNCS 1499, pp. 231-245, 1998.
[Springer-Verlag Berlin Heidelberg 1998

232 M.K. Aguilera, W. Chen, and S. Toueg

the application, and this could go on repeatedly. Thus, it is natural to require that
a failure detector satisfies the followirgmpletenesproperty: Eventually every
unstable process is permanently suspetted.

But implementing such a failure detector is inherently problen®tan in a per-
fectly synchronous systemntuitively, this is because, at any given pointin time, no
implementation can predict the future behavior of a progetsgmt has crashed in

the past but is currently “up”. Wilp continue to repeatedly crash and recover? Or
will it stop crashing?

In summary, our goal here is to solve consensus in the crash-recovery model (with
lossy links). As a crucial part of this problem, we first need to find reasonable failure
detectors that can be used for this task. We also need to determine if and when stable-
storage is necessary.

1.1 Failure Detectors for the Crash-Recovery Model

We first focus on the problem of failure detection in the crash-recovery model. Previ-
ous solutions require unstable processes to be eventually suspected forevévj@, 7].
first prove that this requirement has a serious drawback: it forces failure detector imple-
mentations to have undesirable behaviors even in perfectly synchronous systems. More
precisely, consider a synchronous round-based system with no messagé lolsees,
up ton, processes may be unstable. In this systeweryimplementation of a failure
detector with the above requirement has runs with the following undesirable behavior:
there is round after which (@)l processes are permanently up, but (b) the failure detec-
tor incorrectly suspects, of them forever (see Theorem 1). Note that these permanent
mistakes araot due to the usual causes, namely, slow processes or message delays.
Instead, they are entirely due to the requirement on unstable processes (which involves
predicting the future).

To avoid the above problem, we prop@saew type of failure detectahat is well-
suited to the crash-recovery model. This failure detector does not output lists of pro-
cesses suspected to be crashed or unstable. Instead, it outputs a list of processes deeme
to be currently up, with an associatepoch numbefor each such process. If a process
is on this list we say it isrusted

The epoch number of a process is a rough estimate of the number of times it crashed
and recovered in the past. We distinguish two types of procebadsines are those
that are unstable or crash permanently, gndd ones are those that never crash or
eventually remain up. We first propose a simple failure detector, dedafedwith the
following two properties. Roughly speaking (precise definitions are in Section 3):

— Completenesd=or every bad proceds at every good process there is a time after
which eitherb is never trusted or the epoch numbebddeeps on increasing.

— Accuracy:Some good process is eventually trusted forever by all good processes,
and its epoch number stops changing.

1 In fact, this property is assumed in [9, 7].

2n [5], crash-recovery is regarded as a special case of omission failures, and the algorithm is
not designed to handle unstable processes that can send and receive messages to and from gooc
processes.

% In such a system, processes execute in synchronized rounds, and all messages are received in
the round they are sent.

Failure Detection and Consensus in the Crash-Recovery Model 233

Note that the completeness propertya$, does not require predicting the future
(to determine if a process is unstable), and so it does not force implementations to have
anomalous behaviors. To illustrate this, in [2] we give an implementatioh&®f for
some models of partial synchrony: this implementation ensures that if all processes are
eventually up forever they will be eventually trusted forever.

Failure detectoK>S., however, does not pwny restriction on how the bad pro-
cesses view the system. In particular, the accuracy property allows unstable processes
to repeatedly “suspectll processe$.This is problematic because, in contrast to pro-
cesses that permanently crash, unstable processes may continue to take steps, and sc
their incorrect suspicions may prevent the progress of some algorithms. For example,
in the rotating coordinator consensus algorithms of [4, 5, 7] if a process kept suspecting
all processes then consensus would never be reached.

From the above it is clear that sometimes it is better to have a failure detector with:

— Strong AccuracySome good process is eventually trusted forever by all goold
unstableprocesses, and its epoch number stops changing.

Such a failure detector is denoted,,. In [2], we show how to transform an§ S,
to ¢S, in an asynchronous system provided that a majority of processes are good.

1.2 Onthe Necessity of Stable Storage in the Crash-Recovery Model

Can consensus be solved in the crash-recovery moitlebut stable storageand if
so, how? Suppose that during each execution of consensus, atJepicesses are
guaranteed to remain up. Clearly,7if, < 1 then consensus cannot be solved: it is
possible thatll processes crash and recover during execution, and the entire state of
the system (including previous proposals and possible decisions) can be lost forever.
On the other hand, ik, > n/2, i.e., a majority of processes are guaranteed to
remain up, then solving consensus is easy: If a process crashes we exclude it from
participating in the algorithm even if it recovers (except that we allow it to receive the
decision value). This essentially reduces the problem to the case where process crashes
are permanent and a majority of processes do not crash (and then an algorithm such as
the one in [4] can be used).
Is it possible to solve consensus without stable storageifn, < n/2? To answer
this question, assume that in every execution of consensus ahgy@sicesses are bad.
We show that:

— If n, < ny then consensusannot be solved without stable storagesn usingdP
(theeventually perfect failure detectdefined in Section 5).

— If n, > my then consensusan be solved without stable storagging<S, (which
is weaker thar0P).

This last result is somewhat surprising because with> n;, a majority of processes

may crash and completely lose their stéitecluding the consensus values they may
have previously proposed and/or decided). To illustrate this with a concrete example,
supposer = 10, n, = 3 andn;, = 2. In this case, up to 7 processes — more than half

of the processes — may crash and lose their state, and yet consensus is solvable with a
failure detector that is weaker th&P. Prima facie this seems to contradict the fact

that if a majority of processes may crash then consensus cannot be solved evewith

[4]. There is no contradiction, however, since [4] assumes that all process crashes are

4 An unstable process may fail to receive “Il am alive” messages sent by other processes since all
messages that “arrive” at a process while it is down are lost.

234 M.K. Aguilera, W. Chen, and S. Toueg

permanent, while in our case some of the processes that crash do recover: even though
they completely lost their state, they can still provide some help.

What if stable storagés available? In this case, we show that consensus can be
solved with<S,,, provided that a majority of processes are good (this requirement is
weaker tham, > ny).°

In addition to crashes and recoveries, the two consensus algorithms that we give
(with and without stable storage) also toleratessage losseprovided that links are
fair lossy, i.e., ifp sends messages to a good proeeisdinitely often, theng receives
messages from infinitely often.

1.3 Related Work

The problem of solving consensus with failure detectors in systems where processes
may recover from crashes was first addressed in [5] (with crash-recovery as a form of
omission failures) and more recently studied in [9, 7].

In [5,7,9], the question of whether stable storage is always necessary is not ad-
dressed, and all the algorithms use stable storage: in [5, 9], the entire state of the algo-
rithm is recorded into stable storage at every state transition; in [7], only a small part of
the state is recorded, and writing to stable storage is done at most once per round. In this
paper, we determine when stable storage is necessary, and give two matching consensus
algorithms — with and without stable storage. In the one that uses stable storage, only
a small part of the state is recorded and this occurs twice per round.

The algorithms in [9, 7] use failure detectors that require that unstable processes be
eventually suspected forever. The algorithm in [5] is not designed to deal with unstable
processes which may intermittently communicate with good ones.

1.4 Summary of Results

We study the problems of failure detection and consensus in asynchronous systems with
process crashes and recoveries, and lossy links.

1. We show that the failure detectors that have been previously proposed for the crash-
recovery model with unstable processes have inherent drawbacks: Their complete-
ness requirement force implementations to have anomalous behaviors even in syn-
chronous systems.

. We propose new failure detectors that avoid the above drawbacks.

3. We determine under what conditions stable storage is necessary to solve consensus

in the crash-recovery model.

4. We give two consensus algorithms that match these conditions, one uses stable
storage and the other does not. Both algorithms tolerate message losses, and are
particularly efficient in the runs that are most likely in practice — those with no
failures or failure detector mistakes, and message delays are bounded. In such runs,
consensus is achieved withda time and withdn messages, whereis the maxi-
mum message delay ands the number of processes in the system.

N

5 If the good processes are not a majority, a simple partitioning argument as the one in [4] shows
that consensus cannot be solved even With

Failure Detection and Consensus in the Crash-Recovery Model 235

1.5 Roadmap

The paper is organized as follows. Our model is given in Section 2. In Section 3 we show
that existing failure detectors for the crash-recovery model have limitations, and then
introduce our new failure detectors, namehs, and<S,.. We define the Consensus
problem in Section 4. In Section 5, we determine under what conditions consensus
requires stable storage. We then give two matching consensus algorithms: one does
not require stable storage (Section 6), and the other uses stable storage (Section 7). In
Section 8, we briefly consider the performance of these algorithms.

Due to space limitations, all proofs are ommitted here (they are given in [2]).

2 Model

We consider asynchronous message-passing distributed systems. We assume that every
process is connected with every other process through a communication link. Links can
fail by intermittently dropping messages. A process can fail by crashing and it may
subsequently recover. When a process crashes it loses all of its state. However, it may
use local stable storage to save (and later retrieve) parts of its state.

We assume the existence of a discrete global clock — this is merely a fictional
device to simplify the presentation and processes do not have access to it. We take the
range7 of the clock’s ticks to be the set of natural numbers.

2.1 Processes and Process Failures

The system consists of a setroprocessed] = {1,2,...,n}. Processes can crash and
may subsequently recover.failure patternF is a function from7 to 277, Intuitively,
F'(t) denotes the set of processes that are not functioning atitinve say processg
is up at timet (in F) if p ¢ F(t) andp is down at timet (in F) if p € F(¢). We say
thatp crashes at time if p is up at timet — 1 andp is down at timet.6 We say thap
recoversat timet > 1 if p is down at time& — 1 andp is up at timef. A proces can be
classified (according té") asalways-up eventually-upeventually-dowmandunstable
as follows:
Always-up: Proces$ never crashes.
Eventually-up: Procesg crashes at least once, but there is a time after which
permanently up.
Eventually-down: There is a time after which proces$s permanently down.
Unstable: Proces® crashes and recovers infinitely many times.
A process igjood (inF) if it is either always-up or eventually-up. A procesdad
(in F)ifitis not good (it is either eventually-down or unstable). We denoteday (F'),
bad(F) andunstable(F) the set of good, bad and unstable processés nespectively.
Henceforth, we consider only failure patterns with at least one good process.

2.2 Failure Detectors

Each process has access to a local failure detector module that provides (possibly in-
correct) information about the failure pattern that occurs in an execution. A process can
query its local failure detector module at any timefalure detector historyd with
rangeR is a function fromI7 x 7 to R. H(p, t) is the output value of the failure de-
tector module of procegsat timet. A failure detectorD is a function that maps each
failure pattern¥' to a set of failure detector histories with rar@e (whereRp denotes

the range of the failure detector output®f. D(F') denotes the set of possible failure
detector histories permitted 13y for the failure patterrf'.

6 We say thap crashes at time = 0 if p is down at timeD.

236 M.K. Aguilera, W. Chen, and S. Toueg

2.3 Stable Storage

When a process crashes, it loses all its volatile state, but we assume that when it recov-
ers, it knows that it is recovering from a crash. Moreover, a process may use a stable
storage device to store and retrieve a set of variables. These two stable storage opera-
tions cannot be executed atomically with certain other actions. For example, a process
cannot store a variable in stable storage and then send a message or issue an externa
output, in a single atomic step.

2.4 Link Properties

We consider links that do not create messages, or duplicate messages infinitely often.
More precisely, we assume that for all procegsasdg:
— No Creation If ¢ receives a message from p at timet, thenp sentm to ¢ before
timet.
— Finite Duplication If p sends a message to ¢ only a finite number of times, then
q receivesn from p only a finite number of times.

Links may intermittently drop messages, but they must satisfy the following fairness
property:

— Fair Loss If p sends messages to a good progemsinfinite number of times, then
q receives messages frgiman infinite number of times.

3 Failure Detectors for the Crash-Recovery Model

In this section, we first consider the failure detectors that were previously proposed for
solving consensus in the crash-recovery model, and then propose a new type of failure
detector for this model.

3.1 Limitations of Existing Failure Detectors

To solve consensus in the crash-recovery model, Hetfal.[7] and Oliveiraet al.[9]
assume that processes have failure detectors that output lists of processes suspected tc
be bad, and that these failure detectors satisfy the following property:

— Strong Completeneskventually every bad process is permanently suspected by

all good processes.

Since bad processes include unstable ones, enforcing this requirement is problem-
atic even insynchronousystems, as we now explain. Consider a systm which
processes take steps at perfectly synchronized rounds. In each round, a process is either
up, in which case it sends a message to every process, or down, in which case it does
nothing in the round. It$' at mostn,, process are unstable, i.e., alternate between being
up and down infinitely often. Links do not lose messages, and all messages sent in a
round are received at the end of that round. In sys$einis trivial to implement a fail-
ure detector that is almost perfect: by suspecting every process from which no message
was received in the current round, each process suspects exactly every process that was
down in this round.

Now suppose we want to implement fha failure detector that satisfies Strong
Completeness (and possilbbyly this property). In the following theorem, we show
that any such implementation has undesirable behaviors: in some executiongivhere
processes are good, some of them will eventually be suspected forever. Note that these
mistakes are entirely due to the above requirementirtstableprocesses, not to the
lack of synchrony.

Failure Detection and Consensus in the Crash-Recovery Model 237

Theorem 1. Let Z be any implementation of a failure detector that satisfies Strong
Completeness 5. For every set of processés of size at mosh,,, there is a run of

7 in S such that (a) all processes are good, but (b) eventually all process@sare
permanently suspected by all processeHiR G.

3.2 Failure Detectors with Epoch Numbers

Theorem 1 shows that if we require Strong Completeness then incorrect suspicions
are inevitable even in synchronous systems. Although many algorithms are designed to
tolerate such failure detector mistakes, the erroneous suspicions of some good processes
may hurt the performance of these algorithms. For example, the erroneous suspicions
of good coordinators can delay the termination of the consensus algorithms in [4,5, 7,
9]. Thus, requiring Strong Completeness should be avoided if possible.

In this section, we propose a new type of failure detectors that are well-suited to the
crash-recovery model: Although they do not require unstable processes to be eventually
suspected forever, they do provide enough information to cope with unstable processes.

At each procesp, the output of such a failure detector consists of two items,
(trustlist, epoch), wheretrustlistis a set of processes aeghochis a vector of inte-
gers indexed by the elementstafistlist Intuitively, ¢ € trustlist if p believes that
is currently up, angpoch|q] is p's rough estimate of how many timescrashed and
recovered so far (it is called tlegoch number of at p). Let H(p, ¢) denote the output
of p’s failure detector module at time If ¢ € H(p, t).trustlist, we say thap trustsq
at timet, otherwise we say thatsuspectg at timet.

We first define® S, to be the class of failure detectdPs that satisfy the following
properties (the formal definitions of these properties are given in [2]):

- Monotogicity At every good process, eventually the epoch numbers are nonde-
creasing.

— Completenesg-or every bad procegsand for every good procegs either even-
tually ¢ permanently suspectsor b’s epoch number at is unbounded.

— Accuracy For some good proceds and for every good procegs eventuallyg
permanently trust&” and K’s epoch number af stops changing.

Note thatoS,. imposes requirements only on the failure detector modules of good
processes. In particular, the accuracy propertyodf, allows unstableprocesses to
suspect all good processes. This is problematic because unstable processes can continue
to take steps, and their incorrect suspicions may hinder the progress of some algorithms.
Thus, we extend the accuracy property so that it also applies to unstable processes, as
follows:

— Strong AccuracyFor some good procegs: (a) for every good procesgs eventu-
ally g permanently trust& andK’'s epoch number at stops changing; and (b) for
every unstable process eventually whenevei is up,u trustsK and K'’s epoch
number at: stops changing.
The class of failure detectors that satisfy Monotonicity, Completeness, and Strong
Accuracy is denote¢bS,,. For convenience, we sometimes gs&, or ¢S, to refer to
an arbitrary member of the corresponding class.
OS. and<©S, are closely related: In [2] we show that one can transfoi§) into
&S, provided that a majority of processes are good (this transformation does not re-
quire stable storage).

" We require the monotonicity of epoch numbers to hold @gntuallyand only atgood pro-
cesses so that the failure detector can be implemenitbdut stable storage.

238 M.K. Aguilera, W. Chen, and S. Toueg

4 Consensus with Crash-Recovery

With consensus, each process proposes a value and processes must reach a unanimou
decision on one of the proposed values. The following properties must be satisfied:

— Uniform Validity: If a process decidesthen some process previously proposed

— AgreementGood processes do not decide different values.

— Termination If all good processes propose a value, then they all eventually decide.
A stronger version of consensus, calledform consensuys], requires:

— Uniform AgreementProcesses do not decide different values.

The above specification allows a process to decide more than once. However, with
Agreement, a good process cannot decide two different values. Similarly, with Uniform
Agreement, no process (whether good or bad) can decide two different values.

The algorithms that we provide solve uniform consensus, and the lower bounds that
we prove hold even for consensus.

When processes have access to stable storage, a process proposgesides, by
writing v into corresponding local stable storage locations. By checking these locations,
a process that recovers from a crash can determine whether it previously proposed (or
decided) a value.

When processes do not have access to stable storage, proposing and deciding
occur via an external input and output containingand so when a process recovers
it cannot determine whether it has previously proposed or decided a value. Thus it is
clear that if stable storage is not available alldprocesses may crash and recover,
consensus cannot be solved. In many systems, however, it is reasonable to assume that
in each execution of consensus there is a minimum number of processes that do not
crash. In such systems, consenisusolvable without stable storage provided certain
conditions are met, as we will see next.

5 On the Necessity of Stable Storage for Consensus

In this section, we determine some necessary conditions for solving consensus without
stable storage. Consider a system in which at leagirocesses are always-up and at
mostn, are bad. Our first result is thatqif, < n; then it is impossible to solve con-
sensus without stable storage, even in systems where there are no unstable processes
links are reliable, and processes can useantually perfect failure detectgrP. In-
formally, for the crash-recovery modebP outputs a tage {AU,EU, UN,ED} for
each process such that:
— There is a time after which at each process the tag of every prpdssslJ, EU,
UN, or ED iff p is always-up, eventually-up, unstable, or eventually-down, respec-
tively.
Note thatOP is stronger than the other failure detectors in this paper and in [9, 7].
Theorem 2. If n, < n, consensus cannot be solved without stable storage even in sys-
tems where there are no unstable processes, links do not lose messages, and processes
can useCP.

This result is tight in the sense thatiif, > n; then wecansolve consensus without
stable storage using a failure detector that is weaker¢tfar{see Section 6).

The impossibility result of Theorem 2 assumes that processes do not use any stable
storage at all. Thus, if a process crashes it cannot “remember” its previous proposal
and/or decision value. Suppose stable storage is available, but to minimize the cost of
accessing it, we want to useoitly for storing (and retrieving) the proposed and decision
values. Isn, > ny still necessary to solve consensus? It turns out thag it 2, the
answer is yes:

Failure Detection and Consensus in the Crash-Recovery Model 239

Theorem 3. Suppose that each process can use stable storage only for storing and
retrieving its proposed and decision valuesnlf < n, andn;, > 2 then consensus
cannot be solved even in systems where there are no unstable processes, links do not
lose messages, and processes carxBe

6 Solving Consensus without Stable Storage

It turns out that ifn, > n;, consensus can be solved without stable storage Wsfig
This is somewhat surprising sineg, > n; allows a majority of processes to crash
(and thus lose all their states). Note that the requirementaf n, is “tight”: in the
previous section, we proved thatif, < n;, consensus cannot be solved without stable
storage even witkbP, a failure detector that is stronger théis..

The consensus algorithm that uses. is given in [2]. In this paper, we present
a more efficient algorithm that uses a minor variant®d., denoted®S.. The only
difference betweer S, and ¢S, is that while the accuracy property ofS. requires
that K be agoodprocess (see Section 3.2), the accuracy property&jf additionally
requires that< be analways-upprocess if such a process exists. It is worth noting that
the implementation o®S. in [2] also implement>S..

The consensus algorithm that we give here always satisfies the Uniform Agreement
and Validity properties of uniform consensus for any choice péndn;, and ifn, >
ny then it also satisfies the Termination property.

This algorithm, shown in Fig. 1, is based on the rotating coordinator paradigm [4]
and uses>S!. It must deal with unstable processes and link failures. More importantly,
since more than half of the processes may crash and completely lose their states, and
then recover, it must use new mechanisms to ensure the “locking” of the decision value
(so that successive coordinators do not decide differehily. first explain how the al-
gorithm deals with unstable processes and link failures, and then describe the algorithm
and the new mechanisms for locking the decision value.

How does a rotating coordinator algorithm cope with an unstable coordinator? In
[7,9] the burden is entirely on the failure detector: it is postulated that every unstable
process is eventually suspected forever. In our algorithm, the failure detector is not
required to suspect unstable processes: they can be trusted as long as their epoch numbel
increases from time to time — a requirement that is easy to enforce. If the epoch number
of the current coordinator increases at a process, this process simply abandons this
coordinator and goes to another one.

To deal with the message loss problem, each progdess a tasketransmitthat
periodically retransmits the last message sent to each process (only the last message
really matters, just as in [5—7]). This task is terminated gndecides.

We now describe the algorithm in more detail. When a process recovers from a
crash, it stops participating in the algorithm, except that it periodically broadcasts a
RECOVEREDmMessage until it receives the decision value. When a progcesseives a
RECOVEREDMessage frorg, it addsq to a setR,, of processes known to have recov-
ered.

Processes proceed in asynchronous rounds, each one consisting of two stages. In
the first stage, processes sentllaKEUP message to the coordinatoso thatc can start

8 The standard technique for locking a value is to ensure that a majority of processes “adopt”
that value. This will not work here: a majority of processes may crash and recover, alid so
the processes that adopted a value may later forget the value they adopted.

240

M.K. Aguilera, W. Chen, and S. Toueg

For proces®:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Initialization :

R, — 0; decisionvalue, «— L;forall ¢ € IT \ {p} do zmitmsg[q] — L

To s-send m to q:

if ¢ # pthen zmitmsg[q] <— m; sendm to ¢ elsesimulatereceivem from p

Task retransmit
repeat forever

forall ¢ € IT \ {p} doif zmitmsg[q] # L then sendzmitmsg[q] to ¢

upon receivern from g do
if m = RECOVEREDthen R, «— R, U {q}

if m = (decisionvalue, DECIDE) and decisionvalue, = L then
decisionvalue, «— decisionvalue; decide(decisionvaluep)
terminate task {skip.round 4phasesparticipant coordinator, retransmit
if m # (—, DECIDE) and decisionvalue, # L then send(decisionvalue,, DECIDE) to ¢

upon propose(vy,):

{p proposes,, via an external input containing, }

(rp, estimatep, tsp) «— (1, vp, 0); fork task {4phasesretransmit

Task 4phases

¢p < (rp mod n) + 1, fork task {skipround participant}

if p = ¢, then fork task coordinator

19 Task coordinator.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

66
67
68
69
70
71
72
73
74
75
76

7
78
79

{Stage 1: PhaseEWROUND}
c.seq, — 0
repeat
PrevRy, <+ Ry, c_seq, « c_seq, +1
s-send (rp, c-seq,,, NEWROUND) to all
wait until [received(r,, c-seq,,, estimateq,
tsq, ESTIMATE) from
max(npy + 1,n — np — |R,|) processes]
untl R, = PrevR,
t «— largestts, such thap received
(rp, c-seq,,, estimateg, tsq, ESTIMATE)
estimate, < selectoneestimateg such that

p received(rp, c-seq,,, estimateq, t, ESTIMATE)

tsp — Tp
{Stage 2: PhaseEWESTIMATE}
c_seq,, — 0
repeat
PrevRy, <+ Ry, c.seq, < c.seq, +1
s-send (rp, c-seq,,, estimatey,
NEWESTIMATE) to all
wait until [received(ry,, c-seq,,, ACK) from
max(ny + 1,n — np — |Ry|) processes]
until R, = PrevR,
s-send (estimate,, DECIDE) to all
Task skipround
d«— Dy
if ¢, € d.trustlist \ Rp then
repeatd’ «— D,

44 Task participant

45
46

{Stage 1: PhasesTIMATE}
s-send (rp,, WAKEUP) to ¢,
maz._seq, <« 0
repeat
if received(r, seq, NEWROUND) from ¢,
for someseq > maz_seq,, then
s-send (rp, seq, estimatep, tsp,
ESTIMATE) to ¢
mar-seq, < seq
until [received(ry,, seq, estimatec,, ,
NEWESTIMATE) from ¢, for someseq]
if p # cp then
(estimatep, tsp) < (estimatec,, rp)

{Stage 2: Phaseck }
maz_seq, — 0
repeat forever
if received(r,,, seq, estimatec,,,

NEWESTIMATE) from ¢, for some
seq > maz_seq, then
s-send (rp, seq, ACK) to ¢,
mar_seq, < seq

{query<© S}

{query¢S.}

until [¢, & d’.trustlist \ R, or d.epoch[cp] < d’.epoch[cy]

or received some message, . . .) such thatr > r;)]
terminate task {4phasesparticipant, coordinator}

repeatd < D,, until d.trustlist \ R, # 0

{abort current rounfl
{queryost}

rp <« the smallest > r, such thaf(r mod n) + 1] € d.trustlist \ R, and

r > max{r’| p received(r’, ...)}
fork task 4phases
upon recovery.

{go to a higher rounf

decisionvalue, «— L;forall ¢ € IT \ {p} do zmitmsg[q] «— L; fork task retransmit

s-send RECOVERED1o all

Fig. 1. Solving Consensus without Stable Storage ushay,

Failure Detection and Consensus in the Crash-Recovery Model 241

the current round (if it has not done so yet). The coordinabypadcasts SEWROUND
message to announce a new round, and each process sends its current estimate of the
decision value — together with a timestamp indicating in which round it was obtained
—to ¢. Thenc waits for estimates frommax(ny, + 1, n —ny, — | R.|) processes — this is

the maximum number of estimates tleatan wait for without fear of blocking forever,
because more tham, processes are always-up and respond, and at most | R.|
processes have crashed and do not respond.dtteecks whether during the collection

of estimates it detected the recovery of a process that never recovered before (
PrevR.). If so, c restarts the first stage from scrafo®therwise ¢ chooses the estimate

with the largest timestamp as its new estimate and proceeds to the second stage.

In the second stage, broadcasts its new estimate; when a process receives this
estimate, it changes its own estimate and sendscanto c. Process: waits for ACK
messages fromax(n, + 1,n — ny, — |R.|) processes. As beforerestarts this stage
from scratch if during the collection afcks it detected the recovery of a process that
never recovered befor&(. # PrevR.). Finally c broadcasts its estimate as the decision
value and decides accordingly. Once a process decides, it enters a passive state in which,
upon receipt of a message, the process responds with the decision value.

A roundr can be interrupted by tagikip_round (which runs in parallel with tasks
coordinatorandparticipanf): a procesg aborts its execution of roundf (1) it suspects
the coordinatoe of roundr, or (2) it trustsc but detects an increase in the epoch number
of ¢, or (3) it detects a recovery of or (4) it receives a message from a round> r.
Whenp aborts round-, it jumps to the lowest roung > r such that (1)p trusts the
coordinatore’ of roundr’, (2) p has not detected a recoverydf(c’ ¢ R,) and (3)p
has not (yet) received any message with a round number higher'than

The code in lines 31-33 is executed atomically, i.e., it cannot be interrupted, except
by a crash. As an obvious optimization, the coordinator of raucah skip phassew-
ROUND and simply set its estimate to its own proposed value. We omit this optimization
from the code.

The correctness of the algorithm relies on the following crucial property: if the
coordinator sends a decision forin some round, then value has previously been
“locked”, i.e., in any later round, a coordinator can only chooses its new estimate.
This property is ensured by two mechanisms: (1) the coordinatomuse8:y, + 1, n —
ny — | Rp|) as a threshold to collect estimates awks, and (2) the coordinator restarts
the collection of estimates amatks from scratch if it detects a new recovery.(#
PrevR.).

The importance of mechanism (2) is illustrated in Fig. 2: it shows a bad scenario (a
violation of the crucial property above) that could occur if this mechanism is omitted.
The system consists of four proces$es, p’, ¢'}. Assume thak, = 1 and there are at
leastn, = 2 processes that are always up. At pointhe coordinatos of roundr sends
its estimate to all, and atB, it receivesacks from itself andp. At F', p’ recovers from
a crash and sendsrECOVEREDmMessage to all. A7, ¢ has received oONnRECOVERED
message fromy’ (so|R.| = 1) and twoAcks. Sincemax(n, +1,n —np — |Re|) = 2, ¢
completes its collection ofcks (this is the maximum number afks thatc can wait
for without fear of blocking), and sends a decision farto all in roundr. Meanwhile,
at C, p recovers from a crash and sendsecOvVEREDmMessage to all, and receives
this message beforB. At D, ¢’ becomes the coordinator of rountl > r and sends
a NEWROUND message to all. AE, ¢’ has received two estimates foy one from

° An obvious optimization is for to checkduring the collection of estimatashetherR, =
PrevR.. If so it can restart the first stage right away.

242 M.K. Aguilera, W. Chen, and S. Toueg

Yy

Remarks:
- ¢ is the coordinator in round; ¢’ is the coordinator in roung’ > r
- A: csendg(r,0, NEWESTIMATE) to all - E: ¢’ received(r’, 1, ts, ESTIMATE) from ¢’ andyp’,

- B: creceived(r, AcK) from c andp andc’ selectsl as the new estimate
- C: p sendsRECOVEREDto all - F: p’ sendsReECOVEREDt0 all
- D: ¢ sends(r’, NEwROUND)to all - G: ¢ sends(0, DECIDE) to all
Legend:
_—> === > —] ——

message sent and received message sent but delayed for along time process is down

Fig. 2. A bad scenario that can occur if mechanism (2) is not used.

itself and one fronp’. Since it has also received ore COVEREDmMessage from, ¢’
completes its collection of estimates, and chodses its new estimate for round —
even thougle sends a decision fdrin an earlier round.

The proof of the algorithm shows that mechanism (2) prevents this and other similar
bad scenarios. In this examplecihad used mechanism (2), thenit would have
restarted the collection efcks from scratch becauserevR. = () # {p'} = R..1°

Theorem 4. The algorithm of Fig. 1 satisfies the Uniform Validity and Uniform Agree-
ment properties of uniform consensus. If at masprocesses are bad, and more than
n; processes are always up, then it also satisfies the Termination property.

7 Solving Consensus with Stable Storage

We now present a consensus algorithm that uses stable storageSantt requires a
majority of good processes and works in systems with lossy links.

The basic structure of the algorithm (given in Fig. 3) is as in [4,5] and consists
of rounds of 4 phases each (taghasey In each round, initially the coordinator

101t is not sufficient to use the restarting mechanism only for collectiogs: a symmetric ex-
ample shows that this mechanism must also be used for collecting estimates.

Failure Detection and Consensus in the Crash-Recovery Model 243

For every procesg:

1 Initialization :

2 forall ¢ € IT \ {p} do xmitmsg[q] — L

3 Tos-send mtoq:

4 if ¢ # pthen zmitmsg[q] <— m; sendm to ¢ elsesimulatereceivem from p

5 Taskretransmit

6 repeat forever

7 forall ¢ € IT \ {p} doif zmitmsg[q] # L then sendzmitmsg[q] to ¢

8 upon propose(vp): {p proposew,, by writing it into stable storage
9 (rp, estimatep, tsp) «— (1,vp,0)

10 fork task {4phasesretransmit

11 Task4phases

12 store {ry}; ¢y < (rp mod n) + 1; fork task {skip.round participant}

13 if p = ¢, then fork task coordinator

14 Task coordinator. 31 Task participant

15 {PhasevEWROUND} 32 {PhaseSTIMATE}

16 if tsp # rp then 33 if tsp, # rp then

17 s-send (r,, NEWROUND) to all 34 s-send (rp, estimatep, tsp, ESTIMATE) t0 ¢p,
18 wait until [received(r,, estimateq, tsq, 35 wait until [received(ry, estimatec,,,

19 ESTIMATE) from [(n + 1)/2] processes] 36 NEWESTIMATE) from ¢,]

20 t < largestts, such thap received 37 if p # cp, then

21 (rp, estimatey, tsq, ESTIMATE) 38 (estimateyp, tsp) «— (estimatec,,,p)
22 estimate, «— select oneestimate, such thatzg store { estimatey, tsp }

23 p received(r,,, estimategq, t, ESTIMATE)

24 tsp — Tp

25 store { estimate,, tsp }

26 {PhaseNEWESTIMATE} 40 {Phasernck}

27 s-send (rp, estimate,, NEWESTIMATE) to all 41 s-send (rp, ACK) to ¢p,

28
29
30

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57

58
59
60
61
62
63
64

wait until [received(r,, ACK) from
[(n 4 1)/2] processes]
s-send (estimate,, DECIDE) to all

Task skip-round
d «— D, {query®S,}
if ¢, € d.trustlist then
repeatd’ « D, {query© S, }

until [¢, & d’.trustlist or d.epoch[cp] < d’.epochlcp]
or received some message, . . .) such thatr > r,]
terminate task {4phasesparticipant, coordinator} {abort current roungl
repeatd «— D, until d.trustlist # 0 {query<©S,, to go to a higher roungd
rp < the smallest > r,, such tha{(r mod n) + 1] € d.trustlist andr > max{r’| p received(r’,...)}
fork task 4phases

upon receivem from ¢ do

if m = (estimate, DECIDE) and decide(—) has not occurrethen {check stable storage abalecide }
decide(estimate) {decide is logged into stable storage
terminate task {skip.round 4phasesparticipant, coordinator, retransmit

if m # (—, DECIDE) and decide(estimate) has occurrethen {check stable storage abalecide}

send(estimate, DECIDE) t0 ¢

upon recovery.
forall ¢ € IT \ {p} do zmitmsg[q] — L
if propose (v,) has occurre@nd {check stable storage abqubpose}
decide(—) has not occurrethen {check stable storage abalecide }
retrieve {7y, estimatep, tsp}
if r, = Lthenr, «— 1;if estimate, = L then (estimatep, tsp) «— (vp, 0)
fork task {4phasesretransmit

Fig. 3. Solving Consensus with Stable Storage using,,

244 M.K. Aguilera, W. Chen, and S. Toueg

broadcasts aEWROUND message to announce a new round, and each process sends
its current estimate of the decision value — together with a timestamp indicating in
which round it was obtained — g ¢ waits until it obtains estimates from a majority of
processes; it selects one with the largest timestamp and sends it to all processes; every
process that receives this new estimate updates its estimate and timestamp accordingly,
and sends an acknowledgementitovhenc receives this acknowledgement from a
majority of processes, it sends its estimate as the decision to all processes and then
it decides. Once a process decides, it stops tdpkasesandretransmit and enters a
passive state in which, upon receipt of a message, the process responds with the decision
value.

A roundr can be interrupted by tasikip_round (which runs in parallel with tasks
coordinatorandparticipanf): a procesg aborts its execution of roundf (1) it suspects
the coordinatoe of roundr, or (2) it trustsc but detects an increase in the epoch number
of ¢, or (3) it receives a message from a rouhd> . Whenp aborts round, it jumps
to the lowest round’ > r such thaip trusts the coordinator of round andp has not
(yet) received any message with a round number higherithan

In each round, a procepsaccesses the stable storage twice: first to store the current
round number, and later to store the new estimate and its corresponding timestamp.
Upon recoveryp reads the stable storage to restore its round number, estimate, and
timestamp, and then restarts talghasesvith these values.

Note thatin round 1, the coordinatocan simply set its estimate to tsvnproposed
value and skip the phase used to select a new estimate (RBaggOUND). It is also
easy to see that the coordinator does not have to store its round number in stable storage
in this case. We omit these obvious optimizations from the code.

The following regions of code are executed atomically: lines 22—-25 and 38—39.

Theorem 5. The algorithm of Fig. 3 satisfies the Uniform Validity and Uniform Agree-
ment properties of uniform consensus. If a majority of processes are good then it also
satisfies the Termination property.

8 Performance of the Consensus Algorithms

8.1 Time and Message Complexity in Nice Runs

In most executions of consensus in practice, no process crashes or recovers, no message
is lost, the failure detector does not make mistakes, and message delay is bounded by
some known (including the message processing times). In such “nice” executions, our
two algorithms (with and without stable storage) achieve consensus dthirit takes

one¢ for the coordinator to broadcase WESTIMATE messages, onefor processes to
respond withacks, and anothef for the coordinator to broadcastECIDE messages.

By adding appropriate delays in thetransmittask, so that a message is retransmit-

ted only24 time units after it is sent, processes send a total(af— 1) messages: in

the first algorithm, there are — 1 messages for each of the typeSTIMATE, NEW-
ESTIMATE, ACK, andDECIDE; in the second algorithm, there ame— 1 messages for

each ofwAKEUP, NEWESTIMATE, ACK, andDECIDE. In contrast, in nice executions the
consensus algorithms of [7, 9] reach decision withirand withO(n?) messages.

11 This is with the round 1 optimization in which the coordinator chooses its own estimate and
sends it without waiting for estimates from other processes.

Failure Detection and Consensus in the Crash-Recovery Model 245

8.2 Quiescence

An algorithm isquiescenif eventually all processes stop sending messages [1]. It is
clear that no consensus algorithm can be quiescent in the presence of unstable processes
(each time such a process recovers, it must be sent the decision value, at which point it
may crash again and lose this message; this scenario can be repeated infinitely often). If
no process is unstable, our consensus algorithms are quiescent despite process crashe:
and message losses (provided all good processes propose a value).

Remark The full version of this paper [2] contains the following additional material:
a consensus algorithm that does not require stable storage an¢dsé€mather than
©SY), an implementation oS, and ¢S’ in some models of partial synchrony, an
algorithm that transform¢ S, into ¢S,,, a discussion on how to do repeated consensus,
the formal definition of the failure detector properties, and all the proofs.

Acknowlegments We would like to thank Rachid Guerraoui, Michel Raynal and
André Schiper for introducing us to the problem of consensus in the crash-recovery
model, and for explaining their own work on this problem. We would also like to thank
Borislav Deianov for his helpful comments on an earlier draft.

References

1. M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: a timeout-free failure detector for qui-
escent reliable communication. Rroceedings of the 11th International Workshop on Dis-
tributed AlgorithmsLecture Notes on Computer Science. Springer-Verlag, Sept. 1997. A full
version is also available as Technical Report 97-1631, Computer Science Department, Cornell
University, Ithaca, New York, May 1997.

2. M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery
model. Technical Report 98-1676, Department of Computer Science, Cornell University, April
1998.

3. T.D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consen-
sus.Journal of the ACM43(4):685-722, July 1996.

4. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM43(2):225-267, March 1996.

5. D. Dolev, R. Friedman, I|. Keidar, and D. Malkhi. Failure detectors in omission failure envi-
ronments. Technical Report 96-1608, Department of Computer Science, Cornell University,
Ithaca, New York, Sept. 1996.

6. R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communication channels. Technical
report, D8partement d'Informatique, Ecole Polytechniquetdtale, Lausanne, Switzerland,
Dec. 1996.

7. M. Hurfin, A. Mostefaoui, and M. Raynal. Consensus in asynchronous systems where pro-
cesses can crash and recover. Technical Report 1144, Institut de Recherche en Informatique
et Sysemes AEatoires, Universitde Rennes, Nov. 1997.

8. G. Neiger and S. Toueg. Automatically increasing the fault-tolerance of distributed algo-
rithms. Journal of Algorithms11(3):374-419, 1990.

9. R. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash-recover model. Tech-
nical Report 97-239, Bpartement d’Informatique, Ecole Polytechniquektfale, Lausanne,
Switzerland, Aug. 1997.

	Introduction
	Model
	Failure Detectors for the Crash-Recovery Model
	Consensus with Crash-Recovery
	On the Necessity of Stable Storage for Consensus
	Solving Consensus without Stable Storage
	Solving Consensus with Stable Storage
	Performance of the Consensus Algorithms
	References

